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Abstract:    We propose a new and efficient algorithm to detect, identify, and correct measurement errors and branch parameter 
errors of power systems. A dynamic state estimation algorithm is used based on the Kalman filter theory. The proposed algorithm 
also successfully detects and identifies sudden load changes in power systems. The method uses three normalized vectors to 
process errors at each sampling time: normalized measurement residual, normalized Lagrange multiplier, and normalized inno-
vation vector. An IEEE 14-bus test system was used to verify and demonstrate the effectiveness of the proposed method. Nu-
merical results are presented and discussed to show the accuracy of the method. 
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1  Introduction 
 

State estimation (SE) is one of the fundamental 
functions of an Energy Management System (EMS). 
It estimates the bus voltage magnitudes and phase 
angles as state variables (Abur and Exposito, 2004; 
Bao et al., 2015). Electric power systems often show a 
dynamic performance and the state variables (or state 
vectors) are frequently varying. Hence, to achieve 
continuous monitoring of a power system, SE must be 
performed at short time intervals (Huang and Shih, 
2002). Static SE cannot correctly follow the dynamic 
behavior of power systems. The concept of dynamic 
state estimation (DSE) has been introduced to solve 
this problem. DSE uses Kalman filtering techniques 
to improve the computational performance of the 
traditional estimation process in electric power sys-
tems (Debs and Larson, 1970; Gui et al., 2015; 
Karimipour and Dinavahi, 2015; Risso et al., 2015; 
Sharma et al., 2015; Tebianian and Jeyasurya, 2015). 

DSE not only estimates the current value of the state 
vector at time step k, but also provides a prediction of 
the state vector in the next sampling time k+1. This 
ability leads to many advantages in security analysis 
and provides more time to take control actions (Gu 
and Jirutitijaroen, 2015; Hu et al., 2015). 

In recent years, there have been many studies on 
DSE. Prasad and Thakur (1998) proposed a new DSE 
method based on Kalman filter (KF) to increase 
computational accuracy. Valverde and Terzija (2011), 
Wang et al. (2012), and Qing et al. (2015) combined 
unscented transformation with KF theory to solve 
DSE. Shih and Huang (2002) described a robust DSE 
algorithm which formulates the absolute residual 
vector as the exponential weighted function, such that 
anomalous conditions can be taken into account. Ap-
plication of enhanced fuzzy control to improve the 
estimation performance was also investigated (Lin et 
al., 2003). Qiu et al. (2013a) investigated the problem 
of robust H∞ SE for a class of continuous-time non-
linear systems via Takagi-Sugeno (T-S) fuzzy affine 
dynamic models. Qiu et al. (2013b) addressed the 
problem of robust H∞ output feedback control with 
parametric uncertainties and input constraints. 
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Artificial neural networks have also been used to 
forecast state vector components (Glazunova, 2010). 

It has been shown that errors in the measure-
ments and branch parameters, as well as the sudden 
load changes, can have adverse impacts on SE results 
(Falcao et al., 1982; Silva et al., 1987; Zhu and Abur, 
2010). Sudden changes in the power system operating 
conditions rarely occur, and are due mainly to pre-
dictable events such as the disconnection of a large 
industrial consumer or component outages. 

From a practical point of view, these errors may 
exist in power systems at the same time. Obviously, 
the performance of SE depends on the accuracy of the 
measurements and branch parameters. To obtain a 
reliable SE, the simultaneous detection, identification, 
and estimation of measurement and branch parameter 
errors with high accuracy are challenging tasks. 

We propose a DSE based on KF theory for the 
error processing problem. The proposed method can 
identify and correct errors in the measurements and 
branch parameters simultaneously, and take account 
of sudden changes in the loads by using Lagrangian 
multiplier theory. Note that the identification of sud-
den changes in a power system is impossible by 
normalized residual tests, and an innovative test needs 
to be proposed for this problem. Our proposed 
method uses three normalized vectors for error pro-
cessing at each sampling time: normalized measure-
ment residual, normalized Lagrange multiplier, and 
normalized innovation vectors. Furthermore, a new 
linear approximation approach is proposed to esti-
mate and correct erroneous measurements and branch 
parameters at each sampling time. 

Also, it is possible to extend the results from this 
study to the underlying systems under a network- 
based environment with time delays, packet dropouts, 
and quantization. An input-output (IO) approach is 
proposed for the delay-dependent stability analysis 
and H∞ controller synthesis for a class of continuous 
time Markovian jump linear systems (MJLSs) (Qiu 
et al., 2015). 

 
 

2  Dynamic state estimation based on Kal-
man filter 
 

DSE uses the present and sometimes the previ-
ous states of a power system in addition to knowledge 
of the system’s physical model to predict the state 

vector for the next step time. The following steps 
should be included in DSE (Filho and Souza, 2009; 
Filho et al., 2009). 

2.1  Modeling 

Different models for slow dynamic systems have 
been reported (Silva et al., 1987; Risso, 2015, 
Tebianian and Jeyasurya, 2015). To establish such a 
model, some important considerations of power sys-
tem operations are usually assumed: 

1. The timeframe of interest is small, and of the 
order of a few minutes; 

2. A linear function properly represents the 
transition trajectory between consecutive states; 

3. Control variables are not included, since their 
effects are much larger than the adopted time steps. 

However, since the state trajectory is usually 
divided into small time intervals, a dynamic system 
can be represented by the following linear dynamic 
model to describe the system time evolution: 
 

 1 ,

( ) ,
k k k k k

k k k k

   
  

x F x g w

z h x e
 (1) 

 
where xk is an n×1 dimensional state vector with 
voltage magnitudes and phase angles in all buses, Fk 
is a transition matrix representing the state transition 
between two instants of time, gk is a vector associated 
with the trend behavior of the state trajectory, wk is a 
modeling uncertainties vector, with a Gaussian noise 
with zero mean and covariance matrix Qk, zk is an 
m×1 dimensional measurement vector, hk is a non-
linear function relating the measurements to the state 
variables, ek is a measurement error vector, with a 
Gaussian noise with zero mean and diagonal covari-
ance matrix Rk, and k is a time sample. 

Uncertainties wk and ek are assumed to be un-
correlated. The state vector components are the phase 
angles and magnitudes of the bus voltages. 

One of the most common approaches for online 
calculation and adjustment of Fk and gk is Holt’s two- 
parameter exponential smoothing technique (Silva 
and Filho, 1983). In this method, elements of Qk re-
main approximately constant or are estimated offline 
(Filho et al., 1989). 

Based on Holt’s exponential smoothing tech-
nique, Fk and gk are updated based on the following 
equation: 
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(1 )(1 ) (1 ) ,
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k k k k k k k k

 
    

 
      

F I

g x a b
 (2) 

 

where I is the identity matrix, αk and βk are parameters 
lying in the range from 0 to 1, 1ˆkx  and kx  is the 

estimated and predicted state vector at time k, re-
spectively, and vectors a and b at time k are obtained 
by 

 

 
1 1

ˆ (1 ) ,

( ) (1 ) .
k k k k k

k k k k k k

 
  

  
    

a x x

b a a b


 (3) 

 

2.2  Forecasting 

In the forecasting step, the forecasted state vec-
tor in the next time sample ( 1kx ) is obtained using 

the estimated state vector in time sample k. 1kx  and 

its error covariance matrix Mk+1 are given by 
 

 
1

T
1

ˆ ,

.

k k k k

k k k k k





 


 

x F x g

M F P F Q


 (4) 

 

Therefore, the forecasted measurement vector 

1kz  and its error covariance matrix Tk+1 can be ob-

tained by 
 

 1 1 1

T
1 1 1 1

( ),

,

k k k

k k k k

  

   






z h x

T H M H
 (5) 

 
where 

11 1 / |
kk k      x xH h x  is the measurement 

Jacobian matrix. The standard deviation of the error  
for the ith forecasted measurement is expressed by 

1( ) ( , )T ki T i i  . 

2.3  Innovation analysis 

By using dynamic estimators in power system 
monitoring, it is possible to determine in advance if a 
set of gathered information that will be processed by 
the estimator contains anomalies. This is achieved by 
exploiting the forecasting capability of the dynamic 
estimators. 

Let vk+1 be the innovation vector at time sample 
k+1. The ith component of this vector is defined as the 
difference between the received zk+1(i) and forecasted 

1( )kz i  measurements: 

 1 1 1( ) ( ) ( ),k k kv i z i z i      (6) 
 

where the innovation vector vk+1 is a Gaussian vector 
with zero mean and covariance matrix Nk+1, stated as 
follows: 

 

 T
1 1 1 1 1 1 1.k k k k k k k         N R H M H R T  (7) 

 
Thus, the innovation vector vk+1 can be normalized as 
follows: 

 

 1
1

| ( ) |
( ) ,

( )
N k
k

N

v i
v i

i


   (8) 

 

where the error standard deviation of the ith innova-

tion ( )N i  is expressed by 1( ) ( , )N ki N i i  . 

If at least one innovation exceeds the threshold, 
then an error is detected and should be identified. 

2.4  Filtering 

In the filtering step, the estimated state vector in 
the next time sample ( 1ˆkx ) is obtained using the 

forecasted state vector in current sample ( 1kx ), cal-

culated as  
 

 1 1 1 1
ˆ ,k k k k    x x K v  (9) 

 

which leads to the following calculation process: 
 

 

T 1
1 1 1 1

T 1 1
1 1 1 1

1 1 1 1

,

( ) ,

( ).

k k k k

k k k k

k k k k


   

 
   

   

 



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K P H R

P H R H

v z h x

 (10) 

 

2.5  Residual analysis 

The residual vector rk+1 is defined as the differ-
ence between the received and estimated measure-
ment vectors (stated as zk+1 and 1ˆkz , respectively): 

 
 1 1 1ˆ .k k k   r z z  (11) 

 
rk+1 is a Gaussian vector with zero mean and covari-
ance matrix Ωk+1, which is calculated as follows: 
 

 T
1 1 1 1 1.k k k k k     Ω R H P H  (12) 
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Thus, rk+1 can be normalized as follows: 
 

 1
1

| ( ) |
( ) ,

( )
N k

k

r i
r i

i


   (13) 

 

where 1( ) ( , )ki i i  Ω  is the standard deviation of 

the ith component of vector rk+1. 
If at least one residual exceeds the threshold, an 

error is detected and should be identified. 

 
 

3  Proposed algorithm 
 

The proposed algorithm employs Lagrange 
multiplier analysis to identify and correct errors in 
branch parameters. In this section, the proposed La-
grange multiplier analysis is presented. Then the 
flowchart of the proposed algorithm is explained in 
detail. 

3.1  Proposed algorithm using Lagrange multiplier 
analysis 

The following equations are given at samp- 
ling time k+1. The mathematical model which  
relates the measurements to the state variables and  
the branch parameter errors can be formulated as 
follows: 

 
 1 1 1 error 1( , ) ,k k k k    z h x P e  (14) 

 
where Perror specifies the vector of power system 
branch parameter errors. The branch parameter vector 
is modeled as 

 
 true error , P P P  (15) 

 
where Ptrue and Perror signify the true and incorrect 
branch parameter vectors, respectively. 

If there are no errors in the branch parameters, 
the error vector of the power system parameters, Perror, 
will be zero. Therefore, the conventional weighted 
least squares (WLS) SE approach in the presence of 
parameter errors can be formulated as an optimization 
problem: 

T
1 1 1 1 error

1
1 1 1 1 error

error

min ( ) [ ( , )]

[ ( , )]

                        s.t. .

k k k k

k k k k

   


   

 

 

 0

J x z h x P

R z h x P

P

      (16) 

 
If the analysis of Lagrange multipliers is applied 

to solve this problem, the objective function J(xk+1) 
can be written as follows: 

 
T

1 error 1 1 1 1 error

1 T
1 1 1 1 error 1 error

L( , , ) [ ( , )]

[ ( , )] ,

k k k k k

k k k k k

    


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 

  

x P λ z h x P

R z h x P λ P
 (17) 

 
which can be solved using the Krush-Kuhn-Tucker 
(KKT) first-order optimality conditions. The resulting 
equations are 

 

1 error 1

1

T 1
1 1 1 1 1 error

L( , , )

[ ( , )] ,

k k

k

k k k k k

 




    




  

x P λ

x

H R z h x P 0

     (18) 

T 11 error 1
p, 1 1

error

1 1 1 error 1

L( , , )

     [ ( , )] ,

k k
k k

k k k k

 
 

   






   

x P λ
H R

P

z h x P λ 0

    (19) 

1 error 1
error

1

L( , , )
,k k

k

 




 


0

x P λ
P

λ
               (20) 

 
where 

1
p, 1 1 error ˆk

k k


  
  

x x
H h P  and λk+1 are the 

Jacobian matrix of parameters and Lagrange multi-
plier vector for the parameter errors, respectively. 
Note that λk+1 can be now expressed in terms of rk+1, 
stated as follows: 

 

 1 p, 1 1,k k k  λ S r  (21) 

 

where T 1
p, 1 p, 1 1k k k


    S H R  is the parameter sensi-

tivity matrix, 1 1 1 1 error( , ),k k k k    r z h x P  and rk+1 

represents the measurement residual vector. 
It is assumed that all Lagrange multipliers are 

distributed according to a normal distribution with 
zero mean value and a non-zero covariance. The co-
variance matrix Λk+1 can be derived from the rela-
tionship between Lagrange multipliers and meas-
urement residuals: 
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  
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S Ω S

Ω I H H R H H R

   (22) 

 
Thus, the Lagrange multiplier vector can be normal-
ized as follows: 

 

 1
1 p

( )
( ) ,   1, 2,..., ,

( )
kN

k

i
i i n

i







             (23) 

 
where np is the total number of power system branch 

parameters, and 1( ) ( , )ki i i    is the standard 

deviation of the ith component of vector rk+1. When at 
least one Lagrange multiplier exceeds the threshold, 
the presence of a branch parameter error is identified, 
and should be corrected. 

Erroneous measurements and branch parameters 
are corrected using a proposed new linear approxi-
mation approach, explained in detail as follows. 

The measurements are related to the state varia-
bles and branch parameters by 

 
 1 1 1 1( , ) ,k k k k    z h x P e  (24) 
 

which can be rewritten as 
 

1 1 1 true

1 1 1 1 true 1

( , )

[ ( , ) ( , )] ,
k k k

k k k k k

  
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

  

z h x P

h x P h x P e
 (25) 

 
where the term in the square brackets can be linear-
ized as 

 

 
1 1 1 1 true

1 1
p, 1 p, 1 p, 1

( , ) ( , )

( , )
,

k k k k

k k
k k k

   

 
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







h x P h x P

h x P
e H e

P

 (26) 

 
where ep, k+1 is the vector of branch parameter errors in 
time sample k+1, considering a random Gaussian 
variable with zero mean value and covariance matrix 
Rp. 

By combining Eqs. (25) and (26), a linear rela-
tionship can be established between the residual 
measurement vector rk+1 and the parameter errors 
vector ep, k+1: 

 1 1 1 1 true p, 1 p, 1
ˆ( , ) .k k k k k k       r z h x P H e  (27) 

 
By using Eqs. (21) and (27), parameter error 

vector ep can be written as follows: 
 

 1 1
p, 1 p, 1 p, 1 1 p, 1 1( ) ,k k k k k k

 
      e S H λ G λ  (28) 

 
where Gp, k+1 is the parameter gain matrix (np×np). 
Suppose that the ith branch parameter is identified | 
as erroneous. Then it can be denoted that 

bad
1 p, 1 p,( ) ,k k+ kλ i = G i i e i     . 

The covariance matrix of λk+1 can be obtained as 
follows: 
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T T
p, 1 p, 1 p, 1 p, 1

T
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k k k k k k+
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
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Λ λ G e G e

G e e G

G R G G R

 (29) 

 
Consequently, the parameter error vector ep, k+1 for the 
ith branch parameter in Eq. (28) can be written as 
follows: 

 
bad

p, 1 bad1
p, 1 1

p, 1 1

( , )( )
( ) ( ).

( , ) ( , )
kk

k k
k k

R i ii
e i i

G i i i i







 
 

        (30) 

 

So, the actual branch parameter value can be esti-
mated as 

 

 

correct bad
1 1 p, 1

p, 1bad bad
1 1

1

( ) ( ) ( )

( , )
( ) ( ),

( , )

k k k

k
k k

k

p i p i e i

R i i
p i i

i i




  


 



 

  
 (31) 

 

where bad
1 ( )kp i  and correct

1 ( )kp i  are the erroneous value 

and the estimated (corrected) value, respectively, of 
the identified branch parameter in time sample k+1. 
Also, Rp, k+1(i, i) is the ith diagonal element of  
Rp. 

The redundancy index is an important index of 
the accuracy of SE results in power systems. All pa-
rameter error detection and identification approaches 
need high redundancy. If a system has many meas-
urement errors, removing erroneous measurements 
will reduce the redundancy and observation ability of 
SE. In this study, not only the erroneous measure-
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ments are not deleted, but their corrected values are 
estimated by a corrective method. A similar correc-
tive equation for parameter errors can be used to 
calculate measurement errors as follows: 

 

 
correct bad bad1

1 1 1
1

bad bad bad
1 1 1

( , )
( ) ( ) ( ),

( , )

ˆ( ) ( ) ( ( )).

k
k k k

k

k k k

R i i
z i z i r i

i i

r i z i h x i




  


  

   

  

 (32) 

 

3.2  Flowchart of the proposed algorithm 

The proposed DSE algorithm applies the nor-
malized residual, normalized innovation, and nor-
malized Lagrange multiplier vectors for error pro-
cessing. The first step in error processing is error 
detection (measurement errors, branch parameter 
errors, and sudden load changes) using these nor-
malized vectors. Variations in the maximum elements 
of these vectors are presented in Table 1, in which c is 
the threshold for error processing. 

Table 1 shows that, for all types of error, 

1max{ } .N
k c v  So, this normalized vector can be used 

as the first processor in error detection. If 

1max{ } ,N
k c v  then no errors are detected in the 

power system. Otherwise, one of the three errors has 
occurred. In sudden load change error, each of the two 
normalized vectors rk+1 and λk+1 is lower than the 
threshold. However, these vectors are higher than the 
threshold when measurement or branch parameter 
errors occur. If there are measurement errors, 

1 1max{ } max{ }N N
k k r λ ; if there are parameter errors, 

1 1max{ } max{ }N N
k k r λ . 

The above results can be used to develop an al-
gorithm to detect, identify, and correct the errors in a 
power system. The flowchart of our proposed algo-
rithm is shown in Fig. 1. Note that the DSE process 
will start from sampling time k+1 in Fig. 1. 

 
 
 
 
 
 
 

3.3  Performance indices of dynamic state estima-
tion 

The performance indices (Qing et al., 2015) at 
different stages are described as follows: 

Prediction index: At the state prediction stage, 
the following calculated formula is employed to 
evaluate performance: 
 

 
true

pre
true

Index 100%.k k
k

k


 

x x

x


 (33) 

 

Estimation index: At the state filtering stage, the 
following formula is applied to assess the perfor-
mance index: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Flowchart of the proposed algorithm (SCADA: 
supervisory control and data acquisition) 

 
 
 
 
 
 
 
 

Table 1  Variation in the maximum elements of normalized vectors by various errors 

Vector Measurement error Branch parameter error Sudden load change 

vk+1 1max{ }N
k c v  1max{ }N

k c v  1max{ }N
k c v  

rk+1 1max{ }N
k c r  1max{ }N

k c r  1max{ }N
k c r  

λk+1 1max{ }N
k c   1max{ }N

k c   1max{ }N
k c   

c is the threshold for error processing 
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Performance index: For overall achievement, the 
following performance index is used as the compar-
ison benchmark: 
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 (35) 

 

where i and k indicate the ith measurement and the kth 
time sample, respectively. 
 

 

4  Simulation results 
 

The validity and performance of our proposed 
algorithm were evaluated on an IEEE 14-bus test 
system. Performance was evaluated under a scenario 
of simultaneous measurement and branch parameter 
errors plus a sudden load change.  

The unique features and main advantages of the 
proposed method are fourfold: 

1. The proposed method enhances the sensitivity 
and reliability of SE by successful processing of 
anomalies, and the identification and correction of 
errors with high accuracy. 

2. The method is able to detect and correct errors 
in measurements and parameters, even when they 
occur simultaneously, as well as under sudden load 
change conditions. 

3. The paradigm of the method is easy to under-
stand and implement. It can also be developed as a 
didactic tool to help engineers and students become 
better acquainted with power system operations. 

4. The method can be used in practical systems, 
and is suitable for applications under different oper-
ating scenarios according to the results obtained. 

To simulate the slow dynamic performance of a 
system, a linear trend (1%) along with a random  
 

 
 
 
 
 
 

fluctuation was added to the load curve, and 40 time 
sample intervals were obtained through successful 
running of load flows under different loading condi-
tions. The outputs of the load flow were used as true 
states (xtrue) and true values of measurements (ztrue), 
including bus voltage magnitudes, bus injection 
powers, and line flow powers. Then, measurements of 
voltage magnitudes, power injections, and power 
flows were corrupted with a random Gaussian noise 
with zero mean and standard deviation of 1% for 
voltages and 2% for powers of actual values. 

The initialization of Holt’s technique was carried 
out using the first two samples at times k=0 and k=1 of 
state variables taken from the load flow executions. 
This means that the estimation process ran from time 
instant k=2 up to k=40 and αk=0.8 and βk=0.5 were 
used during the whole simulation time interval. The 
elements of diagonal matrix Qk were kept constant at 
10-6 during the whole simulation (Valverde and Ter-
zija, 2011). Also, the threshold for error processing 
was selected as c=4. The proposed algorithm deals 
with electrical parameters in the classical steady-state 
π-equivalent model of branches, which consists of 
series and shunt admittances. In the test system, we 
assumed that the measurement system was highly 
redundant. In this regard, we also assumed that all 
power injections and power flows were available. 

Table 2 summarizes the simulated errors in the 
test system, including measurement error, branch 
parameter error, and a sudden load change in various 
time samples. 

In Table 2, P13 and Q13 are the active and reactive 
power injections in bus 13, respectively. Note that 
these measurements are closely related, and thus 
could easily be missed as a sudden load change at bus 
13. Also, gi–j is the series conductance of the 
π-equivalent model of the branch connecting buses i 
and j. 

Simulation results are presented and discussed 
below. To demonstrate the effectiveness of the pro-
posed algorithm, Fig. 2 shows the variation in  
evaluation indexes as defined by Eqs. (33)–(35).  

 
 
 
 
 
 
 

Table 2  Simulated errors on the IEEE 14-bus test system

Time step k Error type Error information 
30 Sudden load change Bus 13 (load completely cut off) 

20–30 Measurement error 
P13=0 (true value=−0.135 p.u.) 
Q13=0 (true value=−0.058 p.u.) 

30–40 Branch parameter error g1–2=7.5 (true value=−4.990 p.u.) 
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Figs. 2a–2c also represent the variations in evaluation 
indexes before and after applying the proposed 
methodology. 

The indexes from sampling times k=20 to k=30 
and from k=35 to k=40 increased before using the 
proposed correction method. Evaluation indexes de-
creased in the following application of the proposed 
algorithm, which demonstrates the effectiveness of 
the proposed method. 

To show the capability of the proposed correc-
tion algorithm, the measured, predicted, and esti-
mated values for active and reactive power injections 
at bus 13 (P13 and Q13, respectively) are shown in 
Figs. 3a–3d. The proposed DSE algorithm performed 
appropriately and provided suitable corrections. 

Furthermore, the proposed method identified 
and corrected the measurement and branch parameter 
errors as well as the sudden load change error. 

To provide a comprehensive comparison and 
analysis, the variations in normalized vectors (vk+1, 
rk+1, and λk+1) are presented in Figs. 4a–4f. 

In Fig. 4, after successful error identification and 
correction, all elements of the normalized innovation, 
normalized residual, and normalized Lagrange mul-
tiplier vectors are lower than the threshold of four. 

The proposed method can be used in practical 
applications in view of the high accuracy of the sim-
ulation results. Note that in practical applications, the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Variation in evaluation indexes on the IEEE 14-bus
test system: (a) estimation index; (b) prediction index;
(c) performance index 
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Fig. 3  Active and reactive power injection at bus 13: (a) P13 before correction; (b) P13 after correction; (c) Q13 before
correction; (d) Q13 after correction 
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errors in measurement sets are inherent, natural, and 
depend on the measurement accuracy. In real power 
systems, SE is carried out at time intervals of a few 
minutes (five minutes, as time samples). The pro-
posed methodology can be simulated in less than this 
time. 
 
 
5  Conclusions 

 
A novel and efficient algorithm for simultaneous 

detection, identification, and correction of measure-
ment and branch parameter errors has been proposed 
based on a dynamic state estimation algorithm and 
Kalman filter theory. The proposed correction meth-
odology also successfully detected and identified 
sudden load changes. The proposed methodology 
applies three normalized vectors for error processing in 
each time sample, namely normalized measurement 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

residual, normalized Lagrange multiplier, and nor-
malized innovation vectors. It was shown that the 
normalized innovations are highly suitable for error 
processing. An IEEE 14-bus system was used as the 
test system to verify and demonstrate the effective-
ness of the proposed algorithm by introducing various 
indices. The performance of the proposed DSE algo-
rithm was illustrated through these tests. Suitable 
results were obtained and the proposed method suc-
cessfully processed the anomalies, and identified and 
corrected the errors with high accuracy. 

Future work will focus on applying extended 
Kalman filter (EKF) and unscented Kalman filter 
(UKF) techniques to error processing, and might 
include the following topics: development of estima-
tion methods, incorporation of phasor measurement 
unit (PMU) measurements, computational efficiency 
for large-scale power system applications, and fore-
casting methods based on nonlinear models. 

Fig. 4  Variations in normalized vectors: (a) vk+1 before correction; (b) vk+1 after correction; (c) rk+1 before correction;
(d)  rk+1 after correction; (e) λk+1 before correction; (f) λk+1 after correction 
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