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Abstract: The massive diffusion of smartphones, the growing interest in wearable devices and the Internet of
Things, and the exponential rise of location based services (LBSs) have made the problem of localization and
navigation inside buildings one of the most important technological challenges of recent years. Indoor positioning
systems have a huge market in the retail sector and contextual advertising; in addition, they can be fundamental to
increasing the quality of life for citizens if deployed inside public buildings such as hospitals, airports, and museums.
Sometimes, in emergency situations, they can make the difference between life and death. Various approaches have
been proposed in the literature. Recently, thanks to the high performance of smartphones’ cameras, marker-less and
marker-based computer vision approaches have been investigated. In a previous paper, we proposed a technique for
indoor localization and navigation using both Bluetooth low energy (BLE) and a 2D visual marker system deployed
into the floor. In this paper, we presented a qualitative performance evaluation of three 2D visual markers, Vuforia,
ArUco marker, and AprilTag, which are suitable for real-time applications. Our analysis focused on specific case
study of visual markers placed onto the tiles, to improve the efficiency of our indoor localization and navigation
approach by choosing the best visual marker system.
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1 Introduction

The massive, worldwide diffusion of the smart-
phone and its high hardware performance have con-
tributed in recent years to the creation of the condi-
tions for significant technological progress in the mo-
bile consumer sector. Manufacturers continuously
add new sensors to their latest devices, giving de-
velopers and startups the perfect instrument to cre-
ate innovative applications and services, which have
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radically changed the citizen’s way of life. Most of
these applications and services are strictly related to
the user position and context information: they are
defined as location based services (LBSs), provide
to the users a lot of functionalities based on their
proximity to a specific point of interest, and are
becoming very popular. In outdoor environments,
the Global Positioning System (GPS) is almost a ‘de
facto’ standard for positioning and navigation, but
in indoor environments there does not actually exist
a unique technology to solve the problem. For this
reason LBSs inside buildings are not very common
today. Various approaches and solutions have been
proposed to address the challenge in a simple and
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scalable way, and also a lot of commercial solutions
are appearing on the market (Mautz, 2012). Among
these, the most successful are those that take ad-
vantage of the hardware/sensors of the smartphone
to extract contextual information and use them to
localize the user. In Fig. 1, we give a brief and non-
exhaustive summary of the main techniques used for
indoor localization.
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Fig. 1 Overview of the main indoor localization and
navigation techniques

Dead reckoning systems use accelerometers,
magnetometers, and gyroscope sensors embedded in
the smartphones to provide a fast estimate of the user
position. Because of high drift errors introduced by
the sensors, usually a step counter is used to calculate
the covered distance and a periodical recalibration is
performed to reset from the error (Beauregard and
Haas, 2006; Li et al., 2012; Buchman and Lung, 2013;
Liu et al., 2013; Bajo et al., 2015). Received signal
strength indication (RSSI) systems exploit the RSSI
of the radio signals present in the environment, typ-
ically, wireless-fidelity (Wi-Fi) signals, available for
free in public buildings, or, recently, Bluetooth low
energy (BLE) signals. They use triangulation and
trilateration or, more frequently, information from
a previously generated RSSI fingerprint database of
the environment to estimate the position of the user
(Fuchs et al., 2011; Liu et al., 2012; Buchman and
Lung, 2013; Han et al., 2014; Bajo et al., 2015). Au-
dio systems exploit controlled (usually malls, con-
sumer stores, and museums are equipped with loud-
speakers) or uncontrolled ambient sounds (for ex-
ample, acoustic background fingerprint) to allow a
simple smartphone to cheaply determine its loca-
tion (Mandal et al., 2005; Tarzia et al., 2011). Mag-
netic field systems use the indoor ambient magnetic
fields (caused, for example, by elevators, escalators,
doors, or pillars) to build a magnetic map of the

environment. This map is used by the smartphone
to solve the indoor localization problem (Haverinen
and Kemppainen, 2009; Subbu and Sasidhar, 2011).
Visible light communication (VLC) systems exploit
the susceptibility of light emitting diodes (LEDs) to
amplitude modulation at high frequencies to trans-
mit information into the environment. If the fre-
quency is greater than a flicker fusion threshold, the
lighting functionality is preserved because the mod-
ulation is not perceivable by the human eyes, and
it is possible to perform accurate indoor position-
ing (Danakis et al., 2012; Jovicic et al., 2013). Re-
cently, thanks to high performance cameras and high
computational capabilities of new generation smart-
phones, researchers are focusing on computer vision
systems which rely on complex, CPU-intensive (1)
marker-less or (2) marker-based computer vision al-
gorithms to determine the position of the user in
the environment (Saito et al., 2007; Arias and April,
2011; Chandgadkar and Knottenbelt, 2013). Usu-
ally, hybrid techniques and technologies are used to
improve the accuracy, reduce costs, and enhance the
performance of the whole indoor positioning system
(Wang et al., 2012; Zachariah and Jansson, 2012).

This work is an extension of our previous one
(La Delfa et al., 2015). In particular, in the present
paper we extended the related work section, by go-
ing deeper in the presentation of some papers, and
by introducing some other interesting indoor local-
ization solutions, such as IndoorAtlas, which is based
on the magnetic fields. Moreover, Section 4 further
focuses on the presentation of the most important vi-
sual markers in the literature, shows the experimen-
tal results we obtained by analyzing three kinds of
markers, Vuforia, ArUco marker, and AprilTag, and
introduces a benchmarking tool useful for compar-
ing the performance of such markers under different
conditions.

2 Related work

Indoor navigation is now a very hot topic with
a lot of research over the last decade, and there have
even been some commercial solutions actually used
in places such as museums or big shopping centers.
Various solutions have been proposed in the litera-
ture. They can be classified, from the point of view of
approach, into two main categories: the first exploits
data coming from sensors to track the user or detect
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his/her position, and the second uses the information
extracted from cameras and computer vision tech-
niques to reach the same goal. In the following, we
present an overview of proposals belonging to both
categories.

2.1 Sensor-based approaches

Researchers from Duke University proposed Un-
Loc (Constandache et al., 2010; Wang et al., 2012)
to face the problem by both resetting the drift er-
ror generated by the smartphone inertial sensors
and avoiding any previous knowledge of the build-
ing. Their approach merges environmental sensing
and dead reckoning to realize an indoor navigation
system, based on the hypothesis that certain loca-
tions in indoor environments present—in the sensor
domains—identifiable signatures (landmarks) gener-
ated by elevators, escalators, Wi-Fi, etc. They use
dead reckoning to track the user, and periodically re-
set the error when the user encounters a landmark.
The estimation of the landmark positions (initially
unknown) and the identification of new ones are per-
formed by elaborating the data coming from all the
users: every new user improves the previous mea-
surements. Jovicic et al. (2013) suggested the use of
LEDs and VLC to localize the user inside an environ-
ment in an accurate way. On the transmitter side,
the modification to the LED lighting infrastructure is
cheap and simple—power-efficient switch-mode am-
plifiers are already present on the LED lamps, so the
only cost comes from the programmable logic devices
which drive the amplifier; on the receiver side, Harald
Haas (one of the pioneers in this field) showed that
it is possible to exploit the rolling shutter effect of
complementary metal oxide semiconductor (CMOS)
based camera sensors (Meingast et al., 2005) to let a
mobile phone decode the information transmitted by
the LEDs’ infrastructure (Danakis et al., 2012). Sev-
eral startups such as ByteLight proposed indoor nav-
igation commercial solutions based on VLC. Other
researchers and startups tried to use magnetic fields
for positioning. One of these startups, IndoorAt-
las (Haverinen and Kemppainen, 2009), inspired by
the capability of some animals that use the Earth’s
magnetic fields for orientation detection and naviga-
tion, proposed a commercial indoor positioning so-
lution based on a similar principle. They supposed
that modern buildings often contain steel structures,
which create a sort of magnetic fingerprint of the en-

vironment and then they exploited these anomalies
to localize the user. Apple and Google included ap-
plication programming interface (API) for indoor po-
sitioning in their software development kits (SDKs)
for iOS and Android. Apple, in particular, provided
an enhancement on its core location framework to let
developers make an easy transition between outdoor
and indoor navigation. Moreover, they provided for
free a new portal to add or edit local business list-
ings (with some features such as public access in
the building, one million or more of visitors per year,
Wi-Fi enabled, etc.): Apple Maps Connect. The list-
ings (or corrected listings) appear on Apple Maps on
the personal computer (PC) and the mobile, so the
user can track himself/herself inside them. Behind
the scenes, Apple (and Google, which offers a sim-
ilar feature) uses mixed technologies such as Wi-Fi
fingerprint, BLE iBeacons (Martin et al., 2014; Vil-
larrubia et al., 2014), and dead reckoning to perform
the indoor localization task. The list of approaches,
techniques, and technologies to solve such a complex
problem is actually very long.

2.2 Computer-vision-based approaches

Among all of these, as aforementioned, re-
searchers are focusing on computer vision algorithms
which use (1) marker-less approaches or (2) marker-
based approaches for indoor localization. Marker-
less approaches are used when visual markers are
undesirable because of aesthetic reasons; they rely
on what the camera sees to deduce the position of
the user and usually require pre-knowledge of the
environment: images are captured at predefined lo-
cations and processed to extract unique features. A
database of these features is created, along with the
associated camera position and orientation, and it
is used as a visual fingerprint of the building (Aider
et al., 2005; Torres-Solis et al., 2010; Bitsch Link
et al., 2012). Unfortunately, marker-less systems are
really CPU-intensive and often require a consider-
able workload before they can start to work and
need frequent recalibrations. Moreover, if the en-
vironment changes for some reason, depending on
how relevant the changes are, the visual fingerprint
needs to be recreated. Marker-based approaches
rely on 2D visual markers, which can be easily de-
coded even by a low-cost smartphone, to let the
user track his/her position inside buildings. Eckl-
bauer (2014) proposed the recognition of multiple
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custom ArtoolKit visual markers in a camera image
to deduce the position of an Android smartphone,
with no additional data sources, except the knowl-
edge of the markers’ positions. Moreover, in the
first part of his thesis, he compared the detection/
decoding performance of QR-code against that of
ArtoolKit markers, showing some interesting mea-
surements about speed detection and detection rate
under different light conditions and for different sizes
of markers. Mulloni et al. (2009) proposed a simi-
lar technique used for continuous navigation through
a smartphone inside a building. Chandgadkar and
Knottenbelt (2013) proposed a simple color-based
2D visual marker to obtain the user position and
orientation and a step detection algorithm to track
the user between two markers. The system relies
on the robust OpenCV library for marker detection
and for avoiding obstacles along the path. Despite
the simplicity and scalability of these techniques,
there are some drawbacks such as (1) the need for
a line of sight, (2) the sensitivity to light changes,
(3) the size of the marker, which must be as small
as possible in order to be minimally invasive, (4) the
fact that the APP does not work in real time, and
(5) the cognitive workload for the user who has to
look for the marker in order to auto-locate himself/
herself (these procedures, if annoying for fully-
sighted people, can become very difficult for people
with visual deficits). To overcome these drawbacks,
we proposed previously a hybrid approach which uses
BLE to locate the user when there is no line of sight
(and the localization APP is in background mode)
or a 2D visual marker system deployed on the floor
(in order to let the user auto-locate himself/herself
without any cognitive workload: in fact when he/she
launches the APP in navigation mode, the camera is
in the palm of his/her hand and will be directed
towards some part of the floor) to estimate the po-
sition with a good level of accuracy (depending on
the density of tags) (La Delfa and Catania, 2014).
To guarantee efficiency, accuracy, minimal invasiv-
ity, and real-time performance for our system, it is
important to choose the right marker according to
the particular situation of deployment. In the previ-
ous paper we proposed the use of an ArUco marker.
We evaluated in a qualitative and empirical way the
performance of three 2D visual markers: a Vufo-
ria frame marker by Qualcomm (2014), an ArUco
marker by the A.V.A. group from University of Cor-

doba (Garrido-Jurado et al., 2014), and an April-
Tag from the University of Michigan (Olson, 2011;
Richardson et al., 2013). In particular, we focused
on the following features: (1) needed marker size for
correct detection (the smaller the marker is, the less
invasive the system will be); (2) detection and de-
coding speed (it is important to guarantee an almost
real-time performance); (3) sensitivity to changes
in light conditions, blurring (caused by fast move-
ments of the user), and partial occlusion. We chose
these markers because they are well-documented,
opensource (AprilTag and ArUco), or with a free-to-
use SDK (Vuforia) available, and have good global
performance.

3 Visual markers deployed on the floor:
requirements

To realize an efficient indoor navigation system
using 2D visual markers deployed on the floor, a crit-
ical point is the choice of the visual marker which
best fits the particular place of deployment. We
focus on some of the intrinsic features of the sys-
tem, and on how we can exploit them to improve the
performance:

1. Almost uniform, prior-known background
pattern of the floor as shown in Fig. 2a. It is pos-
sible to use this feature to improve the speed of the
decoding algorithm and to reduce the physical size
of the marker.

2. Almost fixed, prior-known size of the marker
inside the frame as shown in Fig. 2b. It depends on
the distance between the camera (which is on the
palm of the hand) and the floor, and makes it easier
and faster to find the marker in the frame, which
brings an improvement to the detection speed.

3. Major probability for the marker to be in the
upper part of the frame as shown in Fig. 2c, due
to the fact that when the user launches the APP to
navigate inside a building, he/she moves forward. It
is possible to analyze a sub-portion of the frame and
further improve the detection speed or use the saved
time to apply some filters to the sub-portion in order
to enhance the quality of the image.

4. Prior-known marker positions. So, it is
possible to reduce the errors by considering that
each decoded marker must be one in the boundary
of the previously decoded marker.
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(a) (b) (c)

Fig. 2 Uniform background pattern of the floor (a),
the maximum size of the marker inside the frame (b),
and the major probability for the marker to be in the
upper part of the frame (c)

The characteristics that the chosen marker must
have, considering that the user is moving when using
the system (usually with low speed), are:

1. Small size: This feature is required to re-
duce the invasivity of the system. We have to find
the best compromise among size, speed of detection/
decoding, and robustness of the algorithm.

2. Real-time detection: To make the auto-
localization process through visual markers trans-
parent for the final user, the detection must be as
fast as possible.

3. Robustness to changes in light conditions:
This feature is required because typically the marker
will be deployed in highly dynamic environments
characterized by the presence of other people, on/off
switching of lights, shadows, etc.

4. Robustness in detecting blurred or out-of-
focus markers, caused by movement which is too fast.

In the next section, we give a brief overview
of the most famous markers and discuss specifically
three 2D visual markers which best fit our require-
ments: Vuforia, ArUco marker, and AprilTag.

4 Real-time visual markers: Vuforia,
ArUco, and AprilTag

A visual marker system is composed of a set
of 2D visual markers and a computer vision algo-
rithm to detect and decode each marker using a
smartphone camera or other computer vision tech-
nologies. Today, thanks to their low cost, flexibil-
ity, and simplicity (a simple smartphone is able to
generate and read most of them), there are several
visual markers in the market. Fig. 3 shows some of
them. The most well-known and used visual marker
is probably the QR-code (Fig. 3a) (Denso, 2010): it
can store up to 4296 alphanumeric characters, and
contains a Reed-Solomon error correction algorithm
(Wicker and Bhargava, 1994), which allows for de-
coding of even partially occluded or degraded QR-

(b) (c)(a)

(d) (e)

Fig. 3 Visual markers examples: (a) QR-code; (b)
Aztec code; (c) ArtoolKit; (d) intersense; (e) Bokode
compared to normal visual markers

codes. Moreover, it is opensource, well-documented
and there are hundreds of free libraries to gener-
ate and decode it. Unfortunately, it does not have
real-time performance, which makes it unsuitable
for our purposes. Aztec code (Fig. 3b) (Longacre
and Hussey, 1997) is similar to the QR-code (large
amount of stored data, Reed-Solomon error correc-
tion algorithm), but it does not need a white border
to be correctly decoded. To guarantee real-time per-
formance, usually a visual marker which stores just
a simple binary code is used. An example (Fig. 3c) is
the ArtoolKit marker (Kato and Billinghurst, 1999).
Originally developed in 1999 by Hirokazu Kato, the
ArtoolKit library relies on a template-matching al-
gorithm to detect the marker. Thanks to that, the
shape of an ArtoolKit marker can theoretically be
any image, surrounded by a black square. Other
than the classical square markers we also have circu-
lar markers, which are more robust against perspec-
tive distortion and more precise; intersense (Naimark
and Foxlin, 2002), shown in Fig. 3d, is a commercial,
patented, circular marker with high performance.
Fig. 3e shows Bokode, an innovative marker invented
by the MIT Media Lab (Mohan et al., 2009), which
is circular and has a diameter of just 3 mm. It can
store a large amount of data, is readable from 4 m
with a normal camera, and works by exploiting the
Bokeh effect, which occurs when the camera is out of
focus. The one in Fig. 3e is an active Bokode which
uses a red LED as the light source, but the MIT Me-
dia Lab has also created a passive Bokode which can
work without an LED or any power source (a simple
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reflector is used). The analysis of the visual markers’
state of the art leads us to restrict the choice of the
best one that fits our requirements (first of which
is the detection speed) to three possible candidates,
which are shown in Fig. 4.

We have chosen these markers also because
they can be freely used through opensource and
well-documented libraries (AprilTag and ArUco) or
free SDKs (Vuforia) and they are portable to all
the major platforms. In the following, we give an
overview of their features, strengths, and weaknesses.
We tested the markers in light (Fig. 5a), medium
(Fig. 5b), dark floor patterns (Fig. 5c), and in var-
ious light conditions. To facilitate the detection
we added a little white border around the mark-
ers. The tests were performed with an iPhone 5S.
Moreover, to face the problem of the absence during
the test phase of any tool to objectively evaluate/
compare the performance of each marker in a simple
and rapid way, we started the design of a prototype
to simplify the benchmarks. We give an overview of
this in Section 4.4.

(a) (b) (c)

Fig. 4 Vuforia frame marker (a), ArUco marker (b),
and AprilTag (c)

(a) (b) (c)

Fig. 5 Light (a), medium (b), and dark (c) floor
patterns

4.1 Vuforia marker

Vuforia is an augmented reality multiplatform
SDK developed and maintained by Qualcomm. It
is very powerful and offers to the developers a lot
of functionalities such as object recognition, image
recognition, and shape and text recognition. More-

over, the Vuforia SDK can detect and estimate the
pose (with respect to the camera) of a special visual
marker called the frame marker (Fig. 4a), which we
can use for our indoor localization purpose. There
are 512 frame markers, which are not generated by
the application but are distributed as an archive.
Each one encodes an ID (an integer between 0 and
511) on the binary pattern along the border, needs an
area around it (at least twice thicker than the frame
marker border), free of graphical elements, and with
a good contrast with respect to the black frame. It
needs to be entirely visible on the camera image to
be detectable, so it has no tolerance to partial occlu-
sions. The internal part of the marker is not used by
the algorithm, so it is possible to put inside an image
or a logo, which makes the marker more esthetically
good-looking than others (but it is important that
the internal design should use a contrasting, bright
image or pattern in order not to deteriorate the per-
formance of the detection phase). Since we cannot
have access to the source code, it is impossible to go
deeper on the algorithms used by the SDK. However,
by analyzing the API, we can deduce that (1) it is
possible to set the size of the marker in the scene,
and (2) there are three settings related to the perfor-
mance of marker detection/decoding:

1. Mode-Optimize-Speed: This option provides
a lower resolution (often 640×480 pixels, depending
on the device) to achieve a higher frame rate and
faster detection.

2. Mode-Optimize-Quality: This option pro-
vides a significantly higher resolution but a lower
frame rate and a slower detection.

3. Mode-Default: This option is typically equiv-
alent to Mode-Optimize-Speed.

We performed some detection/decoding tests
for markers of different sizes (6.5 cm×6.5 cm,
5.0 cm×5.0 cm, 3.2 cm×3.2 cm) and different dis-
tances between the marker and the camera (80, 100,
and 120 cm), in movement and with the smart-
phone in the palm of the hand, by setting the Mode-
Optimize-Quality option. We repeated the tests in
several lighting conditions. Our tests show that a
marker size of 6.5 cm×6.5 cm or 5.0 cm×5.0 cm
gives good real-time performance for light (Fig. 5a),
medium (Fig. 5b), and dark (Fig. 5c) floor patterns in
good and average light conditions. The performance
gradually gets worse for poor light conditions, and if
the size of the marker is reduced to 3.2 cm×3.2 cm
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(while the distance between the marker and the cam-
era is increased), as shown in Table 1. In summary,
despite the quite good overall performance and the
fact that the SDK is well maintained by a big com-
pany such as Qualcomm, the system has some draw-
backs: (1) the source code is not accessible, so it
is impossible to modify the algorithms in order to
exploit the features of the floor, (2) the number of
markers is fixed, which leads to a low flexibility, and
(3) it is not possible to much reduce the size of the
marker.

Table 1 Qualitative evaluation of Vuforia marker
performance

Marker size
(cm×cm)

Marker–camera
distance (cm)

Light condition∗

Good Average Poor

6.5×6.5 80 + + −
100 + + −
120 + + −

5.0×5.0 80 + + −
100 + + ×
120 + + ×

3.2×3.2 80 + − ×
100 − − ×
120 − × ×

∗‘+’ indicates that the marker is always decoded, ‘−’ indicates
that sometimes the marker is not decoded, and ‘×’ indicates
that the marker is never decoded

4.2 ArUco marker

ArUco is a square visual marker realized by the
AVA group from the University of Cordoba (Garrido-
Jurado et al., 2014). It can be decoded through the
ArUco library, which is cross-platform (because it is
openCV-based), and opensource (Berkeley software
distribution (BSD) license). The library is written
in C++, but it has a Java version and a Python ver-
sion available. Moreover, it seems to be well main-
tained by the research group (last update was on
July 29, 2016). Different from other similar systems,
ArUco does not provide a predefined set of mark-
ers: it is possible to generate the desired number
of markers, with the desired number of bits (n) en-
coded inside each of them. The library maximizes
the inter-marker distance (to avoid the situation in
which a few erroneous bits in the detection lead to
a wrong, but valid, marker) and the number of bit
transitions (so there is a smaller probability of con-
fusing the marker with objects inside environments),
and, based on the dictionary of generated markers,

proposes an error correction algorithm that allowed
by the corrections of a number of errors greater than
the current state of the art. It is also possible to
estimate the pose of the marker with respect to the
camera. To be detectable, an ArUco marker must be
entirely visible on the camera image, but it is pos-
sible to manage the occlusion by using the ArUco
markers board. Since ArUco does not have a fixed
number of bits, the performance of the detection/
decoding algorithm varies depending on this param-
eter, which can be set according to the requirements
of our use case: small areas can be covered with few
markers, which means that the n can be reduced,
which in turn leads to a faster detection/decoding
phase. As before, for Vuforia, we performed some
detection/decoding tests for different sizes of mark-
ers (but the same size of Vuforia markers) and dif-
ferent distances between the marker and the camera,
under the same conditions. We chose to generate 512
AruCo markers, with n = 4. We also set the capture
resolution to 640×480, and the focus mode to an op-
timal value. We repeated the tests in several lighting
conditions, and in three types of floor: light (Fig. 5a),
medium (Fig. 5b), and dark (Fig. 5c). Our tests show
that ArUco works very well in any light condition for
a marker size of 6.5 cm×6.5 cm or 5.0 cm×5.0 cm
with a distance between the marker and the cam-
era of 80, 100, and 120 cm with any type of floor
pattern. The performance is a little worse (Table 2)
(but better than that of Vuforia) if we reduce the size
of the marker to 3.2 cm×3.2 cm or increase the dis-
tance between the marker and the camera to 120 cm,
for average and poor light conditions. ArUco source
code is accessible for the developer, so it is possible to
modify the algorithms in order to adapt them to the
scenario described in Section 3. Also, the fact that
the number of markers and bits can be set as differ-
ent values considerably increases the high flexibility
of the system. In conclusion, ArUco is a good choice
for an indoor localization system with visual mark-
ers deployed on the floor, when the requirements are
high flexibility and good real-time performance.

4.3 AprilTag

AprilTag is a square visual marker devel-
oped for robotic applications by Olson (2011), in
the APRIL Robotic Laboratory at the Univer-
sity of Michigan. The opensource library allows
the detection of an AprilTag in an image, the
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Table 2 Qualitative evaluation of ArUco marker
performance

Marker size
(cm×cm)

Marker–camera
distance (cm)

Light condition∗

Good Average Poor

6.5×6.5 80 + + +

100 + + +

120 + + +

5.0×5.0 80 + + +

100 + + +

120 + + +

3.2×3.2 80 + + −
100 + + −
120 + − ×

∗‘+’ indicates that the marker is always decoded, ‘−’ indicates
that sometimes the marker is not decoded, and ‘×’ indicates
that the marker is never decoded

decoding of the ID of the marker, and the estima-
tion of its 3D pose and orientation with respect to
the camera. The library is written in pure C with
no external dependencies, and appears to be well-
documented and well-maintained (last version up-
date was on Mar. 18, 2015), robust to changes in the
light condition and view angles, and with good real-
time performance. We performed some detection/
decoding tests by choosing the recommended pre-
generated markers family 36h11 (36 bit markers with
the minimum hamming distance between codes of
11), which consists of 518 markers, and using the
same marker size, marker–camera distances, and
conditions as in the previous Vuforia and ArUco
cases. For the tests, we used the AprilTag iOS appli-
cation, developed by Olson (2011) and available on
the US Apple Store for free. The application allows
the user to set some parameters:

1. Decimation (1–4): It allows the reduction of
the resolution of the analyzed image.

2. Refined Tag Positions (On/Off): If it is set
to On, the algorithm spends more time trying to
precisely localize tags.

3. Refined Tag Decodes (On/Off): If it is set to
On, the algorithm spends more time trying to decode
tags.

4. Camera Focus (from 0 to 1): It allows one to
arbitrarily set the focus to a given value.

Since the most important requirement for our
scenario is the detection/decoding speed, we set both
Refined Tag Positions and Refined Tag Decodes op-
tions to Off, the Camera Focus to the optimal value
for our scenario, and Decimation to the maximum
value. The results show that AprilTag works very

well in all tested light conditions, for almost all tested
sizes and marker–camera distances, and on any type
of floor, as shown in Table 3. We also analyzed
the library performance with different orientations
of the marker with respect to the smartphone’s cam-
era. Experimental results from AprilTag’s authors
show that, if φ is the angle between the marker’s
normal vector and the vector to the camera (φ = 0◦

means that the marker is parallel to the camera, and
φ = 90◦ means that the marker is out of view of the
camera), the library is able to detect markers for a
large range of φ, approximately from 0◦ to 80◦, as
verified by Olson (2011) who used a ray tracer to
generate images with a known ground truth. These
results were confirmed by our qualitative tests per-
formed with markers deployed on the floor in dif-
ferent light conditions and for different marker sizes
and distances between the marker and the camera,
by varying φ from 0◦ to 90◦ with a step of 15◦. As
shown in Table 4, if the library is able to detect the
marker for φ = 0◦, then it is almost always able to
detect such a marker for a φ which ranges from 0◦

to 75◦. Such tests were not performed for a marker
size of 3.2 cm×3.2 cm because in this case, some-
times (i.e., in poor light conditions) the marker is
not decoded.

Table 3 Qualitative evaluation of AprilTag
performance

Marker size
(cm×cm)

Marker–camera
distance (cm)

Light condition∗

Good Average Poor

6.5×6.5 80 + + +

100 + + +

120 + + +

5.0×5.0 80 + + +

100 + + +

120 + + +

3.2×3.2 80 + + +

100 + + +

120 + + −
∗‘+’ indicates that the marker is always decoded, and ‘−’ indi-
cates that sometimes the marker is not decoded

Finally, we faced the problem of false positives
(marker detected but decoded wrongly). According
to our tests, the false positive rate for our situation
of deployment is really low, which makes the whole
system very robust to such a kind of error. More-
over, in a hybrid system which combines different lo-
calization technologies, these errors can be avoided,
simply by considering that if the system knows the
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area where the user is located, the decoded marker
may belong to a small subset of markers (i.e., all the
markers deployed on such an area): the probability
that the marker is wrongly decoded and concurrently
belongs to this subset is close to zero.

Table 4 Qualitative evaluation of AprilTag perfor-
mance for various φ’s

φ

(degree)
Light condition∗

Good Average Poor

0 + + +

15 + + +

30 + + +

45 + + +

60 + + +

75 + − ×
90 × × ×

∗ Marker–camera distance: 80, 100, and 120 cm; marker size:
6.5 cm×6.5 cm and 5.0 cm×5.0 cm. ‘+’ indicates that the marker
is always decoded, ‘−’ indicates that sometimes the marker is
not decoded, and ‘×’ indicates that the marker is never decoded

In conclusion, the availability of the source code
(which allows the developer to modify the algorithms
in order to adapt them to the floor features), the
speed of the system, the robustness to errors, and the
small marker size make AprilTag the best choice for
an indoor, marker-based localization system when
flexibility on the number of markers is not required.

4.4 Benchmarking tool concept

In our analysis we need to measure how Vufo-
ria, ArUco, and AprilTag libraries respond to the
variation of parameters such as the lighting con-
dition, floor pattern, blurring levels, and marker–
camera distances. Moreover, it is necessary to per-
form all these measurements in movement, with the
device on the palm of the hand. To speed up our fu-
ture work on visual markers, and make it more accu-
rate, objective, and repeatable, we began the design
phase of a simulation software tool that, through a
visual interface, and with the device (i.e., its camera)
in a fixed position, will make it possible to:

1. simulate the variation of the environmental
testing parameters (luminosity and blurring level),

2. simulate the variation of the parameters re-
lated to the marker (size of the marker, marker–
camera distance, and background—in terms of color
and pattern—where the marker is placed), and

3. simulate marker detection/decoding with the
device in movement.

The development of this tool (the concept is
shown in Fig. 6) will lead to a significant reduction
of the benchmarking time, and we think it will help
many researchers and developers choose the marker
that best fits their requirements.

Fig. 6 Benchmarking tool rendering

5 Conclusions and future work

In this paper, we addressed the problem of
choosing the best marker for an indoor navigation
system with visual markers deployed on the floor.
While focusing to some extent on marker-based com-
puter vision approaches, we analyzed the particu-
lar use case of markers deployed on the floor. The
analysis led us to choose three visual markers which
have features and performance that match our sce-
nario: Vuforia marker, ArUco marker, and AprilTag.
Among them, AprilTag and ArUco have very good
overall real-time performance in any tested light con-
dition and floor pattern, for all tested marker sizes.
They are also opensource and cross-platform. While
AprilTag seems to be a little quicker than ArUco and
allows more reduction in the marker size than ArUco
(while preserving overall performance), ArUco gives
better flexibility because it allows the generation of
the exact number of markers we require, with the
exact desired number of bits. We are planning to re-
alize a proof of the concept of our indoor localization
system using both ArUco and AprilTag, to test the
approach better in real situations with both markers,
and to exploit the features of the floor. The goal is to
reduce the size of the marker (so the system can be
less invasive) and enhance the speed. Moreover, we
are investigating the possibility of mixing this tech-
nique with dead reckoning, to track the user between
markers, and with BLE, to (1) perform a raw back-
ground localization and (2) segment large areas into



La Delfa et al. / Front Inform Technol Electron Eng 2016 17(8):730-740 739

smaller areas in order to reuse the same set of mark-
ers. Also, we are working on the realization of a set
of tools for rapid and accurate benchmarking.
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