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Abstract: This paper seeks to determine how the overlap of several infrared beams affects the tracked position
of the user, depending on the angle of incidence of light, distance to the target, distance between sensors, and
the number of capture devices used. We also try to show that under ideal conditions using several Kinect sensors
increases the precision of the data collected. The results obtained can be used in the design of telerehabilitation
environments in which several RGB-D cameras are needed to improve precision or increase the tracking range. A
numerical analysis of the results is included and comparisons are made with the results of other studies. Finally, we
describe a system that implements intelligent methods for the rehabilitation of patients based on the results of the
tests carried out.
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1 Introduction

Assistive technologies have become an impor-
tant research field in recent years. These systems
aim to bring technology to the disabled and use spe-
cialized hardware designed specifically to solve an in-
teraction problem. By using this new hardware, dis-
abled people can actually interact with the system.
One type of assistive technologies is associated with
the computer-assisted rehabilitation domain, which
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designs physical rehabilitation processes to help pa-
tients through the use of computers and specialized
hardware.

The earliest of these proposals were designed
with accelerometers, gyroscopes, and other sensors
attached to the patient. These devices capture move-
ments and send data to a computer for further pro-
cessing. However, this approach involves the disad-
vantages that the sensors have to be put in place
by qualified personnel and the resulting interaction
is not entirely transparent to the user. The latest
advances in cameras and computer vision algorithms
have now replaced the sensors attached to the wearer
by tracking cameras, which achieve a more transpar-
ent interaction with the system. In this field, the
Kinect sensor, developed by Microsoft, stands out
from the rest. This device allows the general public
to access three-dimensional capturing technology at
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an affordable price. This sensor has been included
in a multitude of proposals for the rehabilitation of
patients and is currently one of the most widely used
sensors in assistive technologies.

One of the rehabilitation systems that uses
the Kinect sensor was developed by Chang et al.
(2011). This system demonstrates its usefulness
in a study of the rehabilitation of two young
adults. Another example of a system that uses the
Kinect device to capture the patient’s movements
during rehabilitation exercises was described in
Freitas et al. (2012). This system also includes
an entertainment component, designed to reduce
the therapy’s abandonment rate. The application
that we developed and described in Oliver et al.
(2014b) is another example of these systems that
uses Microsoft’s device, aiming at the elderly.
There are also commercial rehabilitation systems
based on this affordable sensor, such as KineLabs
(https://www.polyu.edu.hk/bme/kinelabs/), Refle-
xion (http://www.westhealth.org/resources/about-
reflexion-the-rehab-measurement-tool/), Toyra (http:
//www.toyra.org/), TeKi (http://www.ilitia.com/),
and VirtualRehab (http://www.virtualrehab.info/es/).

The precision and accuracy of pattern recogni-
tion sensors have been tested in a number of stud-
ies (Khoshelham and Elberink, 2012; Gonzalez-Jorge
et al., 2013; Bonnechère et al., 2014). These studies
concluded that the use of a sensor like Kinect is suit-
able in many tasks due to its precision and accuracy.
However, Regazzoni et al. (2014) analyzed the re-
sults of using two sensors and suggested that more
than one sensor may degrade the recognition quality
and that the data provided may thus not be useful
for many applications. In these studies only one or
two cameras were used and the configurations of the
systems were not changed in the tests to account for
different angles of incidence of infrared light, neither
was the distance varied between the sensor and tar-
get, so the studies are not useful if the aim is to
deploy several capturing sensors that share the same
monitoring area.

In this paper we focus on the problems derived
from infrared saturation when using more than one
Kinect sensor in the same workspace. We also ana-
lyze the effect of varying the number of devices, an-
gles of incidence of light, and the distance between
sensors and the user.

2 Related work

Computer-based assistance and rehabilitation
systems have now become popular. These systems
typically use a depth camera that captures the user’s
figure and sends it to a computer. Two different types
of camera use infrared imaging to detect objects or
persons. One is based on pattern recognition solu-
tions and the depth of the image is calculated by
the deformation of an infrared pattern projected by
a laser attached to the sensor. The Kinect v1 sensor
operates in this way (designed initially for the Xbox
360 and then for PCs). The second type is based on
time of flight (ToF), where the depth of the image
is obtained by measuring the time in which a mod-
ulated infrared light takes to return to the sensor.
The Kinect v2 operates in this way (designed for the
Xbox One). In this paper we focus on the first type of
sensor (pattern recognition cameras) and specifically
on the Kinect v1 sensor.

The measurement errors of a depth image are
called holes and can be caused by multiple factors.
The first factor to consider is the occlusions caused
by objects in the environment. This type of noise
is produced by an object coming in front of the one
we want to capture. These errors can be solved by
using multiple cameras that capture the same scene
from different angles, so that a part of the scene not
captured by one camera can be captured by another.
Another cause of holes is due to surfaces that do not
reflect infrared light, as for instance glass or black
surfaces. These errors are solved by using materials
that correctly reflect the infrared beam that reaches
them.

The disparity between the infrared emitter and
the infrared receiver can also cause holes in the depth
image. Although the sender and receiver are typi-
cally placed as close as possible to each other, there
is always a disparity between what they see, which
means that part of the space captured by the re-
ceiver is not illuminated by the infrared emission,
so that the sensor cannot determine depth in that
area. Infrared light saturation is another source of
error which affects depth images. In environments in
which there is an alternative source of infrared light,
errors may be due to the infrared light emitted by
the camera being lost. This can be avoided by using
environments in which the infrared light emitted is
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controlled, or ToF sensors can be used, since the ToF
sensors use modulated infrared light on a frequency
that the sensor is designed to capture. Very fast
moving objects in the workspace can also result in
holes in the depth map. This is because some sensors
have to merge several image shots to form the final
image depth, so that if an object moves or is moved,
errors occur in the fusion of the images. This can be
solved by building faster sensors or can be avoided by
using pattern recognition sensors, since these errors
affect only cameras that require the use of multiple
shots.

All these problems can lead to the conclusion
that the precision and accuracy of the Kinect depth
sensor are not very high, and that the data collected
can be useful only for gaming. However, Khoshelham
and Elberink (2012) found that it is possible to suc-
cessfully use these sensors in other areas. They de-
termined that at distances ranging from 1 to 3 m be-
tween object and sensor there is an acceptable error
for mapping applications, but the error is too large
at greater distances. Gonzalez-Jorge et al. (2013)
analyzed the error of measuring a number of spheres
and cubes from different angles, using the Kinect
sensor and the Xtion Pro Live device. This error is
always less than or equal to 6 mm for distances up to
1 m, and is less than or equal to 12 mm for distances
up to 2 m. Bonnechère et al. (2014) found that the
data obtained from this sensor is accurate enough to
be used in ergonomics, biometric analysis, and even
in military applications. Finally, Fernández-Baena
et al. (2012) compared the precisions of the Kinect
and Vicon systems (http://www.vicon.com/), and
concluded that Vicon is more precise than Kinect,
but that Kinect is precise enough for developing re-
habilitation exercises.

Despite the above, Essmaeel et al. (2012; 2014)
aimed to improve precision and accuracy with the
help of filters and algorithms. In these studies it was
found that it is possible to achieve higher precision
and accuracy with proper processing of the raw data
from the sensors. There were also solutions that
require the addition of new hardware to improve the
precision of the collected data; e.g., Mkhitaryan and
Burschka (2013) used an additional RGB camera to
capture the scene from another angle to help the
Kinect sensor calculate the depth.

The concept of increasing precision by using

additional hardware, such as another depth sensor,
can also be used to solve occlusion problems. This
can also increase the maximum number of users and
enlarge the space-recognition work area. Due to all
these advantages, researchers have proposed multi-
camera systems which capture users from different
angles. In our case, we have already implemented
a system with three Kinect cameras located in a
room for treating brain-injured patients (Oliver et
al., 2014a; 2015b). Increasing the number of sensors
pointing at a certain area can solve the occlusion
problem. However, using multiple pattern recogni-
tion sensors in the same workspace can create the
problem of infrared light saturation.

Some studies have used multiple pattern recog-
nition Kinect cameras. Regazzoni et al. (2014) per-
formed experiments with two Kinect sensors and six
PlayStation Eye cameras, and concluded that the er-
ror of these systems is always less than 100 mm, so
they can be used in applications in which high pre-
cision is not required. Haggag et al. (2013) analyzed
the accuracy of measurements from Kinect and the
Xtion Pro Live sensors when a pair of these sensors
share the same recognition surface. Olesen et al.
(2015) focused on data interference when using up
to three Kinect sensors pointing at the same space.
Mallick et al. (2014) classified noise into three cat-
egories: spatial noise, temporal noise, and interfer-
ence noise, the latter produced by superimposing the
beam of infrared light emitted by two different sen-
sors. To minimize this type of noise, three techniques
can be applied when using multiple depth sensors:
space division multiplex (SDM), time division multi-
plex (TDM), and pattern division multiplex (PDM).

However, the above studies did not make a thor-
ough study of interference, since they did not test dif-
ferent sensor configurations. When the aim is to im-
plement a computer-assisted rehabilitation system, a
number of factors must be taken into account. First,
we must consider how many patients can fit into one
room, since the more patients, the higher the number
of sensors needed. Another factor is the part of the
patient’s body that needs to be captured; if high pre-
cision is needed, then a large number of sensors must
be used, and large rooms will need more sensors. Fi-
nally, the layout of the room plays an important role,
since the presence of columns or other objects influ-
ences the placement of the sensors. Configuring the
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rehabilitation room includes considering the number
of sensors, the direction they face, and the distance
between the sensors, to avoid them interfering with
each other.

For the tests we implement a mono-camera
assistive technology system for computer-assisted
physical rehabilitation (Oliver et al., 2014b), in
which a physiotherapist performed exercises that
were saved for the patient to imitate. Although
the system did manage to achieve its objectives, we
found that more sensors were needed to improve the
results. In some of the exercises more than one cam-
era was required to increase precision and sometimes
the space to be monitored could not be controlled by
a single camera.

As a result, we have conducted a series of ex-
periments (Oliver et al., 2015a), which attempt to
determine the effect of multiple sensors in user’s
recognition. This paper is the application of such
experiments.

3 Experimental setup

As mentioned in the previous section, different
factors come into play when designing a computer-
assisted rehabilitation room in the real world. These
factors change from one implementation to another,
making it impossible to define a one-fits-all deploy-
ment. The purpose of these experiments is to de-
termine the optimal setup for each case, conditioned
by real world factors, and allowing the rehabilitation
of several patients at the same time. The factors
to consider are: the number of sensors, the distance
between the sensors and the patient, the distance
between the sensors themselves, and the angle of in-
cidence of infrared light.

The experiments consist of measuring the posi-
tion of the user in the workspace and determining
how the number and position of the capture devices
affect the precision of the data achieved. The depth
sensors emit a pattern of infrared light that bounces
off nearby objects and calculate the distance to them
by identifying the deformation of the infrared pat-
tern. The devices have a field of view of 57.5◦ in the
horizontal direction and 43.5◦ in the vertical, with
a maximum viewing distance of about 4 m and a
minimum distance of 80 cm from the sensors.

In this study we employed a tailor’s dummy

to avoid the problem of involuntary human move-
ments. The dummy was placed on previously es-
tablished marks on the floor and the distance from
the sensor to the dummy’s hip was measured. The
data collected by different Kinect sensors by Mi-
crosoft’s skeleton tracking algorithm was transferred
to a global coordinate system. Fig. 1 details the grid
of the space used in the experiments. In each exper-
iment three positions were used. For each of these
positions 4 measuring points were used for the first,
9 for the second, and 16 for the third, and each of
the points was 1 m away from the next. The position
of each sensor was set to test how the relative posi-
tion of the sensors and distance between the sensors
affect interference noise.

(a) (b) (c)

Fig. 1 Measuring points at which the dummy was
positioned: (a) Grid 1 with 4 measuring points; (b)
Grid 2 with 9 measuring points; (c) Grid 3 with 16
measuring points

Fig. 2 shows how the dummy was positioned in
Grid 1. First, it was placed over the first mark and
data was collected. The dummy was then moved
to each mark successively and data was collected at
each one.

Fig. 2 Movement of the dummy in Grid 1

Precision was obtained by calculating the num-
ber of erroneous pixels from the sensors’ depth map
and the standard deviation (SD) of the position of
the user. The number of erroneous pixels refers to the
positions of the depth image in which the distance
cannot be obtained by the sensor. At each measuring
point, 100 samples of erroneous pixels were collected
plus 100 samples of the dummy’s position. The tests
were performed in a space free of infrared light to
increase accuracy and avoid interference from other
sources. A photograph of the setup is shown in Fig. 3.
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These tests were done with different numbers
of sensors, different sensor positions, different dis-
tances to the target, and different distances between
sensors. The test parameters and the corresponding
values are as follows:

1. The number of sensors used could be 1, 2, or
3, which is enough in most cases. In the rehabilita-
tion room there may be more sensors but they did
not share the same interaction space.

2. The sensors were positioned at the front, side,
and back of the dummy to simulate front, side, and
back images of the patient, respectively.

3. The distance between sensor and patient was
from 1 to 4 m in steps of 1 m because the operating
distance of the sensor was from 80 cm to 4 m. The in-
termediate locations could be inferred from the basic
cases.

4. The distance between sensors varied in each
test to suit the distance and angle between user and
sensor.

The Z (vertical) component provided by the
sensors was not considered and thus all the sensors
were at the same height as the dummy’s hip and par-
allel to the floor. In Fig. 4, the camera field of view
and the directions of the X and Y axes are shown.

Fig. 3 Photograph of the experiment performed with
three sensors. Sensors 1 and 2 were positioned per-
pendicular to each other, sensors 2 and 3 were also
perpendicular to each other, and sensors 1 and 3 were
facing each other

-X +X

+Y

Fig. 4 X and Y axes of the sensors. The X-axis is
parallel to the sensor and the Y -axis is perpendicular
to it

3.1 Experiments

The following information was given for each
experiment: the formulas used to unify the position
of the user, an image showing the arrangement of
sensors and user, and an explanation of the expected
data.

3.1.1 Experiment 1

The first experiment was with a single Kinect
sensor pointing at the front of the workspace (Fig. 5).
As in all the experiments, the dummy was facing
the sensor. The aim was to set up a baseline for
comparison with the experiments with two Kinect
sensors. A low number (but not zero) of erroneous
measurements was expected. Even if there was no
interference between the sensor beams, there were
always erroneous measurements due to improper in-
frared reflection from surfaces. The difference of the
view from the camera sensor and infrared emitter
also involves errors. The dummy must be correctly
placed with relatively small SD.

Fig. 5 First experiment, with a single sensor. The
three different grids with their measurement points
are shown. Grid 2 shows the user’s orientation. The
dummy is parallel to the normal vector of the first
sensor in each grid. The sensor identifier for this
test is shown on the left. Reprinted from Oliver
et al. (2015a), Copyright 2015, with permission from
Springer

This arrangement is typically used in rehabilita-
tion systems. The patient is looking directly at the
only sensor that captures him/her. The user’s posi-
tion is determined by the following formulas, where
x1 and y1 are the coordinates of the user, with re-
spect to the sensor’s reference axes:{

xuser = x1,

yuser = y1.

3.1.2 Experiment 2

The second experiment was with two sensors
pointing in parallel directions (Fig. 6), to determine
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the performance of two overlapping beams of infrared
light with the same recognition surface and pointing
in the same direction. Fairly high interference was
expected, since the sensors shared the same reflec-
tion area on the dummy. The internal Kinect pat-
tern recognition algorithm was assumed to fail when
identifying patterns. The number of erroneous pix-
els and the SD were expected to be higher than in
Experiment 1.

Fig. 6 Second experiment, with two sensors pointing
in the same direction. The three different grids with
their measurement points are shown. Grid 2 shows
the user’s orientation. The dummy is placed parallel
to the normal vector of the first sensor in each grid.
The sensor identifier for this test is shown on the left
of each sensor. Reprinted from Oliver et al. (2015a),
Copyright 2015, with permission from Springer

In this type of deployment, we added an addi-
tional sensor to better capture the front of the sub-
ject. The main interest in this configuration was on
rehabilitation exercises in which the data obtained
from the front of the user was of vital importance.
This required higher precision than that provided by
a single sensor.

The transformation of the relative positions of
each sensor to global positions is made by applying
the following formulas, where x1 and y1 are the user’s
coordinates with respect to the reference axes of the
first sensor, and x2 and y2 are the user’s coordinates
relative to the coordinate axes of the second sensor.
Finally, tx is the separation in the X-axis between
the sensors, with respect to the coordinate axes of
the first sensor:

Translation:

⎡
⎢⎣x1←2

y1←2

1

⎤
⎥⎦ =

⎡
⎢⎣1 0 tx
0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣x2

y2
1

⎤
⎥⎦ ,

xuser =
x1 + x1←2

2
, yuser =

y1 + y1←2

2
.

3.1.3 Experiment 3

The third experiment was also with two Kinect
sensors located orthogonally to each other (yaw an-
gle difference equals 90◦), as described in Fig. 7. The

aim was to determine the effect of superimposing two
infrared beams perpendicularly on the same object.
Less interference was expected than in Experiment 2.
Although two sensors were used in both cases, the
surface reflecting the infrared pattern was almost en-
tirely separate, so that most of the patterns emitted
by one sensor were not captured by the other.

This type of deployment is useful to focus on the
side of the patient. With just one camera occlusions
caused by the patient appear. However, if we add
a second camera that captures the patient’s side the
occlusions disappear. With this configuration, more
precise data can be obtained on rehabilitation exer-
cises that focus on the limbs, since the movements
not captured by one sensor will be captured by the
other.

In this case, the X and Y coordinates of the
second sensor are the opposite of the first sensor.
This is represented in the following formulas, where
x1 and y1 are the user’s coordinates with respect to
the reference axes of the first sensor, and x2 and y2
are his/her coordinates relative to the reference axes
of the second sensor. Finally, tx is the separation
in the X-axis between the sensors, with respect to
the coordinate axes of the first sensor, and ty is the
separation in the Y -axis between the sensors with
respect to the coordinate axes of the first sensor:

Rotation:

⎡
⎢⎣x
′
2

y′2
1

⎤
⎥⎦ =

⎡
⎢⎣ 0 1 0

−1 0 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣x2

y2
1

⎤
⎥⎦ ,

Translation:

⎡
⎢⎣x1←2

y1←2

1

⎤
⎥⎦ =

⎡
⎢⎣1 0 tx
0 1 ty
0 0 1

⎤
⎥⎦
⎡
⎢⎣x
′
2

y′2
1

⎤
⎥⎦ ,

xuser =
x1 + x1←2

2
, yuser =

y1 + y1←2

2
.

Fig. 7 Third experiment, with two perpendicular sen-
sors. The three different grids are shown with their
measurement points. Grid 2 shows the user’s orien-
tation. The dummy is parallel to the normal vector
of the first sensor in each grid. The sensor identi-
fier for this test is shown on the left of each sensor.
Reprinted from Oliver et al. (2015a), Copyright 2015,
with permission from Springer
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3.1.4 Experiment 4

This experiment was also with two Kinect sen-
sors, but facing each other (yaw angle difference
equals 180◦), as shown in Fig. 8. The aim was to de-
termine how the user’s position is affected when an
infrared source receives infrared light directly from
the other sensor. High interference was expected.

Fig. 8 Fourth experiment with two sensors. The
three different grids are shown with their measure-
ment points. Grid 2 shows the user’s orientation.
The dummy is placed parallel to the normal vector
of the first sensor in each grid. The sensor identi-
fier for this test is shown on the left of each sensor.
Reprinted from Oliver et al. (2015a), Copyright 2015,
with permission from Springer

This deployment obtains data from the user’s
back. Capturing data from this position is a problem
in existing rehabilitation systems, because the user
hampers the sensor’s line of sight. If the sensor is
placed behind the patient, this problem disappears.
The user’s position is calculated by the following for-
mulas, where x1 and y1 are the positions of the user
with respect to the coordinate axes of the first sensor,
x2 and y2 are the positions of the user with respect
to the reference axes of the second sensor, and ty is
the separation in the Y -axis between the sensors:
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2
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2
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3.1.5 Experiment 5

Experiment 5 was with three Kinect sensors
pointing in the same direction (Fig. 9) to deter-
mine, in conjunction with Experiment 2, how par-
allel overlapping infrared beams affect the user’s
position. High interference was expected than in

Experiment 2. The aim was to obtain more precise
data on the patient’s front, in the same way as in
Experiment 2. However, in this case more accurate
results were expected, since there were three sensors
involved.

Fig. 9 Fifth experiment, with three sensors focused
in the same direction. The three different grids are
shown with their measurement points. Grid 2 shows
the user’s orientation. The dummy is parallel to the
normal vector of the first sensor in each grid. The
sensor identifier for this test is shown on the left of
each sensor. Reprinted from Oliver et al. (2015a),
Copyright 2015, with permission from Springer

The position of the user is obtained from the
following formulas, where x1 and y1 are the positions
of the user, with respect to the coordinate axes of the
first sensor, x2 and y2 the positions of the user with
respect to the reference axes of the second sensor,
and x3 and y3 the positions of the user with respect
to the coordinate axes of the third sensor. tx12 is
the separation in the X-axis between the first and
second sensors and tx13 the separation in the X-axis
between the first and third sensors:

Translation:

⎡
⎢⎣x1←2

y1←2

1

⎤
⎥⎦ =

⎡
⎢⎣1 0 tx12
0 1 0
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⎤
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⎡
⎢⎣x2
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1

⎤
⎥⎦ ,

Translation:

⎡
⎢⎣x1←3

y1←3

1

⎤
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⎡
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⎤
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⎡
⎢⎣x3

y3
1

⎤
⎥⎦ ,

xuser =
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3
,

yuser =
y1 + y1←2 + y1←3

3
.

3.1.6 Experiment 6

This experiment was the combination of Exper-
iments 3 and 4 (Fig. 10). We therefore expected
the results to combine those of Experiments 3 and 4.
One sensor captured the patient frontally for a global
view. Another captured the patient perpendicu-
larly, which was of particular interest for arm and
leg exercises, in which occlusions occur. The third
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sensor captured the back of the patient, for addi-
tional information.

Fig. 10 Sixth experiment, with three sensors with 90◦

of separation. The three different grids are shown
with their measurement points. Grid 2 shows the
user’s orientation. The dummy is located parallel to
the normal vector of the first sensor in each grid. The
sensor identifier for this test is shown on the left of
each sensor. Reprinted from Oliver et al. (2015a),
Copyright 2015, with permission from Springer

The user’s position is calculated by the follow-
ing equations, where x1 and y1 are the positions of
the user with respect to the coordinate axes of the
first sensor, x2 and y2 the positions of the user with
respect to the reference axes of the second sensor,
and x3 and y3 the positions of the user with respect
to the coordinate axes of the third sensor. tx12 is the
separation in the X-axis between the first and second
sensors, ty12 the separation in the Y -axis between the
first and second sensors, and ty13 the separation in
the Y -axis between the first and third sensors:
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4 Data and results

This section contains an explanation of how the
data was obtained and how each configuration could

be applied in real situations.
The following information was given for each of

the measuring points:
1. The SD of the user’s position in the 100

samples collected.
2. The average number of erroneous pixels in

the 100 samples collected. An erroneous pixel is a
pixel in the captured image for which the sensor was
not able to determine the distance at which it was
located.

3. The heat map of the SD of the user’s po-
sition in the 100 samples collected. The SD ranges
from 0 to 10 cm, which is shown by different col-
ors: blue means a small error, green small-medium,
yellow medium-large, and red a large error.

4.1 Results in Experiments 1, 2, and 5

This section analyzes the combined information
from Experiments 1, 2, and 5, as all these exper-
iments tracked the dummy in parallel directions.
Starting from the basic single sensor case, one or
two more were added to extend the monitored area.

In all the three experiments there are measure-
ment points that have not been captured by any
sensor (Figs. 5, 6, and 9). Also, measuring points
can be found over 4 m away from the sensor, as in
Grid 3, which means that the user is recognized, but
the position error is very large due to the sensor’s
limits. In Figs. 11–13 the SDs in precision of the
dummy’s position and the numbers of erroneous pix-
els captured at the scene are shown. The SD heat
maps in precision of the dummy’s position are shown
in Figs. 14–16.

In Experiment 1, there is a deterioration pro-
portional to the distance between the user and the
sensor. Almost all the SDs are less than 1 mm for
distances between 1 and 2 m. For distances of 3 m,
SD ranges between 1 and 5 mm, and at a distance
of 4 m the SD reaches 10 mm. This indicates that
the Kinect provides adequate results for most ap-
plications at short distances. In Experiment 2, the
user’s position is similar to that obtained in Exper-
iment 1 and stays within the previous value range.
At some points the results are better than in Ex-
periment 1, but this does not necessarily imply bet-
ter tracking. On the other hand, at a distance of
4 m, the measures become significantly worse; the
values obtained are between 34.4 and 55.1 mm (in
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(a) (b)

Fig. 11 Standard deviation in precision of mannequin
position (mm) (a) and the number of erroneous pixels
(thousands of pixels) (b) in Experiment 1. Reprinted
from Oliver et al. (2015a), Copyright 2015, with per-
mission from Springer

(a) (b)

Fig. 12 Standard deviation in precision of mannequin
position (mm) (a) and the number of erroneous pixels
(thousands of pixels) (b) in Experiment 2. Reprinted
from Oliver et al. (2015a), Copyright 2015, with per-
mission from Springer

Experiment 1 the values are between 11.4 and
47.1 mm). In Experiment 5 the position data is
worse than in Experiment 2 with two sensors. How-
ever, this data follows the same pattern as in Exper-
iments 1 and 2. At distances between 1 and 2 m, the
SD is less than 1 mm at most of the measurement
points. For distances of 3 m, the SD falls between
1 and 6.1 mm, and at a distance of 4 m the SD is
similar to that of Experiment 2.

In Experiment 1, there are between 43 000
and 63 000 erroneous pixels. The data shows that

(a) (b)

Fig. 13 Standard deviation in precision of mannequin
position (mm) (a) and the number of erroneous pixels
(thousands of pixels) (b) in Experiment 5. Reprinted
from Oliver et al. (2015a), Copyright 2015, with per-
mission from Springer

Fig. 14 Heat map of the standard deviation (SD) in
precision of dummy’s position in Experiment 1, con-
sidering an SD of 10 cm as the upper limit (references
to color refer to the online version of this figure)

Fig. 15 Heat map of the standard deviation (SD) in
precision of dummy’s position in Experiment 2, con-
sidering an SD of 10 cm as the upper limit (references
to color refer to the online version of this figure)

errors are usually higher at 1 m than at greater dis-
tances. This is mainly due to one of the factors
mentioned above, the disparity between the infrared
transmitter and the infrared receiver (binocular dis-
parity). As already noted, the emitter projects an
infrared beam on a surface and the receiver captures
the scene slightly differently. There are therefore ar-
eas that are captured by the sensor but not reached
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Fig. 16 Heat map of the standard deviation (SD) in
precision of dummy’s position in Experiment 5, con-
sidering an SD of 10 cm as the upper limit (references
to color refer to the online version of this figure)

by the infrared beam. These areas are represented as
holes in the depth map, for which the distance to the
transmitter cannot be determined. This is inversely
proportional to distance, so that at 1 m there should
be more erroneous pixels than at 2 m or more.

In Experiment 2, there are on average fewer er-
roneous pixels than in Experiment 1. The expla-
nation for this is simple; the first sensor captures
more erroneous pixels due to the interference from
the second sensor. Also, the second sensor captures
the scene better than the first. This does not nec-
essarily mean that the data is more reliable than
that captured by the first sensor, but that there are
some areas of the scene that the first sensor does not
capture properly and the second sensor does. This
indicates that the number of erroneous pixels in the
scene is not directly proportional to the error in the
user’s position since, in this experiment there are
fewer erroneous pixels, but the SD of the user’s po-
sition is higher. In Experiment 5, there are more
erroneous pixels than in Experiments 1 and 2. This
may suggest that the user recognition is worse, but,
as in the other experiments, the fact that there are
more erroneous pixels is not a clear indication that
the tracking error is greater.

Figs. 17–19 show graphs which indicate the SDs
in Experiments 1, 2, and 5 respectively, according to
the distance between the sensors and the dummy. It
can be seen that the correct positioning of the user
decays with distance. The positioning error becomes
exponential when the distance reaches 4 m. This
means that when the user is closer to the sensor, the
data obtained is more accurate. With the data, we
can predict the limits where this happens and thus
take steps to control it. In Grid 1 (Fig. 17), at a dis-
tance of 2 m, the error associated with Experiment 1
is lower than those with the other two experiments.
In Grid 1 (Fig. 17), at a distance of 1 m, the error
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Fig. 17 Comparison of one (Experiment 1), two (Ex-
periment 2), and three (Experiment 5) sensors focus-
ing in the same direction (Grid 1). Reprinted from
Oliver et al. (2015a), Copyright 2015, with permission
from Springer
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Fig. 18 Comparison of one (Experiment 1), two (Ex-
periment 2), and three (Experiment 5) sensors focus-
ing in the same direction (Grid 2). Reprinted from
Oliver et al. (2015a), Copyright 2015, with permission
from Springer
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Fig. 19 Comparison of one (Experiment 1), two (Ex-
periment 2), and three (Experiment 5) sensors focus-
ing in the same direction (Grid 3). Reprinted from
Oliver et al. (2015a), Copyright 2015, with permission
from Springer

associated with Experiment 1 is larger than that with
Experiment 2. This is due to a measurement error
of the sensor, since the SD is very small (less than
1 mm).

From Experiments 1, 2, and 5, it can be seen
that placing sensors in a row and pointing them
in parallel directions is not a good idea. The
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reason for this is that the workspace is not increased
significantly. We cannot obtain another perspective
of the user, and the collected data is no better than
that from a single sensor. Nevertheless, the maxi-
mum number of users can be actually increased, as
in Experiment 2, because one sensor handles a group
of users and another can deal with another group.

4.2 Results in Experiment 3

Experiment 3 was with two sensors which cov-
ered the same area but perpendicularly. In addition
to the sensor of Experiment 1, we added another
sensor perpendicular to the workspace. This means
that the first sensor captures the user frontally, and
the second captures the user’s side. As in the pre-
vious experiments, there are points that cannot be
collected by any sensor and therefore these points
are empty in Fig. 20. The heat map of the user’s
positioning results is presented in Fig. 21.

(a) (b)

Fig. 20 Standard deviation in precision of mannequin
position (mm) (a) and the number of erroneous pixels
(thousands of pixels) (b) in Experiment 3. Reprinted
from Oliver et al. (2015a), Copyright 2015, with per-
mission from Springer

Fig. 21 Heat map of the standard deviation (SD) in
precision of dummy’s position in Experiment 3, con-
sidering an SD of 10 cm as the upper limit (references
to color refer to the online version of this figure)

The SD in this experiment is larger than that
in the previous ones. This means that the user’s
positioning is worse. The data was not consistent
with our expectations, since two perpendicular emit-
ters were used and theoretically the beams should
not interfere with each other. The explanation for
this is simple; the light beams do not interfere with
each other, but the second sensor does not capture
the user correctly. That is, the sensor captures the
user’s side, and the occlusions produced by his/her
own body lead to errors. Another factor is that while
the distance between a sensor and the user can be
small for one of the sensors, at the same time it can
be larger for the other sensor. This means that the
measures are more precise for the first sensor, but
not so good for the second one, and vice versa.

Regarding the number of erroneous pixels, just
as in Experiment 2, it is better than that collected in
Experiment 1. This is due to the same reason as ex-
plained above; the second sensor captures the scene
better than the first, and therefore the average num-
ber of erroneous pixels is lower. This proves again
that the number of erroneous pixels is not directly
proportional to the error in the user’s position.

From the data obtained it seems that two sen-
sors placed perpendicularly that capture the same
area is a bad idea, but only at first. This is because
we obtain worse results in the user’s position than
if we use a single sensor but, on the other hand, the
recognition space is greater than with a single sensor.
Also, the maximum number of users that the system
is able to recognize is increased, and most impor-
tantly, a different part of the user’s body is captured
(his/her side). Thus, this arrangement may be useful
in a few cases:

1. If we need to capture the side and the front
of the user at the same time, this configuration can
help solve this problem. This way, one of the sensors
can focus on the front and the other on his/her side.
In addition, post-processing would be useful in the
reconstruction of the user’s body, selecting the data
of the sensor that best captures the user.

2. This arrangement can also be useful when
we want to let the user move freely within the
workspace, without the need to look at the sen-
sor. Using two perpendicular sensors gives the user
more freedom, since each sensor captures him/her
from a different perspective. As in the previous case,



Oliver et al. / Front Inform Technol Electron Eng 2016 17(4):348-364 359

post-processing of the user’s data could be useful.

4.3 Results in Experiment 4

In Experiment 4 we placed two sensors fac-
ing each other, with one sensor capturing the user
frontally and the other his/her back. In this case,
there are no points that the sensors cannot capture,
and the entire workspace is covered. All the mea-
suring points provide information (Fig. 22), and the
heat map of the user’s position results is given in
Fig. 23.

(a) (b)

Fig. 22 Standard deviation in precision of mannequin
position (mm) (a) and the number of erroneous pixels
(thousands of pixels) (b) in Experiment 4. Reprinted
from Oliver et al. (2015a), Copyright 2015, with per-
mission from Springer

Fig. 23 Heat map of the standard deviation (SD) in
precision of dummy’s position in Experiment 4, con-
sidering an SD of 10 cm as the upper limit (references
to color refer to the online version of this figure)

In this experiment, we obtained worse results as
regards the user’s position than from Experiment 1.
The data obtained, in the vast majority of positions,
is worse than in Experiment 1. This deterioration
is evident in the first row of Grid 3, because the re-
sults increase from less than 1 mm to over 17 mm.
In this case there are two factors that cause this

deterioration. First, as in the previous experiment,
there are positions where, although a sensor captures
a user at a short distance, the other sensor captures
him/her further away, and therefore the data de-
cays greatly. Second, the sensor beams are pointing
directly at each other, which also deteriorates the
tracking information.

In the same way as in previous experiments, the
data shows that the number of erroneous pixels does
not indicate very clearly what is happening in the
user’s position. While in Grid 3 the number of erro-
neous pixels increases considerably, reaching an av-
erage of about 60 000, this may not be clearly related
to interference between the two sensors. As before,
using this deployment may not be advantageous after
looking at the results, which are definitely worse than
in Experiment 1. However, the recognition space is
larger than with a single sensor. In addition, this
arrangement can be considered if the user is allowed
to move freely around the room, or if we need to
capture his/her back.

4.4 Results in Experiment 6

Experiment 6 aimed at determining how a se-
ries of Kinect sensors, which captured the user from
different perspectives, affect the user’s position. In
this case, the sensors capture the user from the front,
back, and side simultaneously. The data generated
is given in Fig. 24 and the heat map of the user’s
position results is given in Fig. 25.

(a) (b)

Fig. 24 Standard deviation in precision of mannequin
position (mm) (a) and the number of erroneous pixels
(thousands of pixels) (b) in Experiment 6. Reprinted
from Oliver et al. (2015a), Copyright 2015, with per-
mission from Springer
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Fig. 25 Heat map of the standard deviation (SD) in
precision of dummy’s position in Experiment 6, con-
sidering an SD of 10 cm as the upper limit (references
to color refer to the online version of this figure)

With regard to the tracked position, we can see
that the data collected in this experiment is worse
than in all the previous ones. In this experiment
there are positions that are close to a sensor, and
therefore with a small SD, but this position is far
away from another sensor. The data shows that the
central areas of Grid 2 and Grid 3 have a lower SD,
due to its exponential growth. The number of er-
roneous pixels in this deployment is quite similar to
other measurements taken previously. Once again,
it is demonstrated that a high number of erroneous
pixels may indicate a problem but a low number is
not a measure of quality.

The use of this deployment can be useful if we
need to capture the user’s entire body. If this de-
ployment is complemented by a fourth sensor that
captures another side, we would obtain an interac-
tion space with freedom of movement.

5 Discussion

In this section the results obtained in the exper-
iments are compared with the results obtained by
other researchers.

Because the probability distribution of the col-
lected data follows a normal distribution, the data is
distributed uniformly over the line of real numbers,
and the error in 99.7% of cases will always be less
than μ± 3σ (μ is the mean of the distribution and σ

is its SD).

5.1 Comparison with the results in Bon-
nechère et al. (2014)

Bonnechère et al. (2014) focused on the SD of
the data collected from a single user. This study used
only one pattern recognition sensor. The user was
positioned facing the sensor and the sensor collected
data from his/her upper and lower extremities. The

user was placed at a distance of 1.5, 2.0, or 2.5 m
from the sensor.

For this comparison we have chosen Experi-
ment 1. The number of sensors (which is 1) and
the angle between the user and the sensor are the
same in both experiments. The measuring distances
from both experiments are similar, so it should not
be a problem in the comparison. The only remark-
able difference is that while Bonnechère et al. (2014)
measured the distance to the subject’s extremities,
we measured from the hip. The comparison data can
be found in Table 1.

We detected that the SD collected by Bon-
nechère et al. (2014) largely exceeds those found in
Experiment 1. This is due to the fact that the mea-
sured points differ in the two experiments. While
they measured from the limbs, we measured from the
hip. We think that the data of the user’s extremities
is always worse than the hip data, mainly due to two
reasons: involuntary movements are always greater
in this area, and the Kinect sensor reconstructs the
user’s body starting from the hip, which makes the
accumulated error higher at the extremities.

5.2 Comparison with the results in Khoshel-
ham and Elberink (2012)

In Khoshelham and Elberink (2012), SD was
measured in a theoretical geometric plane by a
Kinect sensor and the technical characteristics were
studied. The number of sensors was only one, the
angle between the sensor and the geometric plane
was 0◦, and the distances ranged between 1 and 5 m
in steps of 1 m.

For this comparison we have chosen, again, Ex-
periment 1 as the number of sensors, measuring dis-
tances, and angle between the user and the sensor are
the same in both. The only parameter that varies is
the measurement point. While we measured a tan-
gible point in the capture space from the hip of a
dummy, Khoshelham and Elberink (2012) measured
a theoretical geometric plane. This comparison de-
termines whether the experiment is consistent with
the expected theoretical data. The comparison data
can be found in Table 2.

The results obtained theoretically by Khoshel-
ham and Elberink (2012) and the results obtained
in Experiment 1 are broadly consistent. While there
are small differences between the data obtained by
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Table 1 Comparison with the data collected by Bonnechère et al. (2014)

Reference
Number of User-sensor angle

Measuring point
Distance SD

sensors (◦) (m) (mm)

Bonnechère et al. (2014)

1 0 Upper limb 1.5 36.0
1 0 Upper limb 2.0 35.0
1 0 Upper limb 2.5 40.0
1 0 Lower limb 1.5 100.0
1 0 Lower limb 2.0 80.0
1 0 Lower limb 2.5 79.0

Current study
1 0 Hip 1.0 1.0
1 0 Hip 2.0 1.3
1 0 Hip 3.0 3.6

Table 2 Comparison with the data collected by Khoshelham and Elberink (2012)

Reference
Number of User-sensor angle

Measuring point
Distance SD

sensors (◦) (m) (mm)

1 0 Theoretical plane 1 2.5
Khoshelham and 1 0 Theoretical plane 2 7.5
Elberink (2012) 1 0 Theoretical plane 3 15.0

1 0 Theoretical plane 4 25.0
1 0 Theoretical plane 5 40.0

Current study

1 0 Hip 1 1.0
1 0 Hip 2 1.3
1 0 Hip 3 3.6
1 0 Hip 4 47.1

each, the data follows the same pattern. At a dis-
tance of 1 m, SD is less than 2.5 mm in both cases,
and at 4 m SD reaches in both cases 25 mm or more.
This exponential behavior of the SD with respect to
the measuring distance is consistent in both experi-
ments, which indicates that measuring a flat surface
and measuring the user’s body are close to the same
values.

5.3 Comparison with the results in Gonzalez-
Jorge et al. (2013)

Gonzalez-Jorge et al. (2013) focused on the error
in the measurement instead of SD. However, as pre-
viously mentioned, our data is normally distributed
and we can calculate the precise error.

Gonzalez-Jorge et al. (2013) used a Kinect sen-
sor and an Xtion Pro Live sensor. Both sensors rely
on the method of pattern recognition to provide the
depth of the scene. In this case, the errors in the
recognition of a series of cubes and spheres, at 1 or
2 m from the sensor, were studied. Various angles
were tested (45◦, 90◦, and 135◦) but they did not
provide data on the error made at each angle, but

only the overall error was given.
For this comparison we have chosen, once again,

Experiment 1. The number of sensors and the mea-
suring distances are equal in both experiments. How-
ever, the angle of measurement and the measured
objects differ. While in our case distance was mea-
sured from the dummy’s hip, in Gonzalez-Jorge et al.
(2013) spheres and cubes were used. The comparison
data can be found in Table 3. The results of both
experiments are quite similar and both are found in
the same margins. However, in Gonzalez-Jorge et al.
(2013) there is an evidently worsening of the distance
between the sensor and the object measured.

5.4 Comparison with the results in Regazzoni
et al. (2014)

As in the previous comparison, Regazzoni et al.
(2014) focused on the error in measurement accu-
racy instead of SD. However, our data was normally
distributed and we can calculate the error with pre-
cision. They presented the precision data collected
by a multi-camera system. First, they used a series
of RGB cameras to collect data from one person and
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these were compared with the data collected by two
Kinect sensors pointing at the same person, on which
we will focus. These two sensors were at an angle of
54◦ and −54◦ with respect to the front of the user
and at a distance of 3.5 m. All the points of the user
were measured.

For this comparison we have chosen Experi-
ments 2–4. The number of sensors used and the
measuring distance are similar in all the tests. How-
ever, the measured points and the angles between
the measured object and the sensor are different.
The comparison data can be found in Table 4.

In this comparison, we can see how Regazzoni
et al. (2014) showed a maximum error of 100 mm
at a distance of 3.5 m. These results were verified
by our experiments, with a similar deployment and
results between 7.5 at 3 m and 187.5 mm at 4 m.

5.5 Our data

As we mentioned in the previous sections, our
data is consistent in most cases with the results ob-
tained in other experiments by other researchers.
Also, the data is consistent with the theoretical re-
sults discussed in other studies. Besides, the ex-
periments performed provide data of the interfer-
ence of multiple sensors depending on the number
of sensors used, the incidence angle of infrared light,

the distance to the target, and the distance between
sensors.

As for the number of experiments carried out,
we identified the interference of one, two, and three
sensors, with three different angles between them
and the dummy. Therefore, we performed a total
of six experiments, each of them with three distance
grids, making a total of 29 measurement points in
each of the experiments, which leads to a total of 174
measurement points, of which 14 have not supplied
data. However, for the 160 with data, we obtained
the standard deviation of the precision in the user’s
positioning.

This will be of great help in the future when we
need to carry out a real deployment in a rehabilita-
tion room.

6 Developed system

The data collected and the conclusions con-
cluded can be used to predict the effect of assigning
each sensor a specific location in the rehabilitation
room. We designed a new system that allows special-
ists to define the location of different RGB-D sensors
to cover the interaction space in which the patient
will carry out a specific therapy and determine the
effect of this choice. This system allows a specialist
to define the whole interaction space.

Table 3 Comparison with the data collected by Gonzalez-Jorge et al. (2013)

Reference
Number of User-sensor angle

Measuring point
Distance Precision error

sensors (◦) (m) (mm)

Gonzalez-Jorge 1 45, 90, and 135 Cubes and spheres 1 6.0
et al. (2013) 1 45, 90, and 135 Cubes and spheres 2 12.0

Current study
1 0 Hip 1 3.0
1 0 Hip 2 3.9

Table 4 Comparison with the data collected by Regazzoni et al. (2014)

Reference
Number of User-sensor angle

Measuring point
Distance Precision error

sensors (◦) (m) (mm)

Regazzoni et al. (2014) 2 54 and −54 Full body 3.5 100.0

Current study

2 0 and 0 Hip 3.0 7.5
2 0 and 0 Hip 4.0 165.3
2 0 and 90 Hip 3.0 15.6
2 0 and 90 Hip 4.0 187.5
2 0 and 180 Hip 3.0 7.5
2 0 and 180 Hip 4.0 94.2
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Thus, one sensor can be placed in one location
and then the system provides information on the ef-
fect of this choice in the quality of the measurements.
To visualize the data about the precision of the mea-
surement obtained, the information on theoretical
accuracy was shown by means of a colored area in
which blue means good accuracy and red indicates
possible problems with the precision of the location.
Due to the fact that not all the therapies need the
same accuracy when measuring the coordinates of
body parts, the specialist can choose the permissible
error and define the range of values, assigning blue
to small errors and red to large ones.

With this information, a specialist can decide to
include more sensors and see the effect of combining
these sensors on the precision of the measured area.
In addition, the system offers the possibility of defin-
ing the sensor to be used. If the specialist does not
define the sensor, the system can assign one, tak-
ing into account the data collected in the previous
experiments. As the current sensors limit the num-
ber of users recognized, the system also displays the
number of possible users for each area, allowing more
sensors to be added to control the users’ movements.
Finally, as the system knows in which areas the error
exceeds the established limits, the users can be in-
formed when they are inside these areas and indicate
a more precise area.

To sum up, the developed system supports the
process of designing a rehabilitation space, offering
therapists the possibility to design the rehabilitation
rooms and locate all the sensors, taking into account
the accuracy of the measures achieved by each sensor.
It also controls the number of users to be recognized
and indicates when a user is not in a suitable area
to carry out a therapy, guiding him/her to a good
location. Finally, it helps identify the most suitable
sensor to monitor each patient in the rehabilitation
process.

7 Conclusions

Although mono-camera rehabilitation systems
work well enough in most situations, if we need to
monitor large interaction areas or need to supervise
more than one user, these systems have several limi-
tations. As multi-camera rehabilitation systems can
be the solution, we studied multi-camera devices and

how they interfered with each other.
To our knowledge, there are only a few publi-

cations focusing on the placement of sensors of this
kind, and most are based on only one device. We
therefore need to get more information on the effect
of adding several sensors which monitor the same
area. In this paper, we have studied how three
sensors can interfere with each other, according to
the distance between them, distance to the object
to be measured, angle of incidence of the projected
infrared light, and the number of sensors used.

The data obtained is consistent with Bon-
nechère et al. (2014), who concluded that the results
obtained with the Kinect sensor can be used in many
applications, due to the fact that sensor’s data has
a precision high enough to be used without addi-
tional processing. Our data is also consistent with
the results obtained by Khoshelham and Elberink
(2012), who found that the Kinect sensor provides
sufficiently precise data at distances between 1 and
3 m. However, beyond this threshold the data be-
comes less precise and the error becomes too large.

In this regard, we also concluded that the data
obtained by Gonzalez-Jorge et al. (2013) agrees with
ours. Both experiments reveal an error that increases
exponentially, relative to the distance between the
measured object and the sensor. This also happens
with other pattern recognition sensors, such as Xtion
Pro Live. Our data is also in agreement with the
results obtained by Regazzoni et al. (2014), who used
two Kinect sensors to calculate the position error;
however, they tested only a single grid, which means
the cause of the error cannot be ascertained.

Finally, the following conclusions can be ex-
tracted from our experimental data:

1. At points measured 4 m away from the sensor
the error can also be very large. At these distances
the precision error must be considered. If the pre-
cision required is higher than that collected by the
sensor, rehabilitation exercises should not be per-
formed with it.

2. With a sensor whose distance from the user
is between 1 and 2 m, almost all the SDs are less
than 1 mm. This accuracy is sufficient for almost all
rehabilitation exercises.

3. With a sensor whose distance from the user is
3 m, almost all the SDs collected are between 1 and
5 mm, which is sufficient for almost all rehabilitation
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exercises.
4. With two or three sensors pointing in the

same direction, the result is slightly worse. However,
at a distance between 1 and 3 m the results are valid
for almost any rehabilitation exercise.

5. A sensor that captures the patient’s side may
give unreliable results, due to occlusions arising from
his/her own body. If a sensor is placed in this way,
for instance, to monitor the patient’s limbs, this lim-
itation must be kept in mind.

6. A sensor that projects its beam into another
may spoil the results of this sensor, due to the inter-
ference in the capture of infrared light. Therefore, if
the focus is on the patient’s back, and a set of op-
posing sensors is necessary, this interference should
be taken into account.

7. When multiple sensors are used pointing in
the same area, and the point to be measured is be-
tween 1 and 3 m from all the sensors, the precision
at this point is sufficient.

8. A high number of erroneous pixels may in-
dicate a problem, but a low number of these is not
necessarily an indication of quality.
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