
Chen et al. / Front Inform Technol Electron Eng 2017 18(5):667-679 667

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Exploiting a depth contextmodel in

visual trackingwith correlation filter∗

Zhao-yun CHEN†1,2, Lei LUO†‡1, Da-fei HUANG1,2, Mei WEN1,2, Chun-yuan ZHANG1,2

(1College of Computer, National University of Defense Technology, Changsha 410073, China)

(2National Key Laboratory of Parallel and Distributed Processing, Changsha 410073, China)
†E-mail: chenzhaoyun@nudt.edu.cn; l.luo@nudt.edu.cn

Received Nov. 10, 2015; Revision accepted June 6, 2016; Crosschecked Apr. 13, 2017

Abstract: Recently correlation filter based trackers have attracted considerable attention for their high compu-
tational efficiency. However, they cannot handle occlusion and scale variation well enough. This paper aims at
preventing the tracker from failure in these two situations by integrating the depth information into a correlation
filter based tracker. By using RGB-D data, we construct a depth context model to reveal the spatial correlation
between the target and its surrounding regions. Furthermore, we adopt a region growing method to make our tracker
robust to occlusion and scale variation. Additional optimizations such as a model updating scheme are applied to
improve the performance for longer video sequences. Both qualitative and quantitative evaluations on challenging
benchmark image sequences demonstrate that the proposed tracker performs favourably against state-of-the-art
algorithms.
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1 Introduction

Visual object tracking is a fundamental task
for a wide range of computer vision applications.
Applications such as video surveillance, intelligent
traffic, robotics navigation, human-computer inter-
action, and augmented reality require robust and
reliable location estimations of a target throughout
an image sequence (Yilmaz et al., 2006; Wu et al.,
2013; Lee et al., 2014). Despite significant progress
in recent years, it remains a challenge to design an
all-situation-handled tracker that can handle various
challenging factors: occlusion, illumination change,
scale variation, cluttering background, etc. (Yilmaz
et al., 2006; Yang et al., 2011; Li et al., 2013; Wu
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et al., 2013; Smeulders et al., 2014). Furthermore,
the real-time constraint is another challenge to re-
searchers. Simple tracking models cannot perform
well in a complex environment; however, the more
sophisticated the tracking model becomes, the higher
the computational cost that will arise.

Correlation filter based trackers (Bolme et al.,
2010; Henriques et al., 2012; Danelljan et al., 2014a;
Li and Zhu, 2014; Zhang et al., 2014; Henriques et al.,
2015; Liu et al., 2015; Ma et al., 2015) have been
proven to be competitive against others in accu-
racy and with much higher computational efficiency.
Those trackers train a discriminative filter, whose
convolutional output can indicate the likeness be-
tween a candidate and the target. Although scale-
adaptive variants (Danelljan et al., 2014a; Zhang
et al., 2014; Li and Zhu, 2014; Liu et al., 2015; Ma
et al., 2015) have been proposed, there is no correla-
tion filter variant of flexible adaptability to target’s
scale and aspect ratio changes.
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Occlusion is also an inevitable challenge that a
correlation filter must face. Since the context around
the target may remain unchanged even if the object
is occluded, several trackers adopt the contextual in-
formation in an algorithm (Yang et al., 2009; Grab-
ner et al., 2010; Dinh et al., 2011; Zhang and Maaten,
2014; Zhang et al., 2014; Ma et al., 2015). However,
these trackers are prone to drifting if the occluders
have a similar appearance to the target.

A reliable depth map can provide some valu-
able information which can significantly improve the
tracking performance against occlusion and scale
variation. Off-the-shelf depth sensors, such as Mi-
crosoft Kinect, make depth information acquisition
a reasonably easy task, and the depth information
has been widely used in object detection, object seg-
mentation, scene understanding (Chen et al., 2014;
Gupta et al., 2014; Hickson et al., 2014), etc. How-
ever, little work has focused on the RGB-D tracking
method. Several trackers use only a depth map to
generate a more robust feature set (Teichman et al.,
2013). As will be discussed later, depth information
can provide a solution to tackle occlusion and scale
variation if used properly.

The tracker proposed in this paper is based on
a fast tracking algorithm via spatio-temporal con-
text learning (STC) (Zhang et al., 2014), which in-
tegrates context information into correlation filter
training. However, STC cannot handle the aspect
ratio variation of the target, and have poor per-
formance under various challenging factors such as
occlusion and deformation. For that reason, we con-
struct the depth context model for robust estimation
of the target location. Moreover, a region-growing
method (Adams and Bischof, 1994) based on the
depth map is adopted to provide an accurate scale
estimation for the target. The main contributions of
this study include:

1. A depth context model is constructed for es-
timation of the target location which is resistant to
heavy occlusion, fast motion, and large deformation.

2. A region growing method is adopted to enable
the adaptability to the target’s scale and aspect ratio
changes.

3. A scheme for occlusion detection and learning
rate suppression is proposed to improve the perfor-
mance when occlusion exists.

Based on the benchmark protocol and dataset
from Song and Xiao (2013), an experiment on a
20-sequence dataset with various challenging at-

tributes is conducted. The proposed tracker per-
forms favourably, compared to several state-of-the-
art algorithms in terms of both tracking accuracy
and speed.

2 Related work

Visual object tracking has been extensively
studied over the past decade (Yilmaz et al., 2006;
Yang et al., 2011; Li et al., 2013; Wu et al., 2013;
Smeulders et al., 2014). In this section, we briefly
review the methods closely related to our work: (1)
correlation tracking, (2) contextual tracker, and (3)
RGB-D exploiting.

Correlation tracking: Correlation filters have
been widely used in numerous applications such
as object detection and recognition (Kumar et al.,
2010). Since the convolutional operation is trans-
fered to element-wise multiplication in the Fourier
domain, correlation filters have attracted consid-
erable attention recently in visual tracking due to
their computational efficiency. The MOSSE tracker
(Bolme et al., 2010) is based on learning an adap-
tive correlation filter by minimizing the output sum
of squared error (MOSSE). MOSSE is computation-
ally efficient with a speed of hundreds of frames
per second. The CSK tracker (Henriques et al.,
2012) extends the correlation filter to kernel space
and achieves higher efficiency by using the circulant
structure in the representation model. The KCF
tracker (Henriques et al., 2015), as an extended ver-
sion of CSK, is further improved through supporting
multi-channel features. The ACT tracker (Danell-
jan et al., 2014b) proposes a more robust updating
scheme and adopts the colour naming feature. How-
ever, the above-mentioned trackers cannot tackle the
problem of scale and aspect ratio adaptability. To
handle the scale change, the SAMF tracker (Li and
Zhu, 2014) presents a framework which samples can-
didates with several pre-defined scale perturbations.
The best scale and position are found according to
the responses of the correlation filter applied to those
samples individually. DSST (Danelljan et al., 2014a)
learns separate filters for translation and scale esti-
mation by using HOG features. Recently, Ma et al.
(2015) proposed a method to combine the discrimi-
native correlation filter with a robust online detector.
The correlation filter is responsible for estimating the
translation and scale variation of the target, while
the online detector is responsible for re-detecting the
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target in case of tracking failure.

Contextual tracker: Contextual information is
helpful to the performance especially when the tar-
get is occluded or leaves the visible image scope
(Yang et al., 2009; Grabner et al., 2010; Dinh et al.,
2011; Zhang and Maaten, 2014). However, sup-
porting regions with contextual information can be
transformed to distracting regions in certain circum-
stances. When the occluder has a distinct appear-
ance compared with the target, supporting regions
as presented in Grabner et al. (2010) and Dinh et al.
(2011) provide valuable cues to cope with occlusion.
However, when occluders have a similar appearance,
a contextual tracker may be confused and misled to
drifting.

RGB-D exploiting: With the widely used depth
camera, depth information has been introduced into
object detection, object segmentation, scene under-
standing (Chen et al., 2014; Gupta et al., 2014; Hick-
son et al., 2014), etc. However, it has not been widely
used in visual tracking. The existing RGB-D track-
ers usually adopt an online training method. Lu-
ber et al. (2011) combined a novel multi-cue per-
son detector which uses RGB-D data with an online-
boosted detector that learns individual target mod-
els. Park et al. (2011) proposed a textureless object
detection and 3D tracking method which automat-
ically extracts information from colour images and
the corresponding depth maps on the fly. With the
introduction of depth information, more robust fea-

tures can be generated for tracking. Teichman et al.
(2013) used a rich feature set, including local image
appearance, depth discontinuity, optical flow, and
surface normal, to inform the segmentation decision
in a conditional random field model. Choi and Chris-
tensen (2013) presented a particle filtering approach
for 6-DOF object pose tracking using an RGB-D
camera. Moreover, new baseline tracking algorithms
and benchmarking criteria based on RGB-D image
sequences are in demand. Song and Xiao (2013) de-
signed a group of baseline algorithms, and combined
RGB-D HOG detection, optical flow, and occlusion
handling in the tracking task.

3 Our methodology

We decompose the tracking task into transla-
tion estimation, occlusion detection, and scale es-
timation. Section 3.1 presents how we extend the
STC tracker by constructing a depth context model
for translation estimation. In Section 3.2, we pro-
pose the region growing method for scale estimation.
The occlusion detection and a corresponding updat-
ing scheme are demonstrated in Section 3.3. The
flowchart of our method (Fig. 1) consists of three
parts: translation estimation, occlusion detection,
and scale estimation. The output bounding box
closely encloses the merged region.

Notation: A bold lowercase letter, e.g., x,y, z,
denotes a vector. A lowercase letter, e.g., m,h,k,f ,
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or an uppercase letter, e.g., H ,P , denotes a matrix.
d(·) denotes a distance function. F(·) and F−1(·)
are the FFT function and the inverse FFT function,
respectively.

3.1 Depth context model

As the basis of our tracker, STC builds a con-
fidence map which estimates the object location
likelihood:

m(x) = P (x|o), (1)

where x ∈ R
2 is the object location and o stands for

the target object in the scene. By marginalizing the
joint probability P (x|φ(y), o), the object location
likelihood function can be decomposed as

m(x) = P (x|o)
=
∑

P (x, φ(y)|o)
=
∑

P (x|φ(y), o)P (φ(y)|o), (2)

where y is the context patch of x and φ(y) is the
context feature set. P (φ(y)|o) represents the prior
probability which models the appearance of the lo-
cal context. P (x|φ(y), o) denotes the depth context
probability which is an indication of the spatial rela-
tionship between the object location and its context.
The position of the target is detected by searching
for the location that maximizes the value of m(x).
The main problem here is to learn the depth context
model and to estimate the confidence map.

P (x|φ(y), o) in Eq. (2) is defined as

P (x|φ(y), o) = h(y), (3)

where h(y) is a function with respect to the depth
context probability. Eq. (2) is an indication of the
spatial relationship between the object location and
its context.

The feature adopted in STC is solely the pixel
intensity which is weak for modelling appearance. To
develop an effective appearance representation, we
use the histogram of orientation gradients (HOG) as
the feature. Therefore, the prior model is represented
by the weighted product of the HOG feature and the
Gaussian function:

P (φ(y)|o) = bk(y)f(y), (4)

where b is the normalization constant that restricts
P (φ(y)|o) ranging from 0 to 1, k(·) denotes the map-
ping to the HOG feature space, and f(·) denotes the

Gaussian matrix, defined as

f(y) = exp

(
−d(z,x)2

σ2

)
, ∀z ∈ y, (5)

where σ is the scale parameter and d(·) denotes the
spatial distance which takes depth information into
consideration.

Generally, a bounding box is given in the first
frame as the tracking target. The confidence map
based on the target location is modeled as

m(x) = a exp

(
−d(x,x′)β

α

)
, (6)

where x′ is the target location, d(·) denotes the spa-
tial distance, a is the normalization constant, and α

and β are the coefficients of the distance function.
Substitute Eqs. (6), (4), and (3) into Eq. (2) and

formulate the confidence map as

m(x) = a exp

(
−d(x,x′)β

α

)

= h(y)⊗ (bk(y)f(y)) , (7)

where ⊗ denotes the convolution operator. By
adopting the fast Fourier transformation (FFT),
Eq. (7) can be transformed to

F
(
a exp

(
−d(x,x′)β

α

))

= F (h(y))�F (bk (y)f (y)) , (8)

where F is the FFT function and � denotes the
element-wise product. Therefore, the depth context
model can be formulated as

h(y) = F−1

⎛

⎝
F
(
a exp

(
− d(x,x′)β

α

))

F (bk(y)f(y))

⎞

⎠ , (9)

where F−1 denotes the inverse FFT (IFFT). The
process of depth context model learning is shown in
Fig. 2.

Assuming the target region in the tth frame is
fixed, the temporal depth context model Ht+1(y)

in the (t + 1)th frame is calculated considering the
temporal relationship:

Ht+1(y) = (1− λ)Ht(y) + λht(y), (10)

where Ht(y) is the temporal depth context model
in the tth frame, ht(y) is computed from Eq. (9),
and λ is the learning rate. According to Eq. (8), the
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Fig. 2 Process of learning the depth context model

confidence map mt+1(x) in the (t + 1)th frame is
estimated as

mt+1(x)

= F−1

(
F
(
Ht+1(y)

)
�F

(
bkt+1 (y)ft (y)

))
,

(11)

where ft(y) is computed according to the target lo-
cation in the tth frame. The location maximizing
the value of mt+1(x) is estimated as the target cen-
ter in the (t + 1)th frame. In the same way, the
temporal depth context model is recomputed based
on the new target location according to Eqs. (9) and
(10). This process is repeated until the last frame.
The flowchart of translation estimation is shown in
Fig. 3. The output of translation estimation is pre-
pared for scale estimation and occlusion detection.
The upper part of Fig. 3 represents the updating of
the temporal depth context model. The lower part
stands for target location estimation at the (t+ 1)th
frame.

3.2 Region growing method

The variation of the target’s scale and aspect
ratio is a significant challenge in visual tracking. We
propose a region growing method based on the tar-
get location from Section 3.1 to estimate the scale
and aspect ratio of the target. Region growing is a
method for aggregating pixels according to the fea-
ture similarity in a region. It starts at a seed region
or a seed pixel, and merges other regions or pixels

which contain a similar feature to that of the origi-
nal region. The algorithm will terminate when there
is no region or pixel eligible for merging. The key
advantage of this method is that the merged output
region is not limited by the aspect ratio in previous
frames and can provide an accurate scale estima-
tion of the target. Similarity measurement among
the pixels or regions can comprise average intensity,
colour, texture, etc.

The performance of a region growing method de-
pends on three factors: (1) seed point selection, (2)
merging rule, and (3) termination condition. Since
the continuity of the target is ensured in the depth
map, we adopt a modified region growing method to
provide an accurate scale estimation of the target.
The method proposed in our tracker is a modified
4-neighbour pixel region growing algorithm. The lo-
cation of maximal response in Section 3.1 is of high
reliability to be the seed point. Generally, there are
abrupt gradient changes between the target and its
surroundings in the depth map. The merging rule
is thus to set a threshold which limits the depth
difference between two points. The algorithm will
terminate when there is no mergeable point. The
output bounding box is a box that closely encloses
the merged region. An example of the region growing
method is illustrated in Fig. 4.

The region growing process is demonstrated as
follows, and the corresponding pseudo-code can be
found in Algorithm 1:

1. Push the target center into the stack. The ini-
tialized output region contains only the target center.
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Fig. 3 Main workflow of translation estimation
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Fig. 4 A region growing example: (a) RGB context
region; (b) depth image of the same area; (c) merged
output region of the target

2. Pop the top point from the stack. Exam-
ine the neighbours of the point in sequence to check
whether they conform to the merging rule. The
neighbour whose depth satisfies the merging condi-
tion is merged into the output region and pushed
into the stack.

3. Check whether the stack is empty. If not,
repeat 2.

4. The stack is empty, and the algorithm is
terminated.

The region growing method takes advantage of
the target continuity in the depth map, and pro-
vides the accurate target region growing from the
center. Furthermore, when the target is partially

Algorithm 1 Region growing method on the ith
frame
Input: xi, the ith frame target location; di(·), depth

image at the ith frame.
Output: merged output region.
Initialize: stack S = {}, output Ri = {}.
1: Add xi to stack S and output region Ri;
2: Pop top point q from stack S;
3: Acquire the depth di(q) of q;
4: while S is not empty do
5: for the neighbors k of q do
6: Acquire the depth di(k) of k;
7: if |di(q)− di(k)| / di(q) < p then
8: Push k into Ri and S;
9: end if

10: end for
11: end while

occluded, the occluded part will not be included in
the merged output region due to the depth gap be-
tween the tracking target and the occluder. Since
our algorithm is based on the depth, it is robust and
accurate not only in scale variation scenes, but also
in illumination change and deformation scenarios.

3.3 Occlusion detection and updating scheme

Occlusion is one of the most difficult problems
in visual tracking. Obviously, it is hard to handle
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because the tracker may fail to relocate the target.
Although several methods have been proposed to at-
tempt to detect occlusion, such as judging by context
(Zhang et al., 2014; Ma et al., 2015) and part-based
model (Adam et al., 2006; Ross et al., 2008; Cehovin
et al., 2011; Izadinia et al., 2012; Shu et al., 2012;
Yang and Nevatia, 2012; Li et al., 2015), a robust
enough method is still required to be responsible
for occlusion detection, especially for longer video
sequences.

Occlusion detection based on a depth map is a
good solution that can offer enough robustness for
tracking. We present an occlusion detection method
here between translation and scale estimations. Fol-
lowing the step of Section 3.1, the detection is ac-
cording to the depth of the target location. If the
occlusion exists on the target location, we will find a
new one as a substitute and the new point is selected
as the seed point in scale estimation. In addition, a
corresponding updating scheme is adopted.

To detect occlusion, the target depth value in
each frame is recorded. According to the spatial-
temporal continuity, we assume that there is no
abrupt change within the target depth sequence
when no occlusion occurs. On the contrary, if there
is a sudden reduction in target depth, it should be
concluded that the object center is occluded, as illus-
trated in Fig. 5, where in the 84th and 90th frames,
the target is occluded, and there is a sudden reduc-
tion in the line-chart of center depth. The differential
ratio threshold between the depth of target location
and the reference depth value is set for occlusion
judgement here. The reference depth is set to the
average center depth of the latest N frames to avoid
random errors.
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Fig. 5 Occlusion in video and the corresponding
abrupt reduction in the line-chart of center depth

When there is no obvious reduction (i.e., the dif-
ferential ratio does not exceed the threshold) within
the depth sequence, it indicates that the target cen-
ter is not occluded (there are chances that the target
is partially occluded). In this case, no additional

effort is needed and the scale estimation should be
conducted as in Section 3.2.

When a reduction is detected exceeding the
threshold, it indicates that the target center is oc-
cluded. Therefore, a new location should be found
to replace the original one for scale estimation. The
scheme we adopt is to do a mask computation be-
tween a binary image of the current frame and a
binary image of the merged output region from the
previous frame. In the binary image of the merged
output region from the previous frame, the target
pixels are labelled 1 and the others labelled 0. How-
ever, in the current frame, the pixel whose depth
meets the no-occlusion conditions with the reference
depth value is labelled 1 and the rest are labelled 0.

If the pixel set of the computed mask is not
empty, the nearest pixel to the previous center is
selected as the new target location and also the seed
point in Section 3.2. Meanwhile, we record the depth
at the new location and adjust the learning rate of
the depth context model according to

λ = λ ∗ |x∗ − x|√
S2
h + S2

w

, (12)

where λ is the learning rate, Sh and Sw are the cur-
rent height and width of the target, respectively, and
x∗ and x are the new target location and the previ-
ous location, respectively.

If the pixel set of the computed mask is empty,
it means that the target is fully occluded. In this
case, the center location and depth value of the tar-
get in the previous frame remains unchanged, and
the learning rate is set to 0. Since the target is fully
occluded, there is no need to conduct scale estima-
tion or generate bounding box output in this frame.

The occlusion detection method and updating
scheme are shown in Algorithm 2. Our approach is
effective in handling partial occlusion and some full
occlusion scenarios in which the target does not go
out of the context when it reappears.

We provide a brief outline of our tracking pro-
cess in Algorithm 3. The minimum bound rectangle
of the merged output region from Section 3.2 is the
final bounding box of the target. Our approach ac-
curately estimates both translation and scale while
being resistant to heavy occlusion and other chal-
lenging attributes.
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4 Experiments

To evaluate our proposed tracker, we compile a
set of 20 RGB-D video sequences which are chosen
from the Princeton RGB-D tracking dataset (Song
and Xiao, 2013), covering challenging factors such
as heavy occlusion, cluttering background, drastic
deformation, and scale variation. The challenging
factors contained in each video are listed in Table 1.
However, the tracking ground truths of the video
sequences are unpublished. Thus, we mark them
manually. As a stereo extension of the STC tracking
algorithm, firstly, we compare the performance of
our method with that of the original STC (Zhang
et al., 2014). Due to the lack of public availability
of other RGB-D tracking algorithms, we compare
the proposed algorithm with several RGB trackers:
Struck (Hare et al., 2011), TLD (Kalal et al., 2012),
KCF (Henriques et al., 2015), and DSST (Danelljan
et al., 2014a). During the test, the parameters of the
proposed algorithms are fixed in all experiments. All
experiments are conducted on a conventional Intel i5
desktop computer with a 4 GB RAM.

4.1 Parameter setup

The parameters of the algorithm are initialized
to empiric values which are tuned for the best results.
Some of the parameters in Section 3.1 are kept the
same as in STC. The padding factor of the context is
set to 1. It indicates that the width and height of the

context are twice those of the target. The coefficients
in Eq. (6) are set to α = 2.25 and β = 1. The scale
parameter σ in Eq. (5) is set to (Sw + Sh)/2. The
learning rate λ of the temporal depth context model
is set to 0.065. Some additional parameters in Sec-
tions 3.2 and 3.3 are also initialized. The threshold
factor p in the region growing method is set to 0.028,
and the differential ratio t in occlusion detection is
set to 0.1. In the depth image, the raw depth ranges
from 0 to 65 535. To normalise the effect of depth,
the depth is shrunk to range from 1 to 600 through
a direct linear mapping. The number of frames for
calculating the reference depth value in occlusion de-
tection is set to 5. To reduce the frequency effect at
the image boundary, the context eigen-matrix mul-
tiplies a Hamming window before performing FFT.

4.2 Evaluation

The evaluation criteria employed in our exper-
iments are distance precision (DP) and the success
rate (SR) (Everingham et al., 2010; Kristan et al.,
2015), both of which are computed based on the
manually labelled ground truth. DP is computed
as the percentage of frames in the sequence where
the center location error is smaller than a certain
threshold. The DP values at the threshold of 20 pix-
els (Everingham et al., 2010) are reported. SR is a
little different from that in VOC (Everingham et al.,
2010). Based on our observation, when the object is
not in the scene or is occluded, the bounding box is

Table 1 Challenging factors within the image sequences

Number Sequence Challenge factor Number of frames

1 Basketball1 Occlusion, scale, deformation, and background clutter 213
2 Book_turn2 Deformation 195
3 Cf_no_occ Deformation 66
4 Child_no1 Scale and deformation 164
5 Cup_move_1 Scale 370
6 Express3_static_occ Occlusion and background clutter 197
7 Face_occ5 Occlusion 330
8 Library2.2_occ Occlusion, deformation, and background clutter 420
9 New_ex_no_occ Scale, deformation, and background clutter 116
10 One_book_move Normal tracking 292
11 Static_sign1 Occlusion 201
12 Toy_car_no Deformation 103
13 Toy_car_occ Occlusion 154
14 Toy_wg_no_occ Deformation 158
15 Toy_wg_occ Occlusion 154
16 Tracking4 Deformation 300
17 Tracking7.1 Occlusion and deformation 234
18 Walking_no_occ Scale and deformation 118
19 Walking_occ_long Occlusion and deformation 199
20 Zball_no3 Normal tracking 86
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Algorithm 2 Occlusion detection and updating
scheme for the ith frame
Input: xi, the target location at the ith frame from

Eq. (11); Ii, the original image at the ith frame;
di(·), the depth image at the ith frame; Ri−1, the
output at the (i− 1)th frame.

Output: x′
i, the new ith frame location; λi, learning

rate.
Initialize: stack S = {}, output Ri = {}.
1: Acquire the depth di(xi) of xi;
2: Compute the average depth dave of the target for

latest N frames;
3: if |dave − di(xi)| / dave > t then

// Center occlusion:
4: Mask computation between the binary images of

Ri−1 and Ii;
5: if mask result is empty then

// Full occlusion:
6: Retain x′

i = x′
i−1;

7: Set λ = 0;
8: else
9: Select the nearest point y to xi as new location

x′
i;

10: Set λ according to Eq. (12);
11: end if
12: end if
13: if no full occlusion then
14: Scale estimation according to Section 3.2;
15: end if

still provided by most trackers. We take that into
account and SR in our method is defined referring to
Song and Xiao (2013):

score =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

area(ROITi
∩ ROIGi

)

area(ROITi
∪ ROIGi

)
, both ROITi

and ROIGi
exist,

1, neither ROITi
nor ROIGi

exists,
0, otherwise,

(13)

where ROITi is the target bounding box in the ith
frame, while ROIGi is the ground truth bounding
box in the ith frame. When the target is fully oc-
cluded, there is no bounding box in the ground truth.
At that time if the tracking bounding box does not
exist either, the score is set to 1. If either ROITi or
ROIGi exists, the score is set to 0. In all experiments,
the overlap threshold is set to Rt = 0.5 (Everingham
et al., 2010). When score > Rt, the frame is labelled
as a success; otherwise it is labelled as a failure. SR
is defined as the average SR throughout the video se-
quences. A speed comparison in terms of the average
number of frames per second (FPS) is also provided.

Algorithm 3 Proposed tracking approach: iteration
at time step i

Input: Ii, image at the ith frame; Di, depth image at
the ith frame; xi−1, previous target position; Hi,
temporal depth context model for the ith frame;
Ri−1, output region at the (i− 1)th frame.

Output: xi, estimated target position; Hi+1, updated
temporal depth context model for the (i+1)th frame;
Ri, output region at the ith frame; Oi, bounding box
output at the ith frame.
// Translation estimation:

1: Calculate the featured prior probability P (φ|o)i
from Ii, Di, and xi−1 in Eqs. (4) and (5);

2: Compute the confidence map mi using P (φ|o)i and
Hi in Eq. (11);

3: Set xi to the target position that maximizes mi;
// Occlusion detection:

4: Detect occlusion based on xi, Di, Ii, and Ri−1 ac-
cording to Algorithm 2;

5: Correct the target location xi and the learning rate
λ if necessary;
// Scale estimation:

6: if no full occlusion then
7: Compute the output region Ri according to Algo-

rithm 1;
8: else
9: Retain the previous output region Ri = Ri−1;

10: end if
11: Oi is the bounding box that closely encloses the out-

put region Ri;
// Model update:

12: Calculate the featured prior probability P (φ|o)i
from Ii, Di, and xi in Eqs. (4) and (5);

13: Update the depth context model for the ith frame
model hi in Eq. (9);

14: Update the temporal depth context model Hi+1 for
the (i+ 1)th frame in Eq. (10);

Overall performance: Based on this dataset, the
quantitative results for the six algorithms are shown
in Table 2. Among the existing trackers, DSST pro-
vides the best results with an average SR of 69.6%
and our approach improves this performance by 15%.
Similarly, in terms of DP, our approach favourably
achieves an average DP of 84.3% which outperforms
DSST by 16.6%. The ratio of video sequences where
our proposed method gets the best or second best
performance in terms of SR is 90% and that in terms
of DP is 95%. Limited by our experimental plat-
form, our tracker runs at 14.6 frames per second. It
is slower than KCF and STC, but still meets the real-
time requirement. Fig. 6 shows some screenshots of
various trackers.
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Table 2 Overall performances

Sequence
number

Success rate Distance precision

KCF DSST TLD Struck STC Ours KCF DSST TLD Struck STC Ours

1 0.389 0.493 0.115 0.885 0.089 0.751 0.343 0.441 0.231 0.745 0.157 0.732
2 0.261 0.205 0.205 0.205 0.215 0.574 0.185 0.200 0.207 0.265 0.309 0.590
3 0.727 0.773 0.435 0.687 0.354 0.788 0.636 0.803 0.469 0.612 0.297 0.818
4 1.000 0.997 0.116 1.000 0.305 1.000 0.360 0.945 0.135 1.000 0.379 1.000
5 0.827 1.000 1.000 0.827 0.835 0.976 0.770 1.000 1.000 0.879 0.921 1.000
6 0.526 0.617 0.658 0.296 0.133 0.704 0.643 0.658 0.631 0.350 0.154 0.663
7 0.945 0.500 0.939 0.506 0.494 0.967 0.990 0.525 0.954 0.537 0.513 0.994
8 0.374 0.186 0.014 0.060 0.110 0.900 0.207 0.019 0.125 0.217 0.097 0.705
9 0.362 0.991 0.216 0.310 0.647 0.707 0.094 0.991 0.267 0.423 0.687 0.664
10 0.712 1.000 1.000 0.781 1.000 0.928 0.329 1.000 1.000 0.964 1.000 1.000
11 0.766 0.846 0.940 0.169 0.453 0.960 0.861 0.896 0.867 0.158 0.516 0.886
12 0.699 0.456 0.641 0.544 0.485 0.505 0.553 0.476 0.657 0.578 0.579 0.646
13 0.617 0.877 0.773 0.565 0.857 0.571 0.643 0.935 0.795 0.421 0.864 0.805
14 0.930 0.698 0.532 0.804 0.544 0.893 0.791 0.443 0.601 0.503 0.531 0.821
15 0.981 1.000 0.474 0.805 1.000 1.000 1.000 1.000 0.506 0.937 0.989 1.000
16 0.993 1.000 0.437 0.927 0.530 0.995 0.903 0.967 0.439 0.907 0.536 1.000
17 0.325 0.282 0.479 0.620 0.081 0.641 0.338 0.282 0.493 0.505 0.154 0.526
18 0.314 0.771 0.610 0.559 0.678 0.797 0.119 0.975 0.567 0.607 0.796 0.847
19 0.055 0.894 0.070 0.191 0.166 0.754 0.0603 0.879 0.094 0.179 0.264 0.950
20 0.977 0.953 0.957 0.875 0.785 0.989 1.000 1.000 0.964 0.896 0.851 1.000

Average 0.638 0.696 0.537 0.562 0.471 0.846 0.543 0.677 0.560 0.580 0.510 0.843

FPS 140.811 12.159 8.610 6.150 28.700 14.600

Higher value indicates better performance. Red fonts indicate the best performances. Blue fonts indicate the second best ones.
FPS: number of frames per second. References to color refer to the online version of this table

(a) (b) 

(c) (d) 

(e) (f) 
Our method STC Struck
TLD DSST KCF

Fig. 6 Screenshots of tracking results: (a) Bas-
ketball1; (b) Face_occ5; (c) Tracking7.1; (d)
Library2.2_occ; (e) Cup_move_1; (f) Walk-
ing_occ_long. References to color refer to the online
version of this figure

Occlusion: The correlation filter-based track-
ers are not able to tackle the occlusion problem,
which probably results in misleading of model learn-
ing. The proposed approach detects occlusion by the

depth map and adjusts the learning rate correspond-
ingly. In the experiments of image sequences with
occlusion, the target can be relocated when it reap-
pears as long as it is still within the context region.
As shown in Table 3, our approach achieves the best
results with an average SR of 82.3% and an average
DP of 79.8%. The tracking results on some image
sequences with occlusion are shown in Fig. 6.

Scale variation: Struck and KCF cannot adapt
to scale variation. STC and TLD provide simple
scale updating schemes which perform poorly in chal-
lenging tests. DSST trains a separate filter for scale
estimation and achieves a reasonable performance
with an average SR of 74.9% and an average DP of
75.3% (Table 4). In our method, we adopt a mod-
ified region growing method which can describe the
contour of the target accurately. The improvements
compared with DSST in terms of SR and DP are
8.3% and 6.1%, respectively.

Longer video sequences: We divide the se-
quences into four groups according to different num-
bers of frames, and evaluate the trackers on these
groups (Table 5). In the first group, the num-
ber of frames in each sequence is smaller than
100. Compared with the second tracker DSST, the
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Table 3 Performances on image sequences with occlusion

Sequence
number

Success rate Distance precision

KCF DSST TLD Struck STC Ours KCF DSST TLD Struck STC Ours

1 0.389 0.493 0.115 0.885 0.089 0.751 0.343 0.441 0.231 0.745 0.157 0.732
6 0.526 0.617 0.658 0.296 0.133 0.704 0.643 0.658 0.631 0.350 0.154 0.663
7 0.945 0.500 0.939 0.506 0.494 0.967 0.990 0.525 0.954 0.537 0.513 0.994
8 0.374 0.186 0.014 0.060 0.110 0.900 0.207 0.019 0.125 0.217 0.097 0.705
11 0.766 0.846 0.940 0.169 0.453 0.960 0.861 0.896 0.867 0.158 0.516 0.886
13 0.617 0.877 0.773 0.565 0.857 0.571 0.643 0.935 0.795 0.421 0.864 0.805
15 0.981 1.000 0.474 0.805 1.000 1.000 1.000 1.000 0.506 0.937 0.989 1.000
17 0.325 0.282 0.479 0.620 0.081 0.641 0.338 0.282 0.493 0.505 0.154 0.526
19 0.055 0.894 0.070 0.191 0.166 0.754 0.0603 0.879 0.094 0.179 0.264 0.950

Average 0.543 0.557 0.464 0.412 0.325 0.823 0.537 0.534 0.499 0.423 0.357 0.798

Higher value indicates better performance. Red fonts indicate the best performances. Blue fonts indicate the second best ones.
References to color refer to the online version of this table

Table 4 Performances on image sequences with scale variation

Sequence
number

Success rate Distance precision

KCF DSST TLD Struck STC Ours KCF DSST TLD Struck STC Ours

1 0.389 0.493 0.115 0.885 0.089 0.751 0.343 0.441 0.231 0.745 0.157 0.732
4 1.000 0.997 0.116 1.000 0.305 1.000 0.360 0.945 0.135 1.000 0.379 1.000
5 0.827 1.000 1.000 0.827 0.835 0.976 0.770 1.000 1.000 0.879 0.921 1.000
9 0.362 0.991 0.216 0.310 0.647 0.707 0.094 0.991 0.267 0.423 0.687 0.664
17 0.325 0.282 0.479 0.620 0.081 0.641 0.338 0.282 0.493 0.505 0.154 0.526
18 0.314 0.771 0.610 0.559 0.678 0.797 0.119 0.975 0.567 0.607 0.796 0.847

Average 0.582 0.749 0.512 0.745 0.454 0.832 0.428 0.753 0.538 0.729 0.531 0.814

Higher value indicates better performance. Red fonts indicate the best performances. Blue fonts indicate the second best ones.
References to color refer to the online version of this table

Table 5 Performances on image sequences with different lengths

Number of
frames

Success rate Distance precision

KCF DSST TLD Struck STC Ours KCF DSST TLD Struck STC Ours

<100 0.868 0.875 0.730 0.793 0.598 0.902 0.842 0.914 0.749 0.773 0.610 0.921
100–200 0.561 0.741 0.412 0.511 0.467 0.755 0.445 0.735 0.428 0.506 0.518 0.802
200–300 0.554 0.673 0.657 0.634 0.448 0.823 0.448 0.672 0.671 0.628 0.495 0.797
>300 0.756 0.643 0.575 0.547 0.477 0.955 0.683 0.592 0.612 0.610 0.501 0.911

Higher value indicates better performance. Red fonts indicate the best performances. Blue fonts indicate the second best ones.
References to color refer to the online version of this table

performance improvements achieved by our tracker
on SR and DP are 2.7% and 0.7%, respectively. In
the second group, the number of frames is between
100 and 200. The improvements compared with
DSST on SR and DP are 1.4% and 6.7%, respec-
tively. In the third group, the number of frames is
between 200 and 300. The improvements compared
with DSST on SR and DP are 15.0% and 12.5%, re-
spectively. In the last group, the number of frames
is more than 300. The improvements compared with
the second tracker KCF on SR and DP are 19.9% and
22.8%, respectively. The above data demonstrates
that our tracker is better than the others in each

group, especially in longer video sequences. Thus, it
can be concluded that our tracker is more practicable
for tracking of longer sequences.

Sensitivities to parameters: Some original pa-
rameters are nearly the same as those in STC. For
the additional parameters, we investigate the rela-
tionships between the settings and our tracking per-
formance. SRs of using different settings of the re-
gion growing factor p and the occlusion detection
ratio t are shown in Fig. 7. The region growing fac-
tor p, which limits the depth difference between the
two pixels, is the key to the merging rule. SR is rel-
atively high when p is between 0.025 and 0.040. p is
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Fig. 7 Overall success rates of our tracker at different settings of the region growing factor p (a) and the
occlusion detection ratio t (b)

initialized to 0.028 to achieve the best performance.
The occlusion detection ratio t is set for occlusion
judgement. Fig. 7 shows that when t = 0.1, SR
achieves the best performance.

5 Conclusions

Based on the framework of the correlation filter
and Bayesian inference, we propose an effective algo-
rithm by exploiting depth information. Our method
uses a depth context model to estimate the transla-
tion of the target. A modified region growing method
is also adopted for scale estimation. Unlike the orig-
inal updating scheme, we additionally propose an
accurate model updating scheme based on occlusion
detection using a depth map. Extensive experimen-
tal results show that the proposed algorithm outper-
forms the state-of-the-art trackers in terms of effi-
ciency, accuracy, and robustness.
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