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Abstract:    We present a neuro-heuristic computing platform for finding the solution for initial value problems (IVPs) of non-
linear pantograph systems based on functional differential equations (P-FDEs) of different orders. In this scheme, the strengths of 
feed-forward artificial neural networks (ANNs), the evolutionary computing technique mainly based on genetic algorithms (GAs), 
and the interior-point technique (IPT) are exploited. Two types of mathematical models of the systems are constructed with the 
help of ANNs by defining an unsupervised error with and without exactly satisfying the initial conditions. The design parameters 
of ANN models are optimized with a hybrid approach GA–IPT, where GA is used as a tool for effective global search, and IPT is 
incorporated for rapid local convergence. The proposed scheme is tested on three different types of IVPs of P-FDE with orders 1–3. 
The correctness of the scheme is established by comparison with the existing exact solutions. The accuracy and convergence of the 
proposed scheme are further validated through a large number of numerical experiments by taking different numbers of neurons in 
ANN models. 
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Genetic algorithms (GAs); Interior-point technique (IPT)  
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1  Introduction 
 
The strength of the universal function approxi-

mation capability of artificial neural networks 
(ANNs), optimized with local and global search 
techniques, has been exploited immensely to solve 
constrained and unconstrained optimization problems, 
such as model predictive control of a servomotor 
driven based on neuro-dynamic optimization (Peng 

et al., 2014), real-time condition monitoring and fault 
diagnosis in switched reluctance motors (Uysal and 
Raif, 2013), effective prediction of thermo-diffusion 
in arbitrary binary liquid hydrocarbon mixtures 
(Srinivasan and Saghir, 2014), adaptive near-optimal 
control of a class of chaotic systems (Tang et al., 
2014), and viable determination of compressional 
wave velocity (Zoveidavianpoor, 2014). Recently, 
these schemes have been introduced to accurately 
solve a variety of problems arising in computational 
physics and applied mathematics (McFall, 2013; Mall 
and Chakraverty, 2014a; 2014b; 2014c; Chakraverty 
and Mall, 2014). The design and development of 
stochastic numerical solvers for finding the solutions 
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of nonlinear systems based on differential equations 
appear to be a promising area of research. 

Stochastic platforms based on ANNs are sup-
ported by global search methods, such as genetic 
algorithms (GAs), particle swarm optimization (PSO), 
simulated annealing (SA), and pattern search (PS). 
Local search methods including interior-point, se-
quential quadratic programming, Nelder-Mead sim-
plex direct search, and active-set algorithms have 
been incorporated to solve governing nonlinear sys-
tems associated with initial value problems (IVPs) 
and boundary value problems (BVPs) of ordinary/ 
partial/fractional/functional differential equations. A 
few renewed applications solved by these models can 
be seen in the literature, such as the nonlinear Toresch 
problem (Raja, 2014a; 2014c), singular nonlinear 
transformed two-dimensional Bratu problems (Raja et 
al., 2013; 2014a; 2014b), nonlinear first Painlevé 
initial value problem (Raja et al., 2012; 2015a; 
2015d), nonlinear van der Pol oscillatory problems 
(Khan et al., 2011; 2015), nonlinear BVPs for fuel 
ignition model in combustion theory (Raja, 2014b; 
Raja and Ahmad, 2014), nonlinear algebraic and 
transcendental equations (Raja et al., 2015b), non-
linear magnetohydrodynamic (MHD) Jeffery–Hamel 
flow problems (Raja and Samar, 2014a; 2014b), 
nonlinear BVPs of pantograph functional differential 
equations (P-FDEs) (Raja, 2014a), linear and non-
linear FDEs (Raja et al., 2010a; 2010b), IVPs of 
nonlinear Riccati FDEs (Zahoor et al., 2009; Raja 
et al., 2010c; 2015c), Bagley–Torvik FDEs (Raja 
et al., 2011a; 2011b), and thin film flow (Raja et al., 
2015e). Other techniques such as the exponential 
functions method, collocation method, and Adomian 
decomposition method (Evans and Raslan, 2005; 
Barro et al., 2008; Shakourifar and Dehghan, 2008; 
Dehghan and Salehi, 2010a; Shakeri and Dehghan, 
2010; Yusufoğlu, 2010; Yüzbaşı et al., 2011; Tohidi  
et al., 2013; Yüzbaşı and Mehmet, 2013; Pandit and 
Kumar, 2014) have been efficiently used in the liter-
ature. All these contributions are our motivation to 
explore in this domain and try to design a meta- 
heuristic computing procedure for solving IVPs of 
P-FDEs. 

In this paper, we develop a novel computational 
intelligence algorithm for approximating the solution 
of IVP for P-FDEs using feed-forward ANNs, evolu-
tionary computing technique synchronized on GAs, 

IPT, and their hybrid combinations. Silent features of 
the proposed method are as follows: 

1. The scheme comprises ANN mathematical 
models in an unsupervised manner. 

2. Optimal design parameters of the models are 
trained using heuristic computational intelligence 
methods based on effective and efficient global and 
local search techniques. 

3. Strengths and weaknesses of the proposed 
methods are analyzed on six different linear and 
nonlinear IVPs of the first, second, and third orders. 

4. The validity of the results obtained is proven 
with available standard solutions, i.e., the exact, nu-
merical, and analytical solutions.  

The accuracy and convergence of the proposed 
scheme are also investigated based on a large number 
of numerical experiments by changing the number of 
neurons in neural networks modeling. 

 
 

2  System models: initial value problems of 
pantograph functional differential equations 

 
P-FDEs are a specific type of functional differ-

ential equations that possess proportional delays. 
These equations are of fundamental importance due 
to their functional arguments characteristics. More-
over, they play a significant role in the description of 
various phenomena, particularly in problems where 
the ordinary differential equation (ODE) models fail. 
The systems based on these equations occur in many 
applications in diverse fields including adaptive con-
trol, number theory, electrodynamics, astrophysics, 
nonlinear dynamical systems, probability theory on 
algebraic structure, quantum mechanics, cell growth, 
engineering, and economics (Ockendon and Tayler, 
1971; Agarwal and Chow, 1986; Iserles, 1993; Derfel 
and Iserles, 1997; Azbelev et al., 2007; Zhang et al., 
2008). The study in this field has been flourishing 
because of the significance of these equations. This 
has encouraged researchers to invest a considerable 
amount of time and effort aiming to make further 
progress in this domain. Many researchers have 
shown great interest in solving P-FDEs. Many algo-
rithms, including analytical and numerical solvers, 
have been developed even recently (Saadatmandi and 
Dehghan, 2009; Sedaghat et al., 2012).  
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In this study, a stochastic numerical treatment is 
presented for solving IVPs of P-FDEs of different 
orders with prescribed conditions. The generic form 
of P-FDEs of the first order is given as 
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For second-order P-FDE, the generic form is given as 
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Accordingly, the generic form of P-FDE of the third 
order is given as 
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where g(t) is a known function, smooth or not, of the 
inputs, and c1, c2, and c3 are the constants representing 
the initial conditions. The system model for the study 
consists of three IVPs of P-FDEs as presented in  
Eqs. (1)–(3). 
 
 
3  Design of unsupervised artificial neural 
network models 
 

A concise description of the design of unsuper-
vised ANN models is presented here for solving IVPs 
of nonlinear P-FDEs. Two types of feed-forward 
ANN models are developed for the solution and de-
rivative terms of the equation. Additionally, the con-
struction of a fitness function using these networks in 
an unsupervised manner is given here. 

3.1  Artificial neural network modeling: type 1 

In this case, the mathematical model of P-FDEs 
is developed by exploiting the strength of feed-  
forward ANNs, in the form of the following contin-

uous mapping for solution f(t), and its first derivative 
df/dt, second derivative d2f/dt2, and the nth order de-
rivative dnf/dtn are written as  
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For networks in Eq. (4), for composite functional 
terms in FDEs, the following neural networks map-
ping is incorporated: 
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The networks shown in the sets of Eqs. (4) and (5) are 
the normally used log-sigmoid y(x)=1/(1+e–x) and its 
respective derivatives as activation functions. There- 
fore, the networks shown in Eq. (4) can be written in 
an updated form for the first few terms: 
 

( )
1

( )

2( )
1

2( ) ( )2
2

3 22 ( ) ( )
1

1ˆ( ) ,
1 e

ˆd e
,

d 1 e

2e eˆd
,

d 1 e 1 e

i i

i i

i i

i i i i

i i i i

k

i w t
i

k w t

i i
w t

i

w t w tk

i i w t w t
i

f t

f
w

t

f
w

t







 

 







 


 

 

   

   







 
    
                 









 

(6) 



Raja et al. / Front Inform Technol Electron Eng   2017 18(4):464-484 
 
 

467

Similarly, the networks given in Eq. (5) can be 
written in an updated form for the first few terms: 
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A suitable combination of the equations given in 

the sets of Eqs. (4) and (5) can be used to model the 
P-FDEs as given in the set of Eqs. (1)–(3). 

Fitness function formulation: An objective or 
fitness function is developed by defining an unsu-
pervised error. It is given by the sum of two mean- 
squared errors as 
 
 e=e1+e2, (8) 
 
where e1 and e2 are error functions associated with 
different orders of P-FDEs and their initial conditions, 
respectively. In case of a first-order P-FDE (Eq. (1)), 
the fitness function e1−FO, the equations constructed 
by e1–FO, and its initial condition e2−FO, are con-
structed as 
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However, for the second-order P-FDW as given in 
Eq. (2), the error functions e1−SO and e2−SO are con-
structed as follows: 

 

(10) 
 

Accordingly, in the case of the third-order P-EDE as 
given in Eq. (3), the unsupervised error functions 
e1−TO and e2−TO are formulated as 
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3.2  Artificial neural network modeling: type 2 

An alternate ANN model is also developed to 
exactly satisfy the initial conditions to solve the IVPs 
of P-FDEs. The governing equations of the updated 
neural networks model for solution y(t), its first de-
rivative df/dt, second derivative d2f/dt2, and the nth 
order derivative dnf/dtn are written as 
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where d/dt, d2/dt2, and dn/dtn are the networks shown 
in the sets of Eqs. (4) and (5). The updated neural 
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network used for solving Eqs. (1)–(3) satisfies the 
initial conditions exactly by taking appropriate 
choices for functions P(t) and Q(t). A suitable com-
bination of the equations given in the set in Eq. (12) 
can be used to model the P-FDEs as given in the sets 
of Eqs. (1)–(3).  

Fitness function formulation: An objective 
function or fitness function εFO is developed in an 
unsupervised manner for Eq. (1) in the mean-squared 
sense as follows: 
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where f  and its derivative are given by the set in 

Eq. (12). In case of the second-order P-FDE as given 
in Eq. (2), the fitness function εSO is constructed as 
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Consequently, in case of a third-order P-EDE as given 
in Eq. (3), the fitness function εTO is written as 
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The weights of neural networks are available 
such that the objective functions given in Eqs. (8)–(15) 
approach zeroes, and the proposed solution will ap-
proximate the exact solution of Eqs. (1)–(3). 
 
 

4  Learning process 

4.1  Genetic algorithm 

GAs, presented by Holland (1975), were in-
spired by the natural evolution of genes. GAs nor-
mally use natural evolution as an optimization mecha- 
nism to deal with problems in diverse areas of com-
putational mathematics, engineering, and science. 
The performance of GA depends on factors including 

multiplicity of preliminary population, appropriate 
selection of the fittest chromosomes to the next gen-
eration, survival of high-quality genes in recombina-
tion operation, and seeding of new genetic material in 
mutation and the number of generations. GA is an 
efficient and effective global search technique which 
is less probable to get stuck in local minima, and more 
divergence-avoidable, stable, and robust compared to 
other mathematical solvers. The fundamental opera-
tions of GA involve crossover of the type single point, 
multiple points, heuristic, etc. Mutations via various 
functions like linear, logarithmic, adaptive feasible, 
and selection functions are based on the uniform 
method, tournament method, etc. Potential applica-
tions recently addressed with GAs can be seen in Xu 
et al. (2013), Arqub and Zaer (2014), Troiano and 
Cosimo (2014), and Zhang et al. (2014). 

There are two types of parameter settings in-
volved in GA: specific and general. The general set-
tings involve the population size, number of genera-
tions, chromosome size, and lower and upper bounds 
of the adaptive parameters, whereas the specific set-
tings involve the scaling function, selection function, 
crossover function, mutation function, elite count, 
migration direction, etc. The parameter settings in this 
work is provided in Table 1, achieved by performing a 
number of runs depending on the complexity and 
accuracy of the problems. 

4.2  Interior-point technique 

IPT is an efficient local search method used to 
tune the weights or unknowns of a problem. This is a 
derivative-based technique based on Langrage mul-
tipliers and Karush–Kuhn–Tucker (KKT) equations 
(Wright, 1997; Potra and Wright, 2000). There are 
some general and specific parameter settings involved 
with IPT: the specific parameters involve the type of 
the derivative, scaling function, number of maximum 
perturbations, and types of finite difference; the gen-
eral setting involves the Hessian function, minimum 
perturbation, nonlinear constraint tolerance, fitness 
limit, and upper and lower bounds. The parameter 
settings in this work are shown in Table 2. 

4.3  Hybrid approach: GA–IPT 

It is well known that the global search techniques 
are enough to obtain the approximate solution, but  
at a lower level of accuracy. In contrast, local search 
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techniques have invariably excellent approximation 
time complexities, but can get stuck in local minima 
or cause premature convergence. However, the hybrid 
approach exploits the capabilities of both the global 
and local optimizers to obtain an accurate result. As 
the number of generations of GA gradually increases 
and the ability to bring the optimal solution decreases 
significantly, optimal and reliable results can hardly 
be obtained with very large iteration numbers. 
Therefore, it is required to merge efficient local 
search techniques to obtain better results. Hence, IPT 
is employed in this study to provide rapid conver-
gence, by selecting the best global individuals of GAs 
as a start point in the training of neural network 
models of IVPs of P-FDEs. The generic workflow of 
the proposed methodology is given in Fig. 1. Neces-
sary details for the procedural steps are provided in 
Algorithm 1. 
 
 
5  Results and discussions 
 

In this section, the results of the design meth-
odology are presented for linear and nonlinear IVPs 
of P-FDEs. Three types of problems are taken for 
numerical experimentation based on different orders. 
Proposed solutions of the equations are determined 
for both types of ANN models. The effect of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Algorithm 1  Genetic algorithms – interior-point 
technique 

1. Initialization: The initial population is randomly gen-
erated with real values represented. Chromosomes or indi-
viduals have the same number of elements as the number of 
unknown weights in the models. Initialize GAs’ parameters as 
given in Table 1. 

2. Calculate fitness: The fitness value for each individual 
of the population is evaluated first, by using Eq. (3) for the first 
ANN model and Eq. (8) for the second. 

3. Ranking: Each individual of the population is ranked 
based on the minimum value of the respective fitness functions 
of the models. 

4. Termination criteria: The algorithm is terminated when 
any of the following criteria is met: 

(1) The predefined fitness value is achieved; 
(2) The number of generations is completed; 
(3) The stop criterion given in Table 1 is fulfilled. 
5. Reproduction: Create the next generation at each cycle 

by using 
(1) Crossover: call for the heuristic function;  
(2) Mutation: call for the Gaussian function;  
(3) Selection: call for the stochastic uniform function, 

elitism count 5, etc. 
6. Hybridization: IPT is used for the refinement of results 

by using the best individual of GAs as the initial weights. The 
parameter settings used for IPT are given in Table 2.  

7. Store: The final weight vector and the fitness values 
achieved for this run of the algorithm are stored. 

Table 1  Parameter setting for genetic algorithms 

Parameter Setting Parameter Setting 
Population creation Constraint-dependant Population size 300 
Scaling function Rank Chromosome size 30/45/60 
Selection function Uniform Number of generations 700 
Crossover fraction 1.25 Function tolerance  10−20 
Crossover function Heuristic StallGenLimit 100 
Mutation function Adaptive feasible Bounds (lower, upper) (–20, 20)130 
Elite count  4 Migration direction Forward 
Initial penalty 10 Migration interval 20 
Penalty factor 100 Nonlinear constraint tolerance 10–20 
Migration fraction 0.2 Fitness limit 10–20 
Subpopulation size 10 Others Defaults 

 
Table 2  Parameter setting for the interior-point technique 

Parameter Setting Parameter Setting 
Start point Randomly from (–3.5, 3.5) Hessian  BFGS 
Derivative Solver approximate Minimum perturbation 10–8 
Subproblem algorithm IDI factorization X-tolerance 10–18 
Scaling  Objective and constraints Nonlinear constraint tolerance 10–15 
Maximum perturbation  0.1 Fitness limit 10–15 
Finite difference types Central differences Bounds (lower, upper) (–35, 35) 
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change in the number of neurons on accuracy and 
convergence is also presented by a number of graph-
ical and numerical illustrations, along with compara-
tive studies from exact solutions as the reference. 

5.1  Problem I: IVPs of first-order P-FDEs 

Four different problems of first-order P-FDEs 
are solved by the proposed methodology presented in 
Section 4.3.  
Example 1    In this case, IVP of the first-order 
P-FDE of type 1 is taken as 
 

 /2d 1 1
e ( / 2) ( ), (0) 1,

d 2 2
tf

f t f t f
t
    (16) 

 
which is derived from Eq. (1) by taking z(f, f(g), t)= 
0.5et/2f(g(t))+0.5f(t) and g(t)=t/2. The exact solution 
of Eq. (16) is given by 
 

 ( ) e .tf t   (17) 

 
The proposed design methodology is applied to solve 
IVP based on two types of ANN models to obtain the 
approximate solution. The unsupervised errors in the 
form of fitness functions, which are developed for this 
equation using N=10 and step size h=0.1, are written 
for both models as 
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Now the requirement is searching for trained 

weights for the fitness functions given in Eqs. (18) 
and (19). The proposed methods based on GA, IPT, 
and the hybrid approach GA–IPT are applied to train 
unknown weights using the parameter settings as 
listed in Tables 1 and 2. One set of optimized weights 
trained by GA–IPT for the number of neurons k=10, 
with fitness of around 10–9 for both models, is used to 
derive the approximated solutions as given by Eqs. 
(20) and (21), which are shown on page 472. 

The solutions presented in Eqs. (20) and (21) are 
provided in the extended form in Appendix, Eqs. (A1) 
and (A2), respectively. The proposed solutions are 
obtained with trained weights by GA–IPT for neuron, 
i.e., k=10, 20, and 30, using Eqs. (20) and (21) along 
with the first sets in Eqs. (7) and (12). Results are 

given in Table 3 for input t[0, 1] with step size h=0.1. 
The exact solution determined using Eq. (17) is also 
given in Table 3.  

Fig. 1  Generic flowchart of the hybrid evolutionary algorithm based on the genetic algorithm (GA) and interior-point 
technique (IPT) 

Start
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declarations, and assignments 
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The proposed solutions are obtained with the 

help of the optimized weights of GA, IPT, and 
GA–IPT. The results in terms of the absolute error 
(AE) from the reference exact solution are shown in 
Fig. 2, where in Figs. 2a and 2b, results in terms of  

Fig. 2  Comparison of the proposed solutions with the
reference exact solution for example 1 of problem I: (a)
ANN model of type 1 for GA–IPT; (b) ANN model of type
2 for GA–IPT; (c) ANN models optimized with GA; (d)
ANN models optimized with IPT; (e) ANN models opti-
mized with GA–IPT (References to color refer to the
online version of this figure) 

Table 3  Comparison of the proposed solution of GA–IPT with the exact solution for example 1 of problem I 

t 
f(t) 

exact 
( )f t  ˆ( )f t  

k=10 k=15 k=20 k=10 k=15 k=20 
0 1.000 000 1.000 000 1.000 000 1.000 000 1.000 002 1.000 000 1.000 000 

0.1 1.105 171 1.105 171 1.105 168 1.105 171 1.105 214 1.105 093 1.105 093 
0.2 1.221 403 1.221 403 1.221 399 1.221 403 1.221 440 1.221 327 1.221 327 
0.3 1.349 859 1.349 859 1.349 857 1.349 859 1.349 883 1.349 776 1.349 776 
0.4 1.491 825 1.491 825 1.491 823 1.491 825 1.491 858 1.491 723 1.491 723 
0.5 1.648 721 1.648 721 1.648 717 1.648 722 1.648 782 1.648 609 1.648 609 
0.6 1.822 119 1.822 118 1.822 114 1.822 119 1.822 196 1.822 005 1.822 005 
0.7 2.013 753 2.013 752 2.013 748 2.013 753 2.013 816 2.013 629 2.013 629 
0.8 2.225 541 2.225 541 2.225 538 2.225 541 2.225 582 2.225 395 2.225 395 
0.9 2.459 603 2.459 603 2.459 599 2.459 604 2.459 665 2.459 439 2.459 439 
1.0 2.718 282 2.718 281 2.718 275 2.718 282 2.718 391 2.718 114 2.718 114 
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solution versus inputs are plotted, while in Figs. 2c, 
2d, and 2e, the values of the corresponding AEs are 
shown by solid lines for the ANN models of type 1 
and dashed lines for the ANN models of type 2 for all 
three algorithms. It can be inferred from Fig. 2c that 
for k=10, 15, and 20, the values of AE for GA lie 
around 10–6, 10–6–10–7, and 10–6, respectively, for the 
mathematical model based on Eq. (18), while for 
Eq. (19) they are around 10–3–10–4, 10–3–10–4, and 
10–3–10–4 for k=10, 15, and 20, respectively. Similarly, 
one can see from Fig. 2d that for k=10, 15, and 20, the 
values of AE for IPT lie around 10–6, 10–6–10–7, and 
10–6, respectively, for the mathematical model based 
on Eq. (18), while for Eq. (19) they are around 
10–3–10–4, 10–3–10–4, and 10–3–10–4 for k=10, 15, and 
20, respectively. On the other hand, the results of 
GA–IPT (Fig. 2e) show that for k=10, 15, and 20 the 
values of AE lie around 10–6, 10–6–10–7, and 10–6, 
respectively, for the mathematical model based on 
Eq. (18), while for Eq. (19) they are around 10–3–10–4, 
10–3–10–4, and 10–3–10–4 for k=10, 15, and 20,  
respectively. 
Example 2    Consider another first-order nonlinear 
IVP of P-FDE: 
 

 2d
1 2 ( ( )), (0) 0,

d

f
f g t f

t
    (22) 

 
which is derived from Eq. (1) by taking z(f, f(g), t)= 
1−2f 

2(g(t)) and g(t)=t/2. The exact solution of Eq. (22) 
is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ( ) sin .f t t  (23) 

 
The proposed design methodology is applied to a 

similar procedure to example 1; however, the fitness 
functions using N=10 and step size h=0.1 in this case 
are written for both types 1 and 2 of ANN models: 
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One set of optimized weights trained by GA–IPT 

for the number of neurons k=10, with fitness of 
around 10–8 for both ANN models, is used to obtain 
the derived solutions as given by Eqs. (26) and (27), 
shown on the next page. 

The solutions presented in Eqs. (26) and (27) are 
provided in extended form in Appendix, Eqs. (A3) 
and (A4), respectively. Solutions are obtained using 
the trained weight of GA–IPT, and results are given in 
Table 4 for input t[0, 1] with step size h=0.1 based 
on different numbers of neurons. The exact solution 
for the problem is also given in Table 4 for the same 
input parameters. The results in terms of AE are 
plotted in Fig. 3. In Figs. 3a and 3b, results in terms of 
solution versus inputs are plotted, while in Figs. 3c, 
3d, and 3e, the values of the corresponding AEs are  
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shown with solid lines for the ANN models of type 1 
and dashed lines for the ANN models of type 2 for all 
three algorithms. It can be seen from the results that 
for k=10, 15, and 20, both methodologies give small 
values, while the ANN models with exactly satisfying 
initial conditions provide better accuracies. 
Example 3    Consider another form of first-order IVP 
of P-FDEs with proportional delay in the forcing 
term: 
 

 /2d 1 1
( ) ( ( )) e , (0) 1,

d 4 4
tf

f t f g t f
t

      (28) 

 
which is derived from Eq. (1) by taking z(f, f(t), t)= 
−f(t)+0.24f(g(t))−0.25e−t/2 and g(t)=t/2. The exact 
solution of the problem is given by  
 

f(t)=e−t.                              (29) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this case, the fitness functions based on the unsu-
pervised error are formed using N=10 and step size 
h=0.1, and are given for both types 1 and 2 of ANN 
models: 
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The fitness functions given in Eqs. (30) and (31) are 
optimized with GA, IPT, and the hybrid approach 
GA–IPT. The solutions derived using one set of 

Table 4  Comparison of the proposed solution of GA–IPT with the exact solution for example 2 of problem I

t 
f(t) 

exact 
( )f t  ˆ( )f t  

k=10 k=15 k=20 k=10 k=15 k=20 

0 0 0 0 0 –1.62E–7 –7.20E–9 –1.62E–9 

0.1 0.099 833 0.099 833 0.099 833 0.099 833 0.099 833 0.099 819 0.099 809 

0.2 0.198 669 0.198 669 0.198 669 0.198 669 0.198 670 0.198 659 0.198 650 

0.3 0.295 520 0.295 520 0.295 520 0.295 520 0.295 523 0.295 515 0.295 507 

0.4 0.389 418 0.389 418 0.389 418 0.389 418 0.389 421 0.389 410 0.389 404 

0.5 0.479 426 0.479 425 0.479 426 0.479 425 0.479 424 0.479 412 0.479 406 

0.6 0.564 642 0.564 642 0.564 642 0.564 642 0.564 639 0.564 630 0.564 623 

0.7 0.644 218 0.644 218 0.644 218 0.644 218 0.644 217 0.644 213 0.644 206 

0.8 0.717 356 0.717 356 0.717 356 0.717 356 0.717 360 0.717 358 0.717 352 

0.9 0.783 327 0.783 327 0.783 327 0.783 326 0.783 327 0.783 323 0.783 320 

1.0 0.841 471 0.841 471 0.841 471 0.841 471 0.841 464 0.841 461 0.841 461 

 

 

2
(0.3659 0.9103) (1.0241 0.7515) (0.7085 1.6240) (1.3745 0.1847)

( 1.0889 0.2060) ( 0.3844 0.6442) ( 1.

0.9496 1.3470 1.5037 0.0355
( ) sin

1 e 1 e 1 e 1 e
0.4700 0.2330 0.0952

1 e 1 e 1 e

t t t t

t t

f t t t        

       

          
  

  
  



4891 0.5765) ( 1.7607 0.9299)

(0.6036 0.2050) (0.3910 0.8486)

0.1510

1 e
1.0914 2.0344

.
1 e 1 e

t t

t t

   

   





     

 (26)

 

(1.1141 2.2556) (1.4621 2.0752) (1.6263 0.3115) ( 1.0389 1.2599)

(1.9668 1.9453) (0.8882 3.2592) (0.7765 0.9891)

0.3888 1.3191 1.2244 0.9506ˆ( )
1 e 1 e 1 e 1 e

1.2310 1.1211 0.9784

1 e 1 e 1 e

t t t t

t t t

f t         

     

 
   

   
 

   
   (1.9169 0.4591)

(2.5442 0.8153) (1.6713 0.0094)

0.0031

1 e
0.1830 1.2423

.
1 e 1 e

t

t t

 

   





 

 

 (27)



Raja et al. / Front Inform Technol Electron Eng   2017 18(4):464-484 
 

474

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

weights by GA–IPT for the number of neurons k=10 
with fitness values of orders 10–11 and 10–8 for ANN 
model types 1 and 2 are given by Eqs. (32) and (33), 
respectively. 
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Fig. 3  Comparison of the proposed solutions with the
reference exact solution for example 2 of problem I: (a)
ANN model of type 1 for GA–IPT; (b) ANN model of type
2 for GA–IPT; (c) ANN models optimized with GA; (d)
ANN models optimized with IPT; (e) ANN models opti-
mized with GA-IPT (References to color refer to the online
version of this figure) 
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The solutions presented in Eqs. (26) and (27) are 
provided in extended form in Appendix, Eqs. (A5) 
and (A6), respectively. The approximate solutions are 
also calculated with the weights of the GA–IPT algo-
rithm for different neurons, i.e., k=10, 20, and 30. The 
results are listed in Table 5 for t[0, 1] with step size 
h=0.1 in terms of AEs (Fig. 4). In Figs. 4a and 4b, 
results in terms of solution versus inputs are plotted, 
while in Figs. 4c, 4d, and 4e, the values of corre-
sponding AEs are shown with solid lines for the ANN 
models of type 1, and dashed lines for the ANN 
models of type 2 for all three algorithms. The exact 
solution is also given in Table 5 for comparison. It is 
seen that the proposed results overlap with those of 
the standard solution, and small values of AE are 
achieved as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Comparison of the proposed solution of GA–IPT with the exact solution for example 3 of problem I

 
t 

f(t) 
exact 

( )f t  ˆ ( )f t  

k=10 k=15 k=20 k =10 k=15 k=20 
0 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000 1.000 000 

0.1 0.904 837 0.904 837 0.904 839 0.904 836 0.904 863 0.904 863 0.904 907 
0.2 0.818 731 0.818 730 0.818 732 0.818 730 0.818 752 0.818 752 0.818 789 
0.3 0.740 818 0.740 818 0.740 819 0.740 818 0.740 839 0.740 839 0.740 874 
0.4 0.670 320 0.670 320 0.670 321 0.670 32o 0.670 340 0.670 340 0.670 375 
0.5 0.606 531 0.606 530 0.606 532 0.606 530 0.606 548 0.606 549 0.606 579 
0.6 0.548 812 0.548 811 0.548 813 0.548 811 0.548 828 0.548 828 0.548 855 
0.7 0.496 585 0.496 585 0.496 585 0.496 585 0.496 601 0.496 601 0.496 627 
0.8 0.449 329 0.449 329 0.449 329 0.449 329 0.449 345 0.449 345 0.449 370 
0.9 0.406 570 0.406 570 0.406 570 0.406 569 0.406 583 0.406 584 0.406 607 
1.0 0.367 879 0.367 879 0.367 880 0.367 880 0.367 892 0.367 892 0.367 913 

 

Fig. 4  Comparison of the proposed solutions with the
reference exact solution for example 3 of problem I: (a)
ANN model of type 1 for GA–IPT; (b) ANN model of type
2 for GA–IPT; (c) ANN models optimized with GA; (d)
ANN models optimized with IPT; (e) ANN models opti-
mized with GA–IPT (References to color refer to the
online version of this figure) 
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5.2  Problem II: second-order P-FDE 

In this case, we evaluate the performance of the 
proposed scheme on the second-order IVP of P-FDE 
as 
 

 

2
2

2

d 3
( ) ( ( )) 2,

4d
d

(0) 0, (0) 0, ( ) / 2,
d

f
f t f g t t

t

f f g t t
t

   

  
 (34) 

 
which is derived from Eq. (2) by taking function z as 

 

 23
( , ( ) , ) ( ) ( ( )) 2.

4
z f f g t f t f g t t     (35) 

 
The exact solution of Eq. (34) is given by 
 

 f(t)=t2. (36) 
 
To solve this problem, two fitness functions are 

formulated by taking N=10 and step size h=0.1, as 
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To obtain the unknown parameters for fitness 

functions in Eqs. (37) and (38), GA, IPT, and the  
 

 
 
 
 
 
 
 
 
 
 
 
 

hybrid approach GA–IPT are applied, and the ap-
proximate solutions are expressed mathematically 
with one set of weights by GA–IPT for k=10 with 
fitness values of orders 10–7 and 10–6 as Eqs. (39) and 
(40), respectively, shown on the next page. 

The solutions presented in Eqs. (39) and (40) are 
provided in extended form in Appendix, Eqs. (A7) 
and (A8), respectively. The proposed solutions are 
determined by weights trained by GA–IPT for k=10, 
20, and 30, and the results with exact solutions are 
given in Table 6 for input t[0, 1] with step size h=0.1. 
The results of AEs for both ANN models are shown in 
Fig. 5. In case of Figs. 5a and 5b, results in terms of 
solution versus inputs are plotted, while in Figs. 5c, 
5d, and 5e, the values of corresponding AEs are 
shown with solid lines for the ANN models of type 1 
and dashed lines for the ANN models of type 2 for all 
three algorithms. It can be seen that the given solu-
tions overlap with the exact solutions. It is seen from 
Fig. 5c that for k=10, 15, and 20, the values of AE for 
GA are around 10–4, 10–5–10–6, and 10–6–10–7, re-
spectively, by optimizing Eq. (37), while optimizing 
Eq. (38) gives the values of AE as 10–3–10–4, 10–3, and 
10–3 for k=10, 15, and 20, respectively. Further, one 
can deduce from Fig. 5d that for k=10, 15, and 20, the 
values of AE for IPT are between 10–6 and 10–7 for 
type 1 model in Eq. (37), while for another model 
(Eq. (38)), the values of AE are also within 10–6–10–7 
for k=10, 15, and 20. Accordingly, the results of 
GA–IPT in Fig. 5e show that for k=10, 15, and 20, the 
values of AE lie in ranges 10–4–10–5, 10–5–10–6, and 
around 10–7–10–8, respectively, for the type 1 ANN 
model (Eq. (37)), while for the type 2 ANN model 
(Eq. (38)) the values of AE are 10–4–10–8, 10–4–10–9, 
and 10–4–10–9 for k=10, 15, and 20, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6  Comparison of the proposed solution of GA–IPT with the exact solution for problem II 

t 
f(t) 

exact 
( )f t  ˆ ( )f t  

k=10 k=15 k=20 k=10 k=15 k=20 
0 0 0 0 0 –3.46E–8 –7.55E–10 –1.56E–9 

0.1 0.010 000 0.010 000 0.010 000 0.010 000 0.009 995 0.009 996 0.010 005 
0.2 0.040 000 0.040 001 0.039 999 0.039 999 0.039 989 0.039 990 0.040 012 
0.3 0.090 000 0.090 001 0.089 999 0.089 999 0.089 984 0.089 984 0.090 019 
0.4 0.160 000 0.160 001 0.159 998 0.159 999 0.159 977 0.159 978 0.160 027 
0.5 0.250 000 0.250 002 0.249 998 0.249 998 0.249 970 0.249 971 0.250 034 
0.6 0.360 000 0.360 002 0.359 997 0.359 998 0.359 963 0.359 965 0.360 042 
0.7 0.490 000 0.490 002 0.489 997 0.489 998 0.489 957 0.489 958 0.490 051 
0.8 0.640 000 0.640 003 0.639 996 0.639 997 0.639 949 0.639 950 0.640 060 
0.9 0.810 000 0.810 003 0.809 996 0.809 997 0.809 940 0.809 942 0.810 069 
1.0 1.000 000 1.000 004 0.999 995 0.999 996 0.999 931 0.999 933 1.000 080 
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5.3  Problem III: third-order P-FDE 

In this case, we consider a relatively difficult 
IVP of P-FDE, which is based on the third-order ODE, 
given as  
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Fig. 5  Comparison of the proposed solutions with the 
reference exact solution for problem II: (a) ANN model of 
type 1 for GA–IPT; (b) ANN model of type 2 for GA–IPT; 
(c) ANN models optimized with GA; (d) ANN models 
optimized with IPT; (e) ANNs models optimized with 
GA–IPT (References to color refer to the online version of 
this figure) 
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which is derived from Eq. (3), and function z is given 
as 
 

 2( , ( ), ) 1 2( ( ( ))) .z f f g t f g t    (42) 
 

The exact solution of Eq. (41) is given by 
 

 f(t)=sin t. (43) 
 

The proposed design methodology is applied to 
find the approximate solution of this IVP as well; 
however, the merit or fitness functions using N=10 
and step size h=0.1 are constructed for this equation 
as 
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To obtain the weights for optimizing the fitness 
functions given in Eqs. (44) and (45), the strength of 
GA, IPT, and the hybrid approach GA–IPT is ex-
ploited. One set of learned weights by GA–IPT for 
k=10 for the two ANN models are written as Eqs. (46) 
and (47). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The solutions presented in Eqs. (46) and (47) are 
provided in extended form in Appendix, Eqs. (A9) 
and (A10), respectively. The approximate solutions 
are found with the adapted weights of GA–IPT for 
different neuron numbers, i.e., k=10, 20, and 30. The 
results are given in Table 7 for input t[0, 1] with step 
size h=0.1. The exact solutions are shown in Table 7. 
The estimated solutions are calculated with the 
weights given by GA, IPT, and GA–IPT. The results 
based on AEs are shown in Fig. 6. In Figs. 6a and 6b, 
results in terms of the solution versus inputs are 
plotted, while in Figs. 6c, 6d, and 6e, the values of the 
corresponding AEs are shown with solid lines for the 
ANN models of type 1 and dashed lines for the ANN 
models of type 2 for all three algorithms. It is seen 
from the results that there is a close match between 
the given and the exact solutions. From the results of 
GA–IPT (Fig. 6e), one can infer that for k=10, 15, and 
20, the values of AE lie in ranges 10–5–10–6, 10–5–10–6, 
and 10–5–10–7, respectively, for the type 1 ANN 
model (Eq. (44)), while for the type 2 ANN model  
(Eq. (45)), they are around 10–4–10–6, 10–4–10–5, and 
10–4–10–6 for k=10, 15, and 20, respectively.  

 
 

6  Conclusions 
 

The following conclusions are drawn on the ba-
sis of numerical experiments performed in this study: 

1. A new heuristic computational intelligence 
technique is developed to solve IVPs of P-FDEs ef-
fectively by exploiting the strength of ANN models, 
GA, IPT, and their hybrid approach GA–IPT. 

2. A comparison of the proposed approximate 
solutions with existing exact solutions shows that, 
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in each case of all the three problems, the results of 
the hybrid GA–IPT approach are far more accurate 
than those obtained through the GA or IPT model. 
The values of AE for problem I by GA–IPT lie in 

Table 7  Comparison of the proposed solution of GA–IPT with the exact solution for problem III

 
t 

f(t) 
exact 

( )f t  ˆ ( )f t  

k=10 k=15 k=20 k=10 k=15 k=20 
0 0 0 0 0 4.88E–9 1.89E–8 1.38E–7 

0.1 0.099 833 0.099 833 0.099 833 0.099 833 0.099 833 0.099 834 0.099 833 
0.2 0.198 669 0.198 669 0.198 670 0.198 669 0.198 669 0.198 670 0.198 666 
0.3 0.295 520 0.295 520 0.295 521 0.295 519 0.295 520 0.295 521 0.295 511 
0.4 0.389 418 0.389 418 0.389 420 0.389 417 0.389 418 0.389 420 0.389 401 
0.5 0.479 426 0.479 425 0.479 429 0.479 423 0.479 425 0.479 428 0.479 397 
0.6 0.564 642 0.564 642 0.564 647 0.564 639 0.564 642 0.564 646 0.564 601 
0.7 0.644 218 0.644 218 0.644 224 0.644 212 0.644 218 0.644 223 0.644 161 
0.8 0.717 356 0.717 356 0.717 364 0.717 349 0.717 356 0.717 363 0.717 281 
0.9 0.783 327 0.783 327 0.783 337 0.783 318 0.783 327 0.783 336 0.783 231 
1.0 0.841 471 0.841 471 0.841 483 0.841 460 0.841 471 0.841 482 0.841 352 

 

Fig. 6  Comparison of the proposed solutions with the 
reference exact solution for problem III: (a) ANN model of 
type 1 for GA–IPT; (b) ANN model of type 2 for GA–IPT; 
(c) ANN models optimized with GA; (d) ANN models 
optimized with IPT; (e) ANN models optimized with 
GA–IPT (References to color refer to the online version of 
this figure) 
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ranges 10–3–10–7, 10–5–10–7, and 10–4–10–10 for ex-
amples 1, 2, and 3, respectively, while for problems II 
and III the values of AE lie in ranges 10–4–10–8 and 
10–4–10–6, respectively. 

3. The behavior of the proposed scheme, based 
on the ANN model with different numbers of neurons, 
shows a slight gain in terms of the precision of the 
results with an increasing number of neurons in the 
modeling; however, no drastic change in terms of 
accuracy has been observed. On the other hand, the 
time of the computations has increased exponentially 
by increasing the number of neurons in the modeling. 

4. Besides the consistent accuracy and conver-
gence of the proposed scheme, other advantages are 
the simplicity of the concept, ease in implementations, 
provision of results on the entire continuous grid of 
inputs, and easily extendable methodology for dif-
ferent applications. All the features establish the in-
trinsic worth of the scheme as a good alternative, 
accurate, reliable, and robust computing platform for 
stiff nonlinear systems such as the pantograph. 

Based on the presented study, the following re-
search directions are suggested for those interested in 
this domain: 

1. Improvement of results is possible by inves-
tigating ANN modeling either by introducing new 
transfer functions or by changes in the type of neural 
networks. Activation functions such as the radial 
basis function, tag-sigmoid, and modern models 
based on Mexican and wavelet hat neural networks 
should be tried in this regard. 

2. One can incorporate modern optimization 
algorithms and their hybrid combination with the 
efficient local search method to obtain the design 
parameters of neural network models with better 
capabilities to improve the results. In this regard, 
fractional variants of the PSO algorithm, chaos opti-
mization algorithm, evolutionary strategies, genetic 
programming, and differential evolution can be good 
alternatives.  

3. Availability of better hardware platforms and 
modern software packages can also play a role in 
exploring the capability of the algorithm in a much 
wider search space, easily and efficiently. 
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Appendix: Reproduction of the results 
 

The proposed solution determined by GA–IPT 
for examples 1, 2, and 3 of problem I are given in 
Eqs. (A1), (A3), and (A5) for the type 1 ANN model, 
respectively; in case of the type 2 ANN model, these 
solutions are given in Eqs. (A2), (A4), and (A6), 
respectively. In all these solutions, the values of 
weights are given to 15 decimal places to reproduce 
the results without rounding-off errors. Similarly, the 
proposed solution obtained by GA–IPT for types 1 
and 2 of the ANN model are given in Eqs. (A7) and 
(A8), respectively, in case of problem II, while the 
respective solutions derived in case of problem III are 
given in Eqs. (A9) and (A10). 
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