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Abstract: The security of cryptographic systems is a major concern for cryptosystem designers, even though
cryptography algorithms have been improved. Side-channel attacks, by taking advantage of physical vulnerabilities
of cryptosystems, aim to gain secret information. Several approaches have been proposed to analyze side-channel
information, among which machine learning is known as a promising method. Machine learning in terms of
neural networks learns the signature (power consumption and electromagnetic emission) of an instruction, and then
recognizes it automatically. In this paper, a novel experimental investigation was conducted on field-programmable
gate array (FPGA) implementation of elliptic curve cryptography (ECC), to explore the efficiency of side-channel
information characterization based on a learning vector quantization (LVQ) neural network. The main characteristics
of LVQ as a multi-class classifier are that it has the ability to learn complex non-linear input-output relationships,
use sequential training procedures, and adapt to the data. Experimental results show the performance of multi-class
classification based on LVQ as a powerful and promising approach of side-channel data characterization.
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1 Introduction

Over the past decade, there has been a dramatic
increase in various applications and implementations
of side-channel attacks (SCAs). Because SCAs can
generally be performed using relatively cheap equip-
ment, they pose a serious threat to the security of
most cryptographic hardware devices. Such devices
range from personal computers to small embedded
devices, such as smart cards and radio frequency
identification devices (RFIDs). However, different
from the protocols that have been used as secure
methods of data communication, SCAs try to high-
light their vulnerabilities. For instance, two-factor
authentication is proposed as a simple, portable, and
robust protocol; however, a few studies (Wang and
Wang, 2015; Wang et al., 2015a; 2015b) have high-
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lighted its vulnerabilities and enhanced its security
at nearly no additional communication or computa-
tion cost.

Yeh (2015) introduced a novel authentication
protocol for security enhancement and for eliminat-
ing the weaknesses of previous works. Li and Lee
(2011) developed a secure scheme and claimed that
it is secure against the smart-card-loss attack. Wang
et al. (2013) presented a robust scheme to cope with
the defects of Li and Lee (2011)’s scheme, while re-
taining the merits of different password authentica-
tion schemes using smart cards. Furthermore, an
improved dynamic ID-based authentication scheme
was proposed to remedy previous security flaws. Ma
et al. (2012; 2014) presented three principles that
are helpful in explaining many of the security fail-
ures repeated in the past and important for design-
ing more robust schemes in the future. Recently, a
considerable body of literature has grown up around
the theme of side-channel information analysis
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methods. First, it was shown as simple power
analysis (SPA) and simple electromagnetic analy-
sis (SEMA), which rely on pattern recognition in
a power or electromagnetic signal trace. After-
wards, differential power analysis (DPA) and differ-
ential electromagnetic analysis (DEMA) were intro-
duced, and in advanced statistical algorithms they
were used to theoretically analyze the signal traces
(Kocher et al., 1999; de Mulder et al., 2005). In ad-
dition, several attempts have been made to exploit
side-channel information through a profiling-based
attack, in which a training device that is fully con-
trollable and accessible is used in the training phase
to gain additional knowledge for the attack against
an identical target device. Saeedi and Kong (2014)
introduced machine learning as a powerful type of
profiling-based SCA from an information theoretical
point of view. A number of studies (Heuser and
Zohner, 2012; Bartkewitz and Lemke-Rust, 2013;
Saeedi and Kong, 2014; Saeedi et al., 2015) have used
support vector machines (SVMs) as powerful classi-
fiers to classify different patterns of side-channel in-
formation. More recent studies have confirmed that
neural networks have led to the emergence of power-
ful tools in solving classification and pattern recog-
nition problems, and they can be considered promis-
ing alternatives to various conventional classification
methods (Cybenko, 1989; Haykin, 2009).

Numerous studies have attempted to address
this issue of countermeasures against conventional
SCAs. Most of the approaches are based on imple-
mentations of a cryptography algorithm with con-
stant or randomized execution time or execution or-
der (also known as ‘shuffling’) to render the occur-
rence of unpredictable leakage (Mangard et al., 2007;
Tillich and Herbst, 2008).

While several countermeasures against conven-
tional attacks have been proposed, cryptosystems are
still vulnerable to SCAs because some inherent leak-
ages during single executions in a cryptography al-
gorithm cannot be prevented in many cases, e.g.,
location-based leakage (Heyszl et al., 2012a), ad-
dress bit leakage (Itoh et al., 2002), or operation-
dependent leakage (Prouff, 2014). Furthermore,
most of the countermeasures have a negative effect,
sometimes significant, on the performance of cryp-
tosystems (Kopf and Durmuth, 2009) or cost of im-
plementation (Tillich and Herbst, 2008).

To the best of our knowledge, there are only a

few studies that address SCAs based on a neural net-
work, and no attempt has been made to explore the
performance of a learning vector quantization (LVQ)
neural network in analyzing side-channel informa-
tion. In addition, both attacks and countermeasures
interact strongly and, while the adversary needs only
to succeed with one out of many attack methods,
the designers have to consider all the known attacks,
whenever applicable to their system, simultaneously.
Thus, the verification of the new techniques of SCAs
plays a crucial role for cryptosystem designers. In
this paper, neural networks are applied as a powerful
and efficient method for the characterization of side-
channel information. To classify side-channel infor-
mation, a multi-class classifier based on LVQ neural
networks is used. Our experimental investigation is
aimed to verify the performance of classification for
the different training algorithms and different num-
bers of hidden layers. The experiment is performed
with a filed-programmable gate array (FPGA) im-
plementation of elliptic-curve cryptography (ECC).
ECC is one of the most common public-key cryp-
tography methods because of its major benefits rel-
ative to other algorithms; namely, it has more se-
curity per bit and a suitable key size for hardware.
In this work, we implement all elliptic-curve oper-
ations in an affine coordinate system. We present
the EC scalar multiplication left-to-right algorithm
using the binary method, which is implemented by
the double-and-add algorithm. For details on ECC
implementation and considerations, the reader is re-
ferred to other studies (Miller, 1986; Koblitz, 1987;
Blake et al., 1999).

2 Neural networks as multi-class classi-
fiers

Neural networks are powerful tools for classifica-
tion and pattern recognition tasks and are typically
organized in layers. Layers are made up of a number
of interconnected ‘nodes’ that contain an ‘activation
function’. Patterns are presented to the network via
the ‘input layer’, which communicates to one or more
‘hidden layers’ where the actual processing is done
via a system of weighted ‘connections’. The hidden
layers then link to an ‘output layer’ where the answer
is output. Most neural networks contain some form
of ‘learning rule’, which modifies the weights of the
connections according to the input patterns that it
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is presented with. The learning process involves up-
dating network architecture and connection weights
so that a network can efficiently perform a specific
classification/clustering task.

2.1 Side-channel attacks based on neural net-
works

A neural network learns the signature (power
consumption and electromagnetic emission) of an
instruction, and then recognizes it automatically.
For each instruction, hundreds of structures need
to be stored for a cryptosystem processor. Mod-
eling the power leakage is considered as the basis
for launching SCAs, and the effectiveness of these
attacks strongly depends on the accuracy of the un-
derlying side-channel leakage characterization. The
general goal of an attack is to obtain the secret key
value, stored in the cryptographic module, from the
measured power trace. Considering the value Ksec

as a secret key stored in the attacked cryptographic
module and Kest as the estimate value of the secret
key, determined with a neural network, if the method
works correctly, the values of Kest and Ksec will be
equal at the end of the classification process.

3 Multi-class classification based on
learning vector quantization

LVQ is a popular classifier for multi-class clas-
sification. Considering simplicity, classification ac-
curacy, and training speed, the LVQ classifier com-
pares favorably to other classification methods and
has successfully been applied in many pattern recog-
nition domains, e.g., speech recognition (Mäntysalo
et al., 1992) and radar classification (Orlando et al.,
1990). Flotzinger et al. (1992) applied LVQ to the
classification of electroencephalogram patterns.

Vector quantization (VQ) has been extensively
explored from theoretical and empirical points of
view. There are a couple of classical reviews on
this topic (Gersho, 1979; Zador, 1982). A vector
quantizer maps k-dimensional vectors in the vector
space R

k into a finite set of vectors Y = {yi : i =

1, 2, · · · , N}. Each vector yi is called a code vector
or a codeword, and the set of all the codewords is
called a codebook. Associated with each codeword
yi is a nearest-neighbour region called the Voronoi

region, defined by

Vi = {x ∈ R
k : ||x− yi|| ≤ ||x− yj ||, ∀ j �= i}. (1)

The set of Voronoi regions partitions the entire space
R

k such that
N⋃

i=1

Vi = R
k,

N⋂

i=1

Vi = ∅.

The main idea is to cover the input space of samples
with code-book vectors (CVs), each representing a
region labeled with a class. A CV can be seen as a
prototype of a class member, localized in the center
of a class region in the input space. A class can be
represented by an arbitrary number of CVs, but one
CV represents one class only (Fig. 1).

Codebook vector class 1

Codebook vector class 2

Class boundary

Voronoi net

Fig. 1 Classification of the input space into class re-
gions by codebook vectors in a two-dimensional fea-
ture space

Moving into a supervised context, LVQ (Koho-
nen, 1988) has a very important role in statistical
pattern classification (Pregenzer et al., 1996; Duda
et al., 2011). LVQ is a learning algorithm that com-
bines competitive learning with supervision.

In terms of neural networks, an LVQ is a feed-
forward net with a two-layer neural network, includ-
ing a competitive layer and a linear layer. The com-
petitive layer is the core layer that performs classifi-
cation through learning. Each neuron in the compet-
itive layer of the LVQ network learns to recognize a
prototype vector, which allows it to classify a region
of the input space. By using LVQ networks, the dis-
tances between the input vectors and the prototype
vectors are directly calculated. If two input vec-
tors are close to each other, they belong to the same
class. LVQ algorithms do not approximate the den-
sity functions of class samples, as VQ or probabilistic
neural networks (PNNs) do, but directly define class
boundaries based on prototypes. Fig. 1 shows the
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classification of the input space into class regions
by CVs represented as neurons positioned in a two-
dimensional feature space. The LVQ architecture in
a neural network is shown in Fig. 2.

The main advantages of LVQs are that they
have the ability to learn complex non-linear input-
output relationships, use sequential training proce-
dures, and adapt themselves to the data. They can
approximate any function with arbitrary accuracy.
However, a major disadvantage of the LVQ classifier
is that the success of a classification scheme may be
directly associated with an appropriate data prepro-
cessing transformation to normalize data and discard
non-relevant input features. In addition, it is known
to be a slow approach, which can affect its efficiency
for real-time attacks.

3.1 Learning vector quantization algorithm

The basic LVQ algorithm, LVQ1, rewards cor-
rect classifications by moving the CV toward a pre-
sented input vector, whereas incorrect classifications
are punished by moving the CV in the opposite direc-
tion. The magnitudes of these weight adjustments
are controlled by a learning rate that can be lowered
over time to obtain finer movements in a later learn-
ing phase. Improved versions of LVQ1 are KOHO-
NEN’s LVQ1 with different learning rates for each
CV to obtain faster convergence, as well as LVQ2,
LVQ2.1, and LVQ3.

A brief description of the most advanced train-
ing algorithm, LVQ3, is given below. Detailed de-
scriptions of the currently available training algo-
rithms can be found in recent studies (Kohonen,
1990a; 1990b; Pregenzer et al., 1996).

Step 1: In an LVQ3 training iteration, mi(t)

and mj(t) are the two codebook vectors closest to
the present training sample x(t).

Step 2: Determine a symmetric ‘window’ of non-
zero width around the mid-plane of mi and mj . The
condition in which a vector x can be defined to lie in
the ‘window’ is

min

(
di
dj

,
dj
di

)
> s,

where di and dj are the distances of x to mi and
mj , respectively, and s represents a constant factor,
commonly chosen between 0.4 and 0.8.

Step 3: Update mi and mj by the LVQ3 train-

ing procedure with the following equations:
{
mi(t+ 1) = mi(t)− α(t) [x(t)−mi(t)] ,

mj(t+ 1) = mj(t) + α(t) [x(t)−mj(t)] ,
(2)

if x falls into the ‘window’, x and mj belong to
the same class, while x and mi belong to different
classes;

mk(t+1) = mk(t)+εα(t) [x(t)−mk(t)] , k ∈ {i, j} ,
(3)

if x falls into the ‘window’ and x, mj, and mi be-
long to the same class. α(t) is a scalar, decreasing
monotonically in time. A common initial value α(0)

is 0.03. ε is a constant; applicable values are between
0.1 and 0.5 (Kohonen, 1990a).

4 Experimental results based on learn-
ing vector quantization

This section is dedicated to the details of our
experimental setup and results.

4.1 Experimental setup

In this experiment, the power consumption of an
ECC cryptosystem is considered to be side-channel
leakage. Fig. 3 shows the main measurement setup.
As can be seen, the ECC cryptosystem is imple-
mented on an FPGA board with a SPARTAN 3
FPGA. To record and see power-signal traces, a Tek-
tronix TDS2012 oscilloscope with 1×109 samples/s is
applied. In addition, to measure the power consump-
tion and electromagnetic emission of our FPGA, a
Tektronix CT1 current probe and an ETS near-field
probe set (model 7405) are used, as well as an ETS
broadband amplifier (model 7405-907b), to enhance
the quality of the input signal traces. This experi-
ment is performed using a MATLAB toolbox and a
PC configuration of Intel Core i5, 2.80 GHz CPU,
and 4.00 GB RAM.

4.2 Empirical results and discussions

Concerning our LVQ-based analysis, the num-
ber of hidden layers plays an important role in the
overall neural network architecture and has a sig-
nificant influence on the final output. There is no
specific method or formula to determine this num-
ber, and hence this number must be carefully chosen
via experiments. Using too few neurons can lead to
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Fig. 2 LVQ architecture: one hidden layer with Kohonen neurons, adjustable weights between the input and
hidden layer, and a winner-takes-all mechanism
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Fig. 3 Measurement setup for side-channel attacks

under fitting, while too many neurons can result in
large computational complexity or over-fitting.

For this purpose, a comparison of classification
accuracy, time complexity, and memory consump-
tion between LVQ-based architectures with different
numbers of hidden layers ranging from 10 to 110 is
performed, and the experimental results are provided
in Table 1. By increasing the number of hidden lay-
ers from 10 to 80, the mean squared error (MSE)
drops from 0.135 to 0.060 and reaches a minimum

of 0.057 with the number of hidden layers set at 90–
100; after that, the error increases by 0.013 with 110
hidden layers.

Concerning time complexity, the most time-
consuming LVQ architectures are those with the
number of hidden layers between 90 and 100, with
14 000–16 000 s. The processing time increases grad-
ually from 2303 to 12 500 s as the number of hidden
layers increases from 10 to 80.

Judging from the memory consumption infor-
mation in this table, the memory consumptions of
all hidden layers are almost the same (in the range
of [0.124, 0.129]).

Table 1 Learning vector quantization (LVQ) net-
work performance comparison with a proper number
of hidden layers and based on time complexity and
memory consumption

Number of Mean squared
Time (s) Memory (GB)

hidden layers error

10 0.135 2303 0.124
20 0.112 3253 0.124
30 0.090 4932 0.124
40 0.080 5841 0.125
50 0.070 6909 0.125
60 0.065 9639 0.129
70 0.060 11 247 0.128
80 0.062 12 512 0.127
90 0.057 13 915 0.129
100 0.057 16 023 0.128
110 0.070 5985 0.126
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Fig. 4 shows the training performance of our
LVQ-based classification. From this figure, the best
training performance is 0.066556 at epoch 279.
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Fig. 4 The training performance of our learning vec-
tor quantization (LVQ) based classification

The efficiency of LVQ-based analysis is verified
through a confusion matrix in which the number of
times that a particular key value is correctly classi-
fied or misclassified is presented (Fig. 5). The di-
agonal cells show the number of times that the key
values are correctly classified, and the off-diagonal
cells show the misclassified cases. The blue cell in
the bottom right shows the total percentage of cor-
rectly classified cases (in green) and the total per-
centage of misclassified cases (in red). As can be
seen, the results show a good classification because
of the higher numbers of the correct responses in the
diagonal squares (143, 128, 110, and 136) compared
to the relatively low numbers of incorrect responses
in the off-diagonal squares ([0, 23]). The lower-right
blue square illustrates the overall accuracies of 86.7%
correctly classified and 14.3% misclassified.

Fig. 6 illustrates the receiver operating charac-
teristic (ROC) curves to check the quality of clas-
sifiers. For each class of a classifier (classes of key
bits 1, 2, 3, and 4), the threshold values are applied
across the interval [0, 1] to outputs. For each thresh-
old, two values are calculated: true positive ratio
(the number of outputs greater than or equal to the
threshold, divided by the number of ‘1’ targets), and
false positive ratio (the number of outputs less than
the threshold, divided by the number of ‘0’ targets).
In Fig. 6, the colored lines represent the ROC curves,
which are the plots of the true positive rate versus
the false positive rate as the threshold is varied. A
perfect test would show points in the upper-left cor-

ner. From this figure and considering the ratio of the
true positive rate to the false positive rate, the best
classification is for key bit 1, then for key bits 4, 2,
and 3, in decreasing order.
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Fig. 5 Learning vector quantization (LVQ) based con-
fusion matrix. Diagonal cells (green): number of cor-
rectly classified cases; off-diagonal cells (red): num-
ber of misclassified cases; blue cell: total percentages.
References to color refer to the online version of this
figure
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Fig. 6 Receiver operating characteristic (ROC)
curves. The best classification is for key bit 1, then
for key bits 4, 2, and 3, in decreasing order

To the best of our knowledge, there has been
no attempt to explore the performance of an LVQ
neural network in analyzing side-channel informa-
tion. Nevertheless, in comparison with similar work
(Heyszl et al., 2012b), the maximum classification
success rate achieved prior to our work was around
70%, apart from a study (Msgna et al., 2014) that
achieved a 100% classification success rate using a
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specific combination of dimensionality reduction and
a classification algorithm in an attack on an AVR
processor (ATMega163).

5 Conclusions

In this paper, the characterization of side-
channel information based on an LVQ neural network
has been investigated. Considering our experimental
results (based on an FPGA implementation of ECC),
it is inferred that LVQ architectures with 90–100 hid-
den layers can be considered to be the most accurate
architectures, although they are known to be the
slowest. In addition, judging from the confusion ma-
trices and the error histogram, our results indicate
an overall accuracy of 86% correctly classified, 14%
misclassified, and no significant over-fitting; there-
fore, LVQ can be considered a promising approach
for side-channel data characterization.
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