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Abstract: We investigate the adaptive tracking problem for the longitudinal dynamics of state-constrained air-
breathing hypersonic vehicles, where not only the velocity and the altitude, but also the angle of attack (AOA) is
required to be tracked. A novel indirect AOA tracking strategy is proposed by viewing the pitch angle as a new output
and devising an appropriate pitch angle reference trajectory. Then based on the redefined outputs (i.e., the velocity,
the altitude, and the pitch angle), a modified backstepping design is proposed where the barrier Lyapunov function
is used to solve the state-constrained control problem and the control gain of this class of systems is unknown.
Stability analysis is given to show that the tracking objective is achieved, all the closed-loop signals are bounded,
and all the states always satisfy the given constraints. Finally, numerical simulations verify the effectiveness of the
proposed approach.
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1 Introduction

Air-breathing hypersonic vehicles (AHVs) are
expected to play an indispensable role in future space
transportation due to their high reliability and eco-
nomic efficiency. Although there have been sev-
eral successful flight tests from the US Air Force
and NASA over past decades, the design of robust
flight control systems for AHVs is still a challenging
issue owing to significant couplings, nonlinearities,
and uncertainties in the vehicle dynamics (Fidan
et al., 2003; Fiorentini and Serrani, 2012; Hu et al.,
2014a). Consequently, the study of flight control for
AHVs attracts much attention from the aerospace
community.

AHV dynamics with the winged-cone configura-
tion was first proposed in Shaughnessy et al. (1990).
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Based on this dynamics, various results have been
reported in the past 20 years (Gregory et al., 1992;
Fidan et al., 2003; Xu HJ et al., 2004; Xu B et al.,
2011; 2012; Li et al., 2012; Sun HB et al., 2013;
Yang et al., 2013; Wu et al., 2014). It is notewor-
thy that Li et al. (2012) and Sun HB et al. (2013)
considered the case of matched disturbances, while
Yang et al. (2013) and Wu et al. (2014) considered
the case of mismatched ones. A high-fidelity longitu-
dinal model of an AHV similar to the configuration
of X-30 and its simplified curve-fitted model (CFM)
were proposed in Bolender and Doman (2007) and
Parker et al. (2007), respectively. Because of the
propulsion-airframe integration design, there exists
strong coupling between the engine and the angle of
attack (AOA) in a CFM, which makes the control for
the CFM more challenging than that for the winged-
cone configuration model. For an AHV, time delay
may exist in flight control systems. Control of non-
linear time-delay systems has been a very active area
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(Qiu et al., 2015; Wang et al., 2016). However, be-
cause of the heavy complexity of time-delay AHV
dynamics, only a few results have been reported
(Gibson et al., 2009). Fuzzy sets and systems have
attracted more and more attention for their univer-
sal approximation feature (Qiu et al., 2013; 2016).
Hu et al. (2014b) proposed a robust H∞ dynamic
output feedback controller by using a Takagi-Sugeno
(T-S) fuzzy set to represent the AHV dynamics. Wu
et al. (2014) proposed a fuzzy disturbance observer-
based control (DOBC) design methodology for AHVs
with modeled and unmodeled disturbances. For a
CFM, the strong coupling between the engine and
the AOA leads to the fact that the performance of
air-breathing engines is very sensitive to the change
of the AOA (Parker et al., 2007; Mirmirani et al.,
2009). Therefore, it is necessary to force the AOA to
track a given reference trajectory to improve the per-
formance of air-breathing engines. However, to the
best of our knowledge, the AOA is viewed only as
an intermediate variable and its main role is to guar-
antee altitude tracking in the existing work (Fioren-
tini et al., 2009; Sun HF et al., 2013; Zong et al.,
2013). As a consequence, AOA tracking is difficult
to achieve while ensuring altitude tracking.

In addition, the strong coupling between the en-
gine and the AOA determines that the AOA must
be strictly within a given envelope; otherwise, air-
breathing engines will unstart and this phenomenon
is unacceptable (Cox et al., 1995). Thus, the control
for AHVs with state constraints is of great impor-
tance. On state-constrained control of nonlinear sys-
tems, a large volume of results have been reported,
e.g., invariance control (Wolff et al., 2007; Burger
and Guay, 2010), model predictive control (MPC)
(Mayne et al., 2000), reference governors (RG) (Be-
mporad, 1998; Gilbert and Kolmanovsky, 2002), bar-
rier Lyapunov function (BLF) (Ngo et al., 2005; Tee
et al., 2009; Tee and Ge, 2011; Liu et al., 2014; Jin
and Kwong, 2015), and the references therein. How-
ever, most of the existing results were derived based
on strict assumptions on the controlled systems. For
example, the control gain was assumed to be com-
pletely known for the BLF method with rare excep-
tions in Jin and Kwong (2015). For an AHV, these
assumptions are not satisfied. For this reason, on the
state-constrained control of AHVs, only a few results
have been reported, derived by using the invariant
set idea (Fiorentini et al., 2009; Fiorentini and Ser-

rani, 2012; Li and Meng, 2015). This idea includes
two steps. First, a level set should be appropriately
selected such that states satisfy a given constraint if
error variables are within this level set. Second, a
controller needs to be designed to ensure that this
level set is an invariant set. In the two steps, the
main challenge comes from the first step, which is
still a trial-and-error procedure and thus a difficult
task.

Motivated by the above, we study the adap-
tive tracking problem for the longitudinal dynamics
of air-breathing hypersonic vehicles with state con-
straints, where not only the velocity and the altitude,
but also the AOA is required to be tracked. Because
the dynamics of the altitude and the AOA are af-
fected by the same control action from aerodynamic
control surfaces, simultaneous control of the altitude
and the AOA essentially belongs to the field of un-
deractuated control (Oland et al., 2013; Pettersen,
2015). Underactuated control is a challenging is-
sue in the control community. In addition, state-
constrained control makes the problem even more
complex. Consequently, we try to seek indirect AOA
tracking by selecting the pitch angle as a new output
and designing an appropriate pitch angle reference
trajectory. Based on the redefined outputs (i.e., the
velocity, the altitude, and the pitch angle), a modi-
fied backstepping design is proposed where the BLF
method is used to cope with state constraints and
the control gain of this class of systems is unknown.
It is noteworthy that in this study, the conventional
BLF (Ngo et al., 2005; Tee et al., 2009; Tee and
Ge, 2011; Liu et al., 2014) widely used is applied
to the state-constrained control problem of nonlin-
ear systems with unknown control gain. Moreover,
a set of criteria is given, which guides the selection
of reference trajectories and controller parameters.
Compared with the existing work based on the in-
variant set idea (Fiorentini et al., 2009; Fiorentini
and Serrani, 2012; Li and Meng, 2015), the approach
proposed makes the selection of controller parame-
ters simpler.

Notations: In the subsequent sections, 0m×n

and Ip denote an m× n zero matrix and a p× p

identity matrix, respectively. The symbols (·)max

and (·)min denote the maximum and minimum values
of ‘·’, respectively. For example, (Vr)max denotes the
maximum value of the velocity reference trajectory
Vr.
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2 Vehicle model and control objective

The diagram of the longitudinal geometry pro-
file and free body of an AHV in this study is depicted
in Fig. 1. The longitudinal rigid dynamics are as fol-
lows (Serrani, 2013):

V̇ =
T cosα−D

m
− g sin γ, (1a)

ḣ = V sin γ, (1b)

γ̇ =
L+ T sinα

mV
− g

V
cos γ, (1c)

θ̇p = Q, (1d)

Q̇ =
Myy

Iyy
. (1e)

Herein V , h, γ, θp, and Q denote the velocity, the
altitude, the flight-path angle (FPA), the pitch angle,
and the pitch rate, respectively; α denotes the AOA,
which is defined as follows:

α = θp − γ; (2)

g denotes the acceleration of gravity; m and Iyy de-
note the vehicle mass and the moment of inertia,
respectively; T , D, L, and Myy denote the thrust,
drag, lift, and pitching moment, respectively, whose
curve-fit expressions are described as follows (Ser-
rani, 2013):

T = q̄S (CT,Φ (α)Φ+ CT (α)) , (3a)

D = q̄S
(
Cα2

D α2 + Cα
Dα+ C0

D

)
, (3b)

L = q̄S
(
Cα

Lα+ C0
L + Cδe

L δe + Cδc
L δc

)
, (3c)

Myy = zTT + q̄Sc̄
(
CM (α) + Cδe

M δe + Cδc
Mδc

)
,

(3d)

where

CT,Φ (α) = Cα3

T,Φα
3 + Cα2

T,Φα
2 + Cα

T,Φα+ C0
T,Φ,

CT (α) = Cα3

T α3 + Cα2

T α2 + Cα
Tα+ C0

T ,

CM (α) = Cα2

M α2 + Cα
Mα+ C0

M .

Here, Φ, δe, and δc denote the fuel equivalence ra-
tio, the elevator angle, and the canard angle, re-
spectively, which are the control inputs and affect
the dynamics (Eqs. (1a)–(1e)) by T , L, and Myy; q̄
denotes the dynamic pressure; S, zT , and c̄ denote
the reference area, the thrust moment arm, and the
mean aerodynamic chord, respectively; the symbol

Cj
i (e.g., Cα3

T,Φ, Cα2

M , and Cδe
M ) denotes the aerody-

namic coefficient. A detailed description of the dy-
namics can be found in Parker et al. (2007).

T
L

D
mg

V α
γ

θp=α+γ

δc

δe

Fig. 1 Diagram of the longitudinal geometry profile
and free body of an air-breathing hypersonic vehicle
(Parker et al., 2007; Bu et al., 2016)

In this study, only the cruise phase is consid-
ered. For this phase, a flight envelope is shown
in Table 1, which imposes some constraints on the
states. Let A denote this flight envelope. We as-
sume that all the inertial parameters (S, zT , c̄, m,
and Iyy) and aerodynamic parameters (Cj

i ) are un-
known constants with ±10% uncertainty tolerance,
which yields the following uncertainty set:

P = {p ∈ R
n : 0.9p0i ≤ pi ≤ 1.1p0i , i = 1, 2, . . . , n},

(4)
where pi denotes an uncertain parameter, p =

[p1, p2, . . . , pn]
T, n is the number of uncertain pa-

rameters, and p0i denotes the nominal value of pi.

Table 1 Admissible range, A, for states (Parker et al.,
2007)

Variable Minimum value Maximum value

V (m/s) 2286 3352.8
h (m) 21 336 41 148
γ (deg) −3 3
α (deg) −5 10
θp (deg) −2 7
Q (deg/s) −10 10

To ensure that the state-constrained control
problem is solvable, define the following compact set
A1 excluding the bounds of A:

A1 = {(V, h, γ, θp, Q)| j ≤ j ≤ j, j = V, h, γ, θp, Q},
(5)

where j and j (j = V , h, γ, θp, Q) are known
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constants, satisfying

2286 m/s < V < V < 3352.8 m/s,

21 336 m < h < h < 41 148 m,

−3 deg < γ < γ < 3 deg,

−2 deg < θp < θp < 7 deg,

−10 deg/s < Q < Q < 10 deg/s.

Define x = [V, h, γ, θp, Q]T, u = [Φ, δe, δc]
T, and

y = [V, h, α]T. The control objective in this study
is to design a control law u, such that for any un-
certain parameter vector p ∈ P , the output y tracks
the reference trajectory yr = [Vr, hr, αr]

T while en-
suring that all the signals of the closed-loop system
are bounded and that the state x is always within A.

In this study, the following assumptions are
made:
Assumption 1 For an arbitrary t > 0, Vr, V̇r,
hr, ḣr, ḧr, αr, α̇r, and α̈r are known, smooth, and
bounded, satisfying

⎧
⎪⎨
⎪⎩

V ≤ Vr(t) ≤ V ,

h ≤ hr(t) ≤ h,

θp ≤ αr(t) ≤ θp,

where V , V , h, h, θp, and θp are defined in Eq. (5).
Assumption 2 The initial state x(0) ∈ A1.

From Assumptions 1 and 2, it can be seen that
the initial states and the reference trajectories are
always within A1 in this study. The main purpose
of introducing the set A1 is to exclude the bounds
of A. Indeed, it is generally accepted to exclude
the bounds of A to ensure that the state-constrained
control problem is solvable (Tee et al., 2009; Tee and
Ge, 2011; Liu et al., 2014), because the state con-
straint will be violated whenever the states reach the
boundary of A. Considering that we pursue indi-
rect AOA tracking by selecting the pitch angle as a
new output, thus it is assumed that θp ≤ αr(t) ≤ θp

(∀ t > 0) in Assumption 1.
From Eq. (2) and Table 1, it can be seen that

the AOA also satisfies the given constraint when the
state x remains in A.

3 Main results

3.1 Redefinition of outputs

In this subsection, the analysis indicates that
direct AOA tracking is very difficult while ensuring

altitude tracking. Therefore, an indirect AOA track-
ing idea is pursued by redefining the outputs.

In the system, there are three control inputs: Φ,
δe, and δc. Among these control inputs, Φ is used
mainly to ensure V − Vr → 0. Hence, there are
only two available inputs, i.e., δe and δc, to ensure
h− hr → 0 and α − αr → 0. Differentiating Eq. (2)
and using Eqs. (1c) and (1d) yield

α̇ = Q− L+ T sinα

mV
+

g

V
cos γ. (6)

In addition, differentiating Eq. (1b) and using
Eqs. (1a) and (1c) yield

ḧ =

(
T cosα−D

m
− g sin γ

)
sin γ

+ V

(
L+ T sinα

mV
− g

V
cos γ

)
cos γ. (7)

From Eqs. (6) and (7), it can be seen that the
same control action ‘q̄S

(
Cδe

L δe + Cδc
L δc

)
’ from L af-

fects both h-dynamics and α-dynamics. As a conse-
quence, it is very difficult to simultaneously ensure
the tracking of the altitude and the AOA. In fact,
simultaneous control of the altitude and the AOA
belongs to the scope of underactuated control, which
is a challenging issue in the control community. In
this study, an indirect AOA tracking idea is pro-
posed by selecting θp as a new output, and ensuring
V − Vr → 0, h− hr → 0, and θp − θr → 0, where θr

is a pitch angle reference trajectory to be designed.
Now, let us analyze how to design θr. Suppose

that the velocity and the altitude have completely
tracked their respective reference trajectories. From
Eq. (1b), it is derived that γ = arcsin(ḣr/Vr). Hence,
the flight-path angle reference trajectory can be se-
lected as γr = arcsin(ḣr/Vr). Furthermore, together
with Eq. (2), the pitch angle reference trajectory can
be selected as

θr = αr + arcsin(ḣr/Vr). (8)

Similarly, to ensure that the state-constrained
control problem is solvable, the following assumption
is made:
Assumption 3 θp ≤ θr ≤ θp, where θp and θp

are defined in Eq. (5).

3.2 Control law design

This subsection gives the controller design pro-
cedure. The dynamics (Eqs. (1a)–(1e)) can be di-
vided into two functional subsystems: the velocity
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subsystem (Eq. (1a)) and the altitude subsystem
(Eqs. (1b)–(1e)). The velocity subsystem is con-
trolled by Φ, which affects this subsystem by T . The
altitude subsystem is controlled by δe and δc, which
affect this subsystem by L and Myy. Next is the
detailed design procedure. The stability results of
the complete closed-loop system are presented in the
subsequent subsection.

3.2.1 Control of the velocity subsystem

The velocity subsystem is described in Eq. (1a),
where Φ is the control input. For this subsystem,
our control objective is to ensure V −Vr → 0 and an
adaptive dynamic inversion controller based on the
BLF is proposed.

Define the velocity tracking error as

e1 = V − Vr. (9)

Differentiating Eq. (9), and according to Eqs. (1a),
(3a), and (3b), we have

ė1 = θT
1 (f1(x) + g1(x)Φ) − V̇r, (10)

where

θ1 =
S

m

[
Cα3

T,Φ, C
α2

T,Φ, C
α
T,Φ, C

0
T,Φ, C

α3

T , Cα2

T ,

Cα
T , C

0
T , C

α2

D , Cα
D, C0

D,
mg

S

]T
∈ R

12,

g1(x) = q̄[α3 cosα, α2cosα, αcosα, cosα,

01×8]
T ∈ R

12,

f1 (x) = q̄
[
01×4, α

3cosα, α2cosα, αcosα,

cosα,−α2,−α,−1,−sinγ/q̄
]T

∈ R
12.

It is easy to see that θ1 is bounded for any uncertain
parameter vector p ∈ P . Hence, a convex compact
set Θ1 is introduced which satisfies

θ1 ∈ Θ1, ∀ p ∈ P , (11)

ϑTg1(x) > �1 > 0, ∀ ϑ ∈ Θ1, ∀ x ∈ A, (12)

where �1 is a positive constant. It should be noted
that conditions (11) and (12) are easily satisfied for
the uncertainty set P and the envelope A given in
Eq. (4) and Table 1, respectively.

For Eq. (10), choose a Lyapunov function as

W1(e1, θ̃1) =
1

2
ln

k2b1
k2b1 − e21

+
1

2
θ̃T
1 Γ

−1
1 θ̃1, (13)

where kb1 is a positive constant to be determined in
the subsequent stability analysis, Γ1 is a symmetric

positive definite matrix, and θ̃1 � θ̂1 − θ1 denotes
the error between θ1 and its estimate θ̂1.

In Eq. (13), W1 is called a barrier Lyapunov
function (BLF) for two reasons: (1) W1 is contin-
uously differentiable and positive definite in the set
Ξ = {|e1| < τ1, θ1 ∈ Θ1, θ̂1 ∈ Θ1}, where τ1 is any
positive constant satisfying τ1 < kb1; (2) W1 has the
following feature:

W1 → +∞, when |e1| < kb1 and e1 → ±kb1.

W1 can be viewed as a conventional BLF (Jin
and Kwong, 2015) and it is widely used to solve the
state-constrained control problem of nonlinear sys-
tems with completely known control gain (Ngo et al.,
2005; Tee et al., 2009; Tee and Ge, 2011; Liu et al.,
2014). In this study, it is used to solve the state-
constrained control problem of AHVs with unknown
control gain.

According to the feature of W1, if the initial
state satisfies |e1(0)| < kb1 and W1 is bounded, then
it can be concluded that

|e1(t)| < kb1, ∀ t > 0.

Furthermore, according to Eq. (9), it is clear
that V = e1 + Vr. Therefore, if the following condi-
tion holds:

2286 ≤ (Vr)min − kb1 < (Vr)max + kb1 ≤ 3352.8,

it can be concluded that V satisfies the constraint A
given in Table 1. In the above inequality, those nu-
merical values such as 2286 and 3352.8 are from Ta-
ble 1. Consequently, the key idea of controller design
is to guarantee the boundedness of the BLF, which
guides the controller design procedure throughout
this study. From this point of view, the BLF method
is an effective tool for solving the state-constrained
control of nonlinear systems, even for those nonlinear
systems based on fuzzy dynamic models (Qiu et al.,
2013).

In Eq. (13), calculating the time derivative of
W1 along trajectory (10) yields

Ẇ1 =
e1

k2b1 − e21

(
θT
1 (f1(x) + g1(x)Φ) − V̇r

)

+ θ̃T
1 Γ

−1
1

˙̂
θ1. (14)

To guarantee the boundedness of W1, select the cer-
tainty equivalent control law and the update law,
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respectively, as

Φ =
1

θ̂T
1 g1(x)

(
−k1e1 − θ̂T

1 f1(x) + V̇r

)
, (15)

˙̂
θ1 = Projθ̂1∈Θ1

{
Γ1

[
e1

k2b1 − e21

(
f1(x) + g1(x)Φ

)]}
,

(16)
where k1 > 0 is a controller parameter and
Projθ̂1∈Θ1

(·) is a smooth projection operator (Krstic
et al., 1995) which is used to ensure the nonsingular-
ity of the control law (15).

Substituting Eqs. (15) and (16) into Eq. (14)
and using standard properties of the projection op-
erator (Krstic et al., 1995) yield

Ẇ1 ≤ −k1
e21

k2b1 − e21
. (17)

3.2.2 Control of the altitude subsystem

The altitude subsystem is described in
Eqs. (1b)–(1e), where δe and δc are the control inputs
which affect this subsystem by L and Myy. Our con-
trol objective is to ensure h−hr → 0 and θp−θr → 0.
Usually, in Eq. (3c), the lift from δe and δc, i.e.,
q̄S(Cδe

L δe +Cδc
L δc), is very small, compared with the

lift from the AOA, i.e., q̄S(Cα
Lα+C0

L). However, con-
sidering that h is slowly time-varying in the cruise
flight phase, this small lift can be used to ensure
h − hr → 0. Meanwhile, the pitching moment from
δe and δc, i.e., q̄Sc̄

(
Cδe

Mδe + Cδc
Mδc

)
, is used to guar-

antee θp−θr → 0. To clearly illustrate the controller
design procedure, the altitude subsystem is further
divided into two modules, i.e., (h, γ) module and (θp,
Q) module. For the former, Eqs. (1b) and (1c) are
considered and the aim is to ensure h− hr → 0. For
the latter, Eqs. (1d) and (1e) are considered and the
aim is to ensure θp − θr → 0. Next is the detailed
design procedure.

1. (h, γ) module
For this module, Eqs. (1b) and (1c) are consid-

ered. By viewing the lift from δe and δc as the control
input, an adaptive backstepping controller based on
a BLF is proposed to ensure h − hr → 0. Based
on the backstepping idea (Krstic et al., 1995), this
design procedure includes two steps.

Step 1: Define the altitude tracking error as

e2 = h− hr. (18)

Differentiating e2 with respect to time and using
Eq. (1b) yield

ė2 = V sin γ − ḣr. (19)

By viewing γ as a virtual control input, introduce an
error variable

e3 = γ − γd, (20)

where γd is an ideal controller. Substituting Eq. (20)
into Eq. (19) yields

ė2 = V sin γd − ḣr + 2V cos
γ + γd

2
sin

e3
2
. (21)

Choose the following BLF:

W2 =
1

2
ln

k2b2
k2b2 − e22

, (22)

where kb2 is a positive constant to be determined in
the subsequent stability analysis. The time deriva-
tive of W2 along trajectory (21) is

Ẇ2 =
e2

k2b2 − e22

(
V sin γd − ḣr

)

+ 2V
e2

k2b2 − e22
cos

γ + γd

2
sin

e3
2
. (23)

For Eq. (23), γd is designed as

γd = arcsin
−k2e2 + ḣr

V
, (24)

where k2 > 0 is a controller parameter. Given that
the ‘arcsin’ function is defined on [−1, 1], the follow-
ing inequality should hold:

−1 ≤ −k2e2(t) + ḣr(t)

V (t)
≤ 1, ∀ t ≥ 0.

From the proof process of Theorem 1 which is given
in the subsequent subsection, it can be seen that V

satisfies the constraint A and |e2(t)| < kb2 (∀ t ≥ 0)
if inequalities (53) and (54a)–(54e) hold. Together
with inequalities (54a)–(54e), it can be further de-
rived that
∣∣∣∣∣
−k2e2(t) + ḣr(t)

V (t)

∣∣∣∣∣ <
k2kb2 + |ḣr|max

2286
< 1, ∀ t ≥ 0.

Therefore, conditions (53) and (54a)–(54e) can en-
sure that γd is well-defined.

Substituting Eq. (24) into Eq. (23) yields

Ẇ2 = −k2
e22

k2b2 − e22
+ 2V

e2
k2b2 − e22

cos
γ + γd

2
sin

e3
2
.

(25)
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Here, the second term in the right side of Eq. (25),
i.e., the coupling term, is canceled in the subsequent
step.

Step 2 (final step): Substituting Eq. (20) into
Eq. (1c) yields

ė3 =
L+ T sinα

mV
− g

V
cos γ − γ̇d. (26)

Now, let us calculate the term γ̇d. Differenti-
ating Eq. (24) and using Eqs. (1a), (18), and (1b)
yield

γ̇d = Δ1

(
−k2(V sin γ − ḣr) + ḧr

V

− (−k2e2 + ḣr)V̇

V 2

)

= Δ1

(
−k2(V sin γ − ḣr) + ḧr

V

−−k2e2 + ḣr

V 2

(
T cosα−D

m
− g sin γ

))

= Δ1

(
−−k2e2 + ḣr

V 2
· T cosα−D

m

+
−k2e2 + ḣr

V 2
g sin γ +Δ2

)
, (27)

where Δi (i = 1, 2) are defined as

Δ1 =1

/√√√√1−
(
−k2e2 + ḣr

V

)2

,

Δ2 =
−k2(V sin γ − ḣr) + ḧr

V
.

Clearly, Δi (i = 1, 2) do not include any uncertain
parameter.

Substituting Eq. (27) into Eq. (26) yields

ė3 =
L+ T sinα

mV
− g

V
cos γ

+Δ1
−k2e2 + ḣr

V 2
· T cosα−D

m

−Δ1
−k2e2 + ḣr

V 2
g sin γ −Δ1Δ2. (28)

Substituting Eqs. (3a)–(3c) into Eq. (28) further
yields

ė3 = θT
2 [f2(x) + g2(x)Uδ ]−Δ1Δ2, (29)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ2 =
S

m

[
Cδe

L , Cδc
L , Cα3

T,Φ, C
α2

T,Φ, C
α
T,Φ, C

0
T,Φ,

Cα3

T , Cα2

T , Cα
T , C

0
T , C

α2

D , Cα
D, C0

D,

Cα
L , C

0
L,

mg

S

]T
∈ R

16,

f2(x) =
q̄

V

[
0, 0, Φα3Δ3, Φα

2Δ3, ΦαΔ3, ΦΔ3,

α3Δ3, α
2Δ3, αΔ3, Δ3,

α2Δ4, αΔ4, Δ4, α, 1, Δ5

]T
∈ R

16,

g2(x) =
q̄

V
[I2, 02×14]

T ∈ R
16×2,

Uδ = [δe, δc]
T,

Δ3 = sinα+Δ1
(−k2e2 + ḣr) cosα

V
,

Δ4 = −Δ1
−k2e2 + ḣr

V
,

Δ5 = −cos γ

V
−Δ1

−k2e2 + ḣr

V 2
sin γ.

(30)

Similar to the former analysis, a convex compact set
Θ2 is introduced to cover all the values of θ2, i.e.,
θ2 ∈ Θ2.

Choose the following BLF:

W3 = W2 +
1

2
ln

k2b3
k2b3 − e23

+
1

2
θ̃T
2 Γ

−1
2 θ̃2, (31)

where W2 is defined in Eq. (22), kb3 is a positive
constant to be determined in the subsequent stabil-
ity analysis, Γ2 > 0 is a symmetric positive definite
matrix, and θ̃2 � θ̂2 − θ2 denotes the error between
θ2 and its estimate θ̂2.

In Eq. (31), differentiating W3 with respect to
time and using Eqs. (25) and (29) yield

Ẇ3 = − k2
e22

k2b2 − e22
+ 2V

e2
k2b2 − e22

cos
γ + γd

2
sin

e3
2

+
e3

k2b3 − e23

(
θT
2 [f2(x) + g2(x)Uδ ]−Δ1Δ2

)

+ θ̃T
2 Γ

−1
2

˙̂
θ2. (32)

To guarantee the boundedness of W3, select the cer-
tainty equivalent control law and the update law,
respectively, as

θ̂T
2 (f2(x) + g2(x)Uδ) = −k3e3 +Δ1Δ2

− V e2
k2b3 − e23
k2b2 − e22

cos
γ + γd

2
· sin(e3/2)

e3/2
, (33)

˙̂
θ2 = Projθ̂2∈Θ2

{
Γ2

e3
k2b3 − e23

[
f2(x) + g2(x)Uδ

]}
,

(34)



606 Li / Front Inform Technol Electron Eng 2017 18(5):599-614

where k3 > 0 is a controller parameter and
Projθ̂2∈Θ2

(·) is a smooth projection operator (Krstic
et al., 1995). It should be noted that in Eq. (33) the
term ‘ sin(·)/(·) ’ is defined as

sin η

η
=

⎧
⎨
⎩

1, η = 0,
sin η

η
, otherwise.

Therefore, the term ‘sin(·)/(·)’ is always nonsingular.
Substituting Eqs. (33) and (34) into Eq. (32)

and using standard properties of the projection op-
erator (Krstic et al., 1995) yield

Ẇ3 ≤ −k2
e22

k2b2 − e22
− k3

e23
k2b3 − e23

. (35)

2. (θp, Q) module
For this module, Eqs. (1d) and (1e) are con-

sidered. By viewing the pitching moment from δe
and δc as the control input, an adaptive backstep-
ping controller based on a BLF is proposed to ensure
θp−θr → 0. Similar to the (h, γ) module, this design
procedure includes two steps.

Step 1: Define the pitch angle tracking error as

e4 = θp − θr. (36)

Substituting Eq. (36) into Eq. (1d) yields

ė4 = Q− θ̇r. (37)

By viewing Q as a virtual control input, introduce
an error variable

e5 = Q−Qd, (38)

whereQd is an ideal controller. Substituting Eq. (38)
into Eq. (37) yields

ė4 = Qd − θ̇r + e5. (39)

Choose the following BLF:

W4 =
1

2
ln

k2b4
k2b4 − e24

, (40)

where kb4 is a positive constant to be determined in
the subsequent stability analysis. The time deriva-
tive of W4 along trajectory (39) is

Ẇ4 =
e4

k2b4 − e24

(
Qd − θ̇r

)
+

e4
k2b4 − e24

e5. (41)

For Eq. (41), Qd is designed as follows:

Qd = −k4e4 + θ̇r, (42)

where k4 > 0 is a controller parameter. Substituting
Eq. (42) into Eq. (41) yields

Ẇ4 = −k4
e24

k2b4 − e24
+

e4
k2b4 − e24

e5. (43)

Here, the coupling term ‘e4e5/(k2b4 − e24)’ is canceled
in the subsequent step.

Step 2 (final step): Substituting Eq. (38) into
Eq. (1e) yields

ė5 = Myy/Iyy − Q̇d. (44)

Differentiating Eq. (42) and using Eq. (37) lead to
Q̇d = −k4(Q− θ̇r) + θ̈r.

Substituting Eq. (3d) into Eq. (44) yields

ė5 = θT
3 (f3(x) + g3(x)Uδ)− Q̇d, (45)

where Uδ is defined in Eq. (30), and θ3, f3(x), and
g3(x) are defined as follows:

θ3 =
S

Iyy

[
c̄Cδe

M , c̄Cδc
M , zTC

α3

T,Φ, zTC
α2

T,Φ, zTC
α
T,Φ,

zTC
0
T,Φ, zTC

α3

T ,
(
zTC

α2

T + c̄Cα2

M

)
,

(zTC
α
T + c̄Cα

M ), (zTC
0
T + c̄C0

M )
]T

∈ R
10,

f3(x) = q̄
[
0, 0, α3Φ, α2Φ, αΦ, Φ, α3, α2, α, 1

]T
∈ R

10,

g3(x) = q̄ [I2,02×8]
T ∈ R

10×2.

Similar to the former analysis, here a convex compact
set Θ3 is introduced to cover all the values of θ3, i.e.,
θ3 ∈ Θ3.

Choose the following BLF:

W5 = W4 +
1

2
ln

k2b5
k2b5 − e25

+
1

2
θ̃T
3 Γ

−1
3 θ̃3, (46)

where W4 is defined in Eq. (40), kb5 is a positive
constant to be determined in the subsequent stabil-
ity analysis, Γ3 > 0 is a symmetric positive definite
matrix, and θ̃3 � θ̂3 − θ3 denotes the error between
θ3 and its estimate θ̂3.

In Eq. (46), differentiating W5 with respect to
time and using Eqs. (43) and (45) yield

Ẇ5 =− k4
e24

k2b4 − e24
+

e4
k2b4 − e24

e5 + θ̃T
3 Γ

−1
3

˙̂
θ3

+
e5

k2b5 − e25

(
θT
3 (f3(x) + g3(x)Uδ)− Q̇d

)
.

(47)
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To guarantee the boundedness of W5, select the cer-
tainty equivalent control law and the update law,
respectively, as

θ̂T
3 (f3(x) + g3(x)Uδ) = −k5e5 − e4

k2b5 − e25
k2b4 − e24

+ Q̇d,

(48)
˙̂
θ3 = Projθ̂3∈Θ3

{
Γ3

e5
k2b5 − e25

[f3(x) + g3(x)Uδ]

}
,

(49)
where k5 > 0 is a controller parameter and
Projθ̂3∈Θ3

(·) is a smooth projection operator (Krstic
et al., 1995).

Substituting Eqs. (48) and (49) into Eq. (47)
and using standard properties of the projection op-
erator (Krstic et al., 1995) yield

Ẇ5 ≤ −k4
e24

k2b4 − e24
− k5

e25
k2b5 − e25

. (50)

Finally, solving Eqs. (33) and (48) yields the
actual control law for the control surfaces:

Uδ =

[
δe
δc

]
= B−1

[
−k3e3 +Δ1Δ2 − θ̂T

2 f2(x)

− V e2
k2b3 − e23
k2b2 − e22

cos
γ + γd

2
· sin(e3/2)

e3/2
, −k5e5

−e4
k2b5 − e25
k2b4 − e24

+ Q̇d − θ̂T
3 f3(x)

]T
, (51)

where B =

[
θ̂T
2 g2(x)

θ̂T
3 g3(x)

]
.

From Eq. (51), it can be seen that the smooth
parameter projections in Eqs. (34) and (49) are used
to ensure the nonsingularity of matrix B. To this
end, the convex compact set Θi (i = 2, 3) should be
appropriately selected such that

|det(B)| > �2 > 0, ∀ x ∈ A, ∀ θ̂i ∈ Θi, i = 2, 3,

(52)
where det(B) denotes the determinant of B and �2
is a constant. Note that condition (52) is easily sat-
isfied for the uncertainty set P and the envelope A
given in Eq. (4) and Table 1, respectively.
Remark 1 From Eqs. (33) and (48), it can be
observed that δe and δc play the same role in this
study. On the one hand, they force the altitude to
track the altitude reference trajectory by the lift from
δe and δc. On the other hand, they force the pitch
angle to track the pitch angle reference trajectory by
the pitching moment from δe and δc.

3.3 Performance analysis of the closed-loop
system

This subsection gives the stability results, which
can be described as the following theorem:
Theorem 1 Under Assumptions 1–3, consider the
closed-loop system consisting of the plant (Eqs. (1a)–
(3d)), the control laws (Eqs. (15) and (51)), and the
update laws (Eqs. (16), (34), and (49)). If there exist
constants ki > 0 and kbj > 0 (i, j = 1, 2, . . ., 5) such
that
(C1) the initial state x(0) satisfies

|es(0)| < kbs, s = 1, 2, . . . , 5, (53)

(C2) the following inequalities hold:

2286 ≤ (Vr)min − kb1 < (Vr)max + kb1 ≤ 3352.8,

(54a)

21 336 ≤ (hr)min − kb2 < (hr)max + kb2 ≤ 41 148,

(54b)

kb3 + arcsin
(
(k2kb2 + |ḣr|max)/2286

)
≤ 3π/180,

(54c)

−2π/180 ≤ (θr)min − kb4 < (θr)max + kb4 ≤ 7π/180,

(54d)

−10π/180 ≤ (θ̇r)min − kb5 − k4kb4 < (θ̇r)max

+kb5 + k4kb4 ≤ 10π/180, (54e)

then for any uncertain parameter vector p ∈ P , the
following properties hold:

(i) x(t) ∈ A, ∀ t ≥ 0;
(ii) all the closed-loop signals are bounded;
(iii) y(t)− yr(t) → 0, as t → ∞.

In inequalities (54a)–(54e), the numerical values such
as 2286 and 3352.8 are from Table 1.
Proof Choose the following Lyapunov function:

W = W1 +W3 +W5, (55)

where W1, W3, and W5 are defined in Eqs. (13),
(31), and (46), respectively. Differentiating W with
respect to time and using inequalities (17), (35), and
(50) yield

Ẇ ≤ −
5∑

i=1

ki
e2i

k2bi − e2i
. (56)

Therefore, it is clear that Ẇ ≤ 0 in the set Ω =

{|ei| < kbi, i = 1, 2, . . . , 5}, which means that W

is monotonously non-increasing in Ω. Based on in-
equality (53), it is further derived thatW (t) ≤ W (0),
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∀ t > 0. According to the definition of W in Eq. (55)
and using Eqs. (13), (31), and (46), it can be con-
cluded that there exists constant ςi > 0 such that
|ei| < ςi < kbi (i = 1, 2, . . . , 5).

1. Proof of property (i)
First, let us prove that V , h, and θp satisfy the

constraint A. From Eq. (9), it is clear that V =

e1 + Vr. By using |e1| < kb1 and inequality (54a), it
is further derived that V satisfies the constraint A.
Similarly, h and θp satisfy the constraint A. Second,
let us prove that Q satisfies the constraint A. From
Eqs. (38) and (42), it is clear that Q = e5 − k4e4 +

θ̇r. Together with |ei| < kbi (i = 4, 5) and using
inequality (54e), it can be concluded that Q satisfies
the constraint A. Finally, let us prove that γ satisfies
the constraint A. From Eqs. (20) and (24), it is clear
that

γ = e3 + arcsin
((− k2e2 + ḣr

)
/V
)
.

Given that V satisfies the constraint A and |ei| < kbi
(i = 2, 3), and using inequality (54c), it is derived
that

|γ| ≤ kb3+arcsin
(
(k2kb2+|ḣr|max)/2286

)
≤ 3π/180.

Therefore, γ satisfies the constraint A. In other
words, we have proved property (i).

2. Proof of property (ii)
First, according to property (i), x is obviously

bounded. Second, using standard properties of the
projection operator (Krstic et al., 1995), the estimate
θ̂i of θi (i = 1, 2, 3) is bounded. Finally, let us prove
the boundedness of u, which is given in Eqs. (15) and
(51). Given that x and θ̂i (i = 1, 2, 3) are bounded
and |ei| < ςi < kbi (i = 1, 2, . . ., 5), and using
inequalities (12) and (52), it can be concluded that
u is bounded. Hence, we have proved property (ii).

3. Proof of property (iii)
Considering inequality (56) and using |ei| < kbi

(i = 1, 2, . . ., 5), it is derived that

Ẇ ≤ −
5∑

i=1

ki
k2bi

e2i . (57)

By LaSalle’s invariance principle (Slotine and Li,
1991), it can be concluded that ei → 0 (i = 1, 2,
. . ., 5). On the one hand, e1 → 0 and e2 → 0 indi-
cate V − Vr → 0 and h − hr → 0, respectively. On
the other hand, using Eqs. (2), (36), (20), (8), and

(24), it is clear that

α− αr = θp − γ − αr

= (θp − θr)− (γ − γd)− αr + θr − γd

= e4 − e3 + β1 − β2, (58)

where β1 = arcsin
ḣr

Vr
and β2 = arcsin

−k2e2 + ḣr

V
.

Given that V and Vr satisfy the constraint A and
|e2| < kb2, and from inequality (54c), it is derived
that βi ∈ [−3π/180, 3π/180] (i = 1, 2). By Eq. (9),
it is further derived that

sinβ1 − sinβ2 = k2
e2
V

+
ḣr

VrV
e1.

Given that ḣr is bounded (Assumption 1), V and
Vr satisfy the constraint A, and ei → 0 (i = 1, 2),
it is clear that sinβ1 − sinβ2 → 0. Because βi ∈
[−3π/180, 3π/180] (i = 1, 2), it can be concluded
that β1 − β2 → 0. Now, let us consider Eq. (58).
According to ei → 0 (i = 3, 4) and β1 − β2 → 0,
it is clear that α − αr → 0. Hence, we have proved
property (iii).

Now, we have completed the proof of the
theorem.

In Theorem 1, a set of criteria, i.e., inequal-
ities (53) and (54a)–(54e), is given, providing a
guideline for the design of reference trajectories and
the selection of control parameters. From inequali-
ties (54a)–(54e), it can be observed that when the ref-
erence trajectories are slowly time-varying and they
are always far away from the bounds of A, the pa-
rameters kbi (i = 1, 2, . . ., 5) can be selected over a
large range. Together with inequality (53), it is fur-
ther concluded that large initial tracking errors can
be accepted. Otherwise, kbi (i = 1, 2, . . ., 5) can be
selected only in a narrow range, which means that
the initial tracking errors must be very small.

3.4 Solvability analysis of the controller
parameters

In this subsection, let us analyze the solvabil-
ity of the controller parameters ki and kbj (i, j =

1, 2, . . . , 5) in the criteria (inequalities (53) and
(54a)–(54e)). We have the following theorem:
Theorem 2 Suppose Assumptions 1–3 hold. If
the initial state x(0) and the reference trajectories
yr(t) satisfy the following inequalities:

|V (0)−Vr(0)| < min{3352.8−(Vr)max, (Vr)min−2286},
(59)
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|h(0)−hr(0)|<min{41 148−(hr)max, (hr)min−21 336},
(60)

|θp(0)− θr(0)| <
min{7π/180− (θr)max, (θr)min − (−2π/180)},

(61)∣∣∣∣∣γ(0)− arcsin
ḣr(0)

V (0)

∣∣∣∣∣ < 3π/180− arcsin
(ḣr)max

2286
,

(62)
|Q(0)− θ̇r(0)| <

min{10π/180− (θ̇r)max, (θ̇r)min − (−10π/180)},
(63)

then there exist positive constants ki and kbj (i, j =
1, 2, . . ., 5) such that inequalities (53) and (54a)–
(54e) hold. In inequalities (59)–(63), the numerical
values such as 2286 and 3352.8 are from Table 1.
Proof First, according to inequality (59), kb1 is
selected as

|V (0)− Vr(0)| < kb1 <

min{3352.8− (Vr)max, (Vr)min − 2286},
(64)

which is equivalent to the following two inequalities:

|V (0)− Vr(0)| < kb1, (65)

kb1 < min{3352.8− (Vr)max, (Vr)min − 2286}. (66)

By Eq. (9) and inequality (65), it is derived that

|e1(0)| = |V (0)− Vr(0)| < kb1. (67)

It is easy to see that inequality (66) is equivalent to
the following inequality:

2286 < (Vr)min−kb1 < (Vr)max+kb1 < 3352.8. (68)

From inequalities (67) and (68), it can be concluded
that inequalities (53) (with s = 1) and (54a) are
satisfied.

Second, according to inequality (60), kb2 is se-
lected as

|h(0)− hr(0)| < kb2 <

min{41 148− (hr)max, (hr)min − 21 336}.

Similar to the analysis of inequalities (64)–(68), it
can be concluded that inequalities (53) (with s = 2)
and (54b) are satisfied.

Third, according to inequality (61), kb4 is se-
lected as

|θp(0)− θr(0)| < kb4 <

min{7π/180− (θr)max, (θr)min − (−2π/180)}.

Similar to the analysis of inequalities (64)–(68), it
can be concluded that inequalities (53) (with s = 4)
and (54d) are satisfied.

Fourth, according to inequality (62), kb3 is se-
lected as

∣∣∣∣∣γ(0)− arcsin
ḣr(0)

V (0)

∣∣∣∣∣ < kb3

< 3π/180− arcsin
|ḣr|max

2286
.

(69)

By Eqs. (24) and (20), it can be seen that inequal-
ity (53) (with s = 3) is equal to

∣∣∣∣∣γ(0)− arcsin
−k2e2(0) + ḣr(0)

V (0)

∣∣∣∣∣ < kb3. (70)

Given that kb3 satisfies inequality (69), it can be con-
cluded that there exists a sufficiently small positive
constant k∗2 such that inequality (70), i.e., inequal-
ity (53) with s = 3, holds for any 0 < k2 < k∗2 .
Furthermore, according to inequality (69), it is clear
that

kb3 + arcsin
|ḣr|max

2286
< 3π/180. (71)

From inequality (71), it can be concluded that there
exists a sufficiently small positive constant k∗∗2 such
that inequality (54c) holds for any 0 < k2 < k∗∗2 .
Define σ = min{k∗2 , k∗∗2 } and it can be concluded
that inequalities (53) (with s = 3) and (54c) hold for
any 0 < k2 < σ.

Fifth, according to inequality (63), kb5 is se-
lected as

|Q(0)− θ̇r(0)| < kb5 <

min{10π/180− (θ̇r)max, (θ̇r)min − (−10π/180)}.
(72)

Similar to the analysis of inequalities (69)–(71), it
can be concluded that there exists a sufficiently small
positive constant μ such that inequalities (53) (with
s = 5) and (54e) are satisfied for any 0 < k4 < μ.

Finally, choose kj > 0 (j = 1, 3, 5) arbitrarily
because the three parameters are independent of the
criteria (inequalities (53) and (54a)–(54e)).

Thus, we have completed the proof of the
theorem.
Remark 2 In Theorem 2, inequalities (59)–(63)
are called the solvability conditions, providing a
guideline for the selection of reference trajectories.
Additionally, the proof process of Theorem 2 gives
the selection approach of the controller parameters
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ki and kbj (i, j = 1, 2, . . . , 5). Obviously, the selec-
tion of the controller parameters in the proposed ap-
proach is easier than that in the existing approaches
(Fiorentini et al., 2009; Fiorentini and Serrani, 2012;
Li and Meng, 2015) where the selection of the con-
troller parameters is a trial-and-error procedure.

4 Numerical simulation

In this section, simulation results are provided
to show the effectiveness of the method proposed in
Theorem 1.

Nominal values of inertial parameters and aero-
dynamic parameters can be found in Parker et al.
(2007) and Fiorentini (2010). In the simulation, as-
sume that all the uncertain parameters are randomly
generated in the parameter set P . The initial value
of the parameter estimate θ̂i takes the nominal value
of θi (i = 1, 2, 3). Initial states are given as follows:

V (0) = 2392.68 m/s, h(0) = 26 212.8 m,

γ(0) = 0 deg, α(0) = 1.44 deg, Q(0) = 0 deg/s.

In this simulation we consider a constant dy-
namic pressure flight. Given the altitude step com-
mand hcmd = 3962.4 m, the altitude reference tra-
jectory hr is generated by

hr =
ω2
1ω

2
2

(s2 + 2ξ1ω1s+ ω2
1) (s

2 + 2ξ2ω2s+ ω2
2)
hcmd

+hr(0),

hr(0) = h(0),

where ω1 = 0.03, ω2 = 0.02, and ξ1 = ξ2 = 0.95.
Furthermore, the velocity reference trajectory Vr is
derived from

Vr(t) =

[
2q̄

ρ0
exp

(
hr(t)− h0

hs

)]1/2

to maintain a constant dynamic pressure flight. In
the above equation, ρ0 = 0.0348 kg/m3, h0 =

25 908 m, hs = 6510 m, and q is a constant, which is
defined as

q = q(0) =
1

2
ρ0 exp

(
−hr(0)− h0

hs

)
V 2

r (0),

Vr(0) = V (0).

The AOA reference trajectory is generated by

αr =
ω2
3ω

2
4

(s2 + 2ξ3ω3s+ ω2
3) (s

2 + 2ξ4ω4s+ ω2
4)
αcmd

+αr(0),

αr(0) = α(0),

where ω3 = 0.03, ω4 = 0.02, ξ3 = ξ4 = 0.95, and
αcmd = 0.27 deg.

The controller parameters are given as follows:

k1 = 10, k2 = 5, k3 = 20, k4 = 1, k5 = 20,

Γ1 = 0.001I12, Γ2 = 0.75I16, Γ3 = 0.01I10,

kb1 = 20, kb2 = 20, kb3 = π/180,

kb4 = 0.1π/180, kb5 = 0.25π/180.

It is easily verified that the criteria (inequalities (53)
and (54a)–(54e)) given in Theorem 1 are satisfied.
In the simulation, the following limitations on Φ, δe,
and δc are imposed:

0.005 ≤ Φ ≤ 1.5,

−20 deg ≤ δe ≤ 20 deg,

−20 deg ≤ δc ≤ 20 deg.

Figs. 2 and 3 show the tracking performance of
the velocity, Figs. 4 and 5 show the tracking per-
formance of the altitude, and Figs. 6 and 7 show
the tracking performance of the AOA. From these
simulation results, it can be seen that not only the
velocity and the altitude, but also the AOA has good
tracking performance over the entire flight. Com-
pared with the existing studies (Fiorentini et al.,
2009; Sun HF et al., 2013; Zong et al., 2013), the
AOA behaves in an expected manner in the pro-
posed approach, which reduces the coupling between
the air-breathing engine and the AOA and thus im-
proves the performance of the air-breathing engine.

Clearly, the velocity, the altitude, and the AOA
are always within the envelope A given in Table 1.
Figs. 8–10 show the responses of the FPA, the pitch
angle, and the pitch rate, respectively, indicating
that these states are also always within the envelope
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Fig. 2 Velocity tracking
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Fig. 4 Altitude tracking
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Fig. 5 Altitude tracking error

A. In addition, from Figs. 11 and 12, it can be seen
that the control inputs satisfy the given constraint.
In summary, simulation results test and verify the
effectiveness of the proposed approach.

5 Conclusions and future work

We have investigated the tracking problem of
the velocity, the altitude, and the AOA for the longi-
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Fig. 7 AOA tracking error
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Fig. 8 Flight-path angle

tudinal dynamics of air-breathing hypersonic cruise
vehicles with state constraints. By redefining the
output variables, an indirect AOA tracking strategy
has been proposed. Compared with the existing ap-
proaches, the proposed approach can not only ensure
the tracking of the velocity and the altitude, but also
guarantee the tracking of the AOA, which can im-
prove the performance of air-breathing engines. In
addition, the conventional barrier Lyapunov function
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has been used to solve the state-constrained control
problem of the class of systems with unknown control
gain, which considerably expands the scope of appli-
cation of this method. Finally, a set of criteria has
been provided, which is simple and can be easily ver-
ified. Consequently, the proposed approach greatly
simplifies the control design procedure. Simulation
results show the effectiveness of the approach.
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Fig. 12 Control surface deflection

In this paper, the research is focused only on
the longitudinal dynamics. These results will be ex-
tended to complete six-degree-of-freedom dynamics
with flexible modes in future work.

References
Bemporad, A., 1998. Reference governor for constrained

nonlinear systems. IEEE Trans. Autom. Contr.,
43(3):415-419. http://dx.doi.org/10.1109/9.661611

Bolender, M.A., Doman, D.B., 2007. Nonlinear longitudinal
dynamical model of an air-breathing hypersonic vehicle.
J. Spacecraft Rockets, 44(2):374-387.
http://dx.doi.org/10.2514/1.23370

Bu, X.W., Wu, X.Y., Ma, Z., et al., 2016. Novel auxiliary
error compensation design for the adaptive neural con-
trol of a constrained flexible air-breathing hypersonic
vehicle. Neurocomputing, 171:313-324.
http://dx.doi.org/10.1016/j.neucom.2015.06.058

Burger, M., Guay, M., 2010. Robust constraint satisfaction
for continuous-time nonlinear systems in strict feedback
form. IEEE Trans. Autom. Contr., 55(11):2597-2601.
http://dx.doi.org/10.1109/TAC.2010.2061090

Cox, C., Lewis, C., Pap, R., et al., 1995. Prediction of
unstart phenomena in hypersonic aircraft. Proc. Int.
Aerospace Planes and Hypersonics Technologies, Int.
Space Planes and Hypersonic Systems and Technologies
Conf. http://dx.doi.org/10.2514/6.1995-6018

Fidan, B., Mirmirani, M., Ioannou, P., 2003. Flight dynamics
and control of air-breathing hypersonic vehicles: review
and new directions. Proc. 12th AIAA Int. Space
Planes and Hypersonic Systems and Technologies Conf.
http://dx.doi.org/10.2514/6.2003-7081

Fiorentini, L., 2010. Nonlinear Adaptive Controller Design
for Air-Breathing Hypersonic Vehicles. PhD Thesis,
Ohio State University, USA.

Fiorentini, L., Serrani, A., 2012. Adaptive restricted tra-
jectory tracking for a non-minimum phase hypersonic
vehicle model. Automatica, 48(7):1248-1261.
http://dx.doi.org/10.1016/j.automatica.2012.04.006

Fiorentini, L., Serrani, A., Bolender, M.A., et al., 2009. Non-
linear robust adaptive control of flexible air-breathing
hypersonic vehicles. J. Guid. Contr. Dyn., 32(2):402-
417. http://dx.doi.org/10.2514/1.39210



Li / Front Inform Technol Electron Eng 2017 18(5):599-614 613

Gibson, T.E., Crespo, L.G., Annaswamy, A.M., 2009. Adap-
tive control of hypersonic vehicles in the presence of
modeling uncertainties. Proc. American Control Conf.,
p.3178-3183.
http://dx.doi.org/10.1109/ACC.2009.5160746

Gilbert, E., Kolmanovsky, I., 2002. Nonlinear track-
ing control in the presence of state and control con-
straints: a generalized reference governor. Automatica,
38(12):2063-2073.
http://dx.doi.org/10.1016/s0005-1098(02)00135-8

Gregory, I., Mcminn, J., Shaughnessy, J., et al., 1992. Hy-
personic vehicle control law development using H∞ and
μ-synthesis. Proc. 4th Symp. on Multidisciplinary
Analysis and Optimization Conf.
http://dx.doi.org/10.2514/6.1992-5010

Hu, X., Karimi, H.R., Wu, L., et al., 2014a. Model predictive
control-based non-linear fault tolerant control for air-
breathing hypersonic vehicles. IET Contr. Theory
Appl., 8(13):1147-1153.
http://dx.doi.org/10.1049/iet-cta.2013.0986

Hu, X., Wu, L., Hu, C., et al., 2014b. Dynamic output
feedback control of a flexible air-breathing hypersonic
vehicle via T-S fuzzy approach. Int. J. Syst. Sci.,
45(8):1740-1756.
http://dx.doi.org/10.1080/00207721.2012.749547

Jin, X., Kwong, R.H.S., 2015. Adaptive fault tolerant con-
trol for a class of MIMO nonlinear systems with input
and state constraints. Proc. American Control Conf.,
p.2254-2259.
http://dx.doi.org/10.1109/ACC.2015.7171068

Krstic, M., Kanellakopoulos, I., Kokotovic, P.V., 1995. Non-
linear and Adaptive Control Design. Wiley.

Li, G.J., Meng, B., 2015. Actuators coupled design based
adaptive backstepping control of air-breathing hyper-
sonic vehicle. IFAC-PapersOnLine, 48(28):508-513.
http://dx.doi.org/10.1016/j.ifacol.2015.12.179

Li, S.H., Sun, H.B., Sun, C.Y., 2012. Composite controller
design for an airbreathing hypersonic vehicle. Proc.
Instit. Mech. Eng. Part I, 226(5):651-664.
http://dx.doi.org/10.1177/0959651811428837

Liu, Y.J., Li, D.J., Tong, S.C., 2014. Adaptive output
feedback control for a class of nonlinear systems with
full-state constraints. Int. J. Contr., 87(2):281-290.
http://dx.doi.org/10.1080/00207179.2013.828854

Mayne, D.Q., Rawlings, J.B., Rao, C.V., et al., 2000. Con-
strained model predictive control: stability and opti-
mality. Automatica, 36(6):789-814.
http://dx.doi.org/10.1016/s0005-1098(99)00214-9

Mirmirani, M., Kuipers, M., Levin, J., et al., 2009. Flight
dynamic characteristics of a scramjet-powered generic
hypersonic vehicle. Proc. American Control Conf.,
p.2525-2532.
http://dx.doi.org/10.1109/ACC.2009.5160500

Ngo, K.B., Mahony, R., Jiang, Z.P., 2005. Integrator back-
stepping using barrier functions for systems with mul-
tiple state constraints. Proc. 44th IEEE Conf. on
Decision and Control, p.8306-8312.
http://dx.doi.org/10.1109/CDC.2005.1583507

Oland, E., Schlanbusch, R., Kristiansen, R., 2013. Underac-
tuated translational control of a rigid spacecraft. Proc.
IEEE Aerospace Conf., p.1-7.
http://dx.doi.org/10.1109/AERO.2013.6497324

Parker, J.T., Serrani, A., Yurkovich, S., et al., 2007. Control-
oriented modeling of an air-breathing hypersonic vehi-
cle. J. Guid. Contr. Dyn., 30(3):856-869.
http://dx.doi.org/10.2514/1.27830

Pettersen, K.Y., 2015. Underactuated marine control sys-
tems. In: Baillieul, J., Samad, T. (Eds.), Encyclopedia
of Systems and Control, p.1499-1503.
http://dx.doi.org/10.1007/978-1-4471-5058-9_125

Qiu, J.B., Feng, G., Gao, H.J., 2013. Static-output-feedback
H∞ control of continuous-time T-S fuzzy affine systems
via piecewise Lyapunov functions. IEEE Trans. Fuzzy
Syst., 21(2):245-261.
http://dx.doi.org/10.1109/TFUZZ.2012.2210555

Qiu, J.B., Wei, Y.L., Karimi, H.R., 2015. New approach
to delay-dependent H∞ control for continuous-time
Markovian jump systems with time-varying delay and
deficient transition descriptions. J. Franklin Instit.,
352(1):189-215.
http://dx.doi.org/10.1016/j.jfranklin.2014.10.022

Qiu, J.B., Ding, S.X., Gao, H.J., et al., 2016. Fuzzy-
model-based reliable static output feedback H∞ control
of nonlinear hyperbolic PDE systems. IEEE Trans.
Fuzzy Syst., 24(2):388-400.
http://dx.doi.org/10.1109/TFUZZ.2015.2457934

Serrani, A., 2013. Nested zero-dynamics redesign for a
non-minimum phase longitudinal model of a hypersonic
vehicle. Proc. 52nd IEEE Conf. on Decision and
Control, p.4833-4838.
http://dx.doi.org/10.1109/CDC.2013.6760647

Shaughnessy, J.D., Pinckney, S.Z., McMinn, J.D., et al.,
1990. Hypersonic Vehicle Simulation Model: Winged-
Cone Configuration. NASA Technical Memorandum
102610, USA.

Slotine, J.J.E., Li, W., 1991. Applied Nonlinear Control.
Prentice-Hall Englewood Cliffs, New Jersey, USA.

Sun, H.B., Li, S.H., Sun, C.Y., 2013. Finite time integral
sliding mode control of hypersonic vehicles. Nonl. Dyn.,
73(1):229-244.
http://dx.doi.org/10.1007/s11071-013-0780-4

Sun, H.F., Yang, Z.L., Zeng, J.P., 2013. New tracking-control
strategy for airbreathing hypersonic vehicles. J. Guid.
Contr. Dyn., 36(3):846-859.
http://dx.doi.org/10.2514/1.57739

Tee, K.P., Ge, S.S., 2011. Control of nonlinear systems
with partial state constraints using a barrier Lyapunov
function. Int. J. Contr., 84(12):2008-2023.
http://dx.doi.org/10.1080/00207179.2011.631192

Tee, K.P., Ge, S.S., Tay, E.H., 2009. Barrier Lyapunov
functions for the control of output-constrained nonlinear
systems. Automatica, 45(4):918-927.
http://dx.doi.org/10.1016/j.automatica.2008.11.017

Wang, T., Gao, H., Qiu, J., 2016. A combined adaptive neu-
ral network and nonlinear model predictive control for
multirate networked industrial process control. IEEE
Trans. Neur. Netw. Learn. Syst., 27(2):416-425.
http://dx.doi.org/10.1109/TNNLS.2015.2411671

Wolff, J., Weber, C., Buss, M., 2007. Continuous control
mode transitions for invariance control of constrained
nonlinear systems. Proc. 46th IEEE Conf. on Decision
and Control, p.542-547.
http://dx.doi.org/10.1109/CDC.2007.4434916



614 Li / Front Inform Technol Electron Eng 2017 18(5):599-614

Wu, H.N., Liu, Z.Y., Guo, L., 2014. Robust L∞-gain fuzzy
disturbance observer-based control design with adaptive
bounding for a hypersonic vehicle. IEEE Trans. Fuzzy
Syst., 22(6):1401-1412.
http://dx.doi.org/10.1109/TFUZZ.2013.2292976

Xu, B., Gao, D.X., Wang, S.X., 2011. Adaptive neural
control based on HGO for hypersonic flight vehicles.
Sci. China Inform. Sci., 54(3):511-520.
http://dx.doi.org/10.1007/s11432-011-4189-8

Xu, B., Sun, F., Liu, H., et al., 2012. Adaptive Kriging
controller design for hypersonic flight vehicle via back-
stepping. IET Contr. Theory Appl., 6(4):487-497.
http://dx.doi.org/10.1049/iet-cta.2011.0026

Xu, H.J., Mirmirani, M.D., Ioannou, P.A., 2004. Adaptive
sliding mode control design for a hypersonic flight vehi-
cle. J. Guid. Contr. Dyn., 27(5):829-838.
http://dx.doi.org/10.2514/1.12596

Yang, J., Li, S.H., Sun, C.Y., et al., 2013. Nonlinear-
disturbance-observer-based robust flight control for air-
breathing hypersonic vehicles. IEEE Trans. Aerosp.
Electron. Syst., 49(2):1263-1275.
http://dx.doi.org/10.1109/taes.2013.6494412

Zong, Q., Wang, J., Tao, Y., 2013. Adaptive high-order
dynamic sliding mode control for a flexible air-breathing
hypersonic vehicle. Int. J. Robust Nonl. Contr.,
23(15):1718-1736. http://dx.doi.org/10.1002/rnc.3040


	Introduction
	Vehicle model and control objective
	Main results
	Redefinition of outputs
	Control law design
	Control of the velocity subsystem
	Control of the altitude subsystem

	Performance analysis of the closed-loop system
	Solvability analysis of the controller parameters

	Numerical simulation
	Conclusions and future work

