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Abstract: In this paper, three optimal linear formation control algorithms are proposed for first-order linear multi-
agent systems from a linear quadratic regulator (LQR) perspective with cost functions consisting of both interaction
energy cost and individual energy cost, because both the collective object (such as formation or consensus) and the
individual goal of each agent are very important for the overall system. First, we propose the optimal formation
algorithm for first-order multi-agent systems without initial physical couplings. The optimal control parameter
matrix of the algorithm is the solution to an algebraic Riccati equation (ARE). It is shown that the matrix is the
sum of a Laplacian matrix and a positive definite diagonal matrix. Next, for physically interconnected multi-agent
systems, the optimal formation algorithm is presented, and the corresponding parameter matrix is given from the
solution to a group of quadratic equations with one unknown. Finally, if the communication topology between
agents is fixed, the local feedback gain is obtained from the solution to a quadratic equation with one unknown.
The equation is derived from the derivative of the cost function with respect to the local feedback gain. Numerical
examples are provided to validate the effectiveness of the proposed approaches and to illustrate the geometrical
performances of multi-agent systems.

Key words: Linear quadratic regulator (LQR), Formation control, Algebraic Riccati equation (ARE), Optimal
control, Multi-agent systems
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1 Introduction

The study of formations for a group of agents is
inspired by the behaviors of various animal species
in nature. For instance, fish, birds, and ants always
work in a cooperative manner so as to accomplish
tasks that are beyond the capability of individuals.
The formation for agents has its wide range of appli-
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cations in both civilian and military domains, where
there are generally three basic parts to be designed,
i.e., the underlying graph cooperating the interaction
between agents, the cooperative algorithm among
agents that is concerned with an exact assignment,
and the local feedback controller that is responsible
for the stability of the overall system.

In recent ten years, there have been an increas-
ing number of studies towards the distributed for-
mation for multi-agent systems (Oh et al., 2015).
Roughly, there are mainly three methods dealing
with the problem. The first method presents the
formation laws with angle-based only approaches
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(Basiri et al., 2010; Bishop, 2011; Zhao et al., 2014).
The second method investigates the formation prob-
lem using gradient control laws from the relative dis-
tance measures perspective (Yu et al., 2007; 2009;
Guo et al., 2010). The third method is consensus-
based laws related to the Laplacian matrix with off-
sets to solve the formation problem. Specifically, by
employing the consensus method, we can assign the
desired formation arbitrarily, and deal with the for-
mation for an arbitrarily large number of agents. If
the desired formation or the number of agents has
been changed, for each agent the control algorithm
should not be updated drastically. Furthermore, the
related tools to study consensus, such as matrix the-
ory and algebraic graph, are very mature. Hence,
consensus is a better approach for designing forma-
tion laws than other approaches, and there exists a
great amount of literature in this field (Ren et al.,
2007; Xiao et al., 2009; Dimarogonas and Johans-
son, 2010; Qin et al., 2011; Qin and Gao, 2012; Li
et al., 2014; Liu and Jiang, 2014; Shi et al., 2014).
Qin et al. (2011) investigated two kinds of consensus
problems for second-order agents under directed and
arbitrarily switching topologies. Qin and Gao (2012)
proposed a discrete-time second-order consensus al-
gorithm for networks of agents with nonuniform and
time-varying communication delays. Shi et al. (2014)
considered a graph optimization problem for tracking
consensus for first-order multi-agent systems. Xiao
et al. (2009), Dimarogonas and Johansson (2010), Li
et al. (2014), and Liu and Jiang (2014) proposed the
distributed nonlinear formation laws for multi-agent
systems via consensus-based results.

Due to the economic or other reasons, it is nat-
ural to design an optimal linear formation algorithm
under a given cost function. Dealing with the op-
timal formation problem we aim to obtain the best
performance index, such as the least energy expen-
diture or the shortest formation time. Moreover, in
many situations, the individual goal and collective
goal both have critical impact on the performance of
the overall multi-agent systems. Therefore, we study
optimal linear formation algorithms for multi-agent
systems with single-integrator dynamics in three as-
pects from the linear quadratic regulator (LQR) per-
spective, and focus on the situation in which both
the collective objective of all agents and the indi-
vidual objective of each agent are considered. The

cost functions should contain the interaction-related
energy cost item and individual-related energy cost
item.

Detailedly, we investigate three cases of LQR
formation for multi-agent systems:

1. We first consider the no initial couplings
case for agents, in which the optimal communication
topology and the optimal feedback matrix should be
designed to minimize the cost function. The param-
eter matrices are obtained from the solution to an
algebraic Riccati equation (ARE).

2. If there exist couplings between agents, the
optimal formation algorithm is proposed, and the
optimal control parameters are obtained from a team
of quadratic equations with one unknown, not an
ARE.

3. When the communication graph between
agents is fixed and only local feedback gain can be
designed for each agent, the optimal local feedback
gain is solved from a quadratic equation with one un-
known. This equation is related to the initial values
of all agents and the Laplacian matrix corresponding
to the fixed communication graph.

To illustrate the contribution of this paper, we
compare our work with the existing literature. Dif-
ferent from Cao and Ren (2010) which considered the
optimality aspect of the coordination for multi-agent
systems with individual integrator dynamics, the op-
timal indexes defined in this study not only consider
the collective goal of all agents, but also focus on
the individual goal of each agent. Movric and Lewis
(2014) presented inverse optimality of consensus and
pinning control laws for linear multi-agent systems
with partial stability theory. Oh et al. (2015) consid-
ered interconnected systems consisting of identical
agents for linear quadratic regulation by networked
controllers. However, the above two works did not
give the exact parameters of the control algorithms.
In this study, we give the solution to the AREs and
the exact forms of the proposed controllers. Differ-
ent from Ghadami and Shafai (2013) which designed
only a distributed controller for a continuous-time
system composed of a number of identical dynami-
cally coupled agents, in this study, we also consider
the optimal cooperation for these agents. Com-
pared with Borrelli and Keviczky (2008) which fo-
cused only on distributed controller design of large-
scale dynamically isolated systems from the LQR
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perspective, we not only investigate the optimal for-
mation for initially isolated multi-agent systems, but
also study the problem for physically coupled multi-
agent systems. Zhang et al. (2011) and Ghadami and
Shafai (2014) investigated LQR cooperative prob-
lems for the general linear system; however, they can
maintain only those parameters that are the solu-
tions to a set of AREs. In contrast, we give the exact
form of the optimal control parameters. As the most
related work, Huang et al. (2010) proposed an opti-
mal control law based on LQR for a group of agents
to maintain formations while moving towards their
destinations. Here, we expand their results to the
following cases: (1) optimal formations for initially
isolated multi-agent systems; (2) optimal formations
for multi-agent systems under fixed and unchange-
able topology.

2 Preliminaries

Notations R
m×n denotes the family of m × n

real matrices. For a given matrix X ∈ R
m×n, XT

denotes its transpose. The term diag(a1, a2, . . . , ap)
is a diagonal matrix with diagonal entries a1 to ap,
1n denotes the n-dimensional column vector of all
ones, and 0n and In denote the n-dimensional zero
matrix and identity matrix, respectively.

Some basic concepts and notations in matrix
theory and algebraic graph theory are referred to
Horn and Johnson (1985; 1991) and Godsil and Royle
(2013).

For a group of N agents, let G = (V , E ,A)

present the communication topology between all
agents, where V = {1, 2, . . . , n} is the set of nodes
and E ⊆ V × V the set of undirected edges. In an
undirected graph, the pairs of nodes are unordered,
and an edge (i, j) ∈ E denotes that nodes i and j can
directly obtain information from each other, that is,
aij = aji. In addition, the set of neighbors of the
ith agent, represented by Ni = {j ∈ V|(j, i) ∈ E},
is the set of all agents from which the ith agent can
receive the information directly. The weighted ad-
jacency matrix A = [aij ] ∈ R

n×n of graph G is
defined such that aij > 0 if and only if (j, i) ∈ E ;
otherwise, aij = 0. Moreover, we assume that
aii = 0 for all i ∈ V . Define the in-degree of the
ith agent as di =

∑n
j=1 aij . The Laplacian matrix

L = [lij ] ∈ R
n×n for the directed graph G is defined

by L = diag(d1, d2, . . . , dn) − A. One can see that
L has at least one zero eigenvalue with the corre-
sponding eigenvector 1n. If the undirected graph G
is connected, the corresponding Laplacian matrix L

is symmetric and has exactly one zero eigenvalue.
A matrix A is nonnegative, if all of its entries are
nonnegative.
Definition 1 A matrix A ∈ R

n×n is called an
M-matrix if it has the form A = sIn − B, where
s > 0, B is a nonnegative matrix, and ρ(B) ≤ s

(ρ(B) is the spectral radius of B). Specifically, A is
a nonsingular M-matrix if ρ(B) < s.

For a nonsingular M-matrix, the following
lemma holds:
Lemma 1 (Horn and Johnson, 1991) Let

Zn = {A = (aij)n×n ∈ R
n×n : aij ≤ 0,

i �= j, i, j = 1, 2, . . . n}

and A ∈ Zn. Then the following statements are
equivalent:

1. The leading principal minor determinants of
A are all positive;

2. The eigenvalues of A have positive real parts;
3. The diagonal entries of A are positive and

AD is strictly row diagonally dominant for some
positive diagonal matrix D;

4. A−1 exists and is nonnegative.
Lemma 2 (Alefeld and Schneider, 1982) An M-
matrix A, which can be written as A = s(In − P ),
where s > 0, ρ(P ) ≤ 1, has exactly one M-matrix
N = s1/2(In − Y ∗) as its square root if its charac-
teristic polynomial has at most one simple zero root.
Y ∗ is the limit of the sequence Yi generated by

Yi+1 =
1

2
(P + Y 2

i ), Y0 = 0. (1)

Based on the above definition and lemmas, we
have the following lemma:
Lemma 3 The square root of a strictly row diag-
onally dominant M-matrix A = [aij ] is strictly row
diagonally dominant.
Proof Note the square root of A is A1/2. From
Definition 1 and Lemma 2, A1/2 = s1/2(In − Y ∗).
Because A is strictly row diagonally dominant, not-
ing the ith row sum of Pi as ri(P ), we have

ri(P ) =

n∑

j=1

pij < 1,



Yu et al. / Front Inform Technol Electron Eng 2016 17(2):96-109 99

and pij < 1, i, j = 1, 2, . . . , n. From Eq. (1), it can
be obtained that Y1 = P /2 and ri(Y1) < 1. For
nonnegative matrix P , we have

ri(P
2) =

n∑

j=1

n∑

k=1

pikpkj =

n∑

k=1

pik

n∑

j=1

pkj

=

n∑

k=1

pikrk(P ) < ri(P ) < 1.

It follows ri(Y2) = ri[(P + P 2/4)/2] < ri(Y1) <

1. In the same way, we can obtain ri(Yk+1) <

ri(Yk), i = 1, 2, . . . , n. Then ri(Y
∗) < 1, which im-

plies that In − Y ∗ is a strictly row diagonally dom-
inant matrix. As a result, A1/2 = s1/2(In − Y ∗) is
strictly row diagonally dominant and A1/21n > 0.

3 Main results

In this section, we investigate the optimal for-
mation algorithms for first-order linear multi-agent
systems from LQR. The dynamics of the ith agent is
given by

ẋi = ui, (2)

where xi(t) ∈ R
m and ui(t) ∈ R

m are, respectively,
the state vector and the control input vector of the
ith agent. In practice, a great number of plants
can be viewed as a single integrator. For example,
the control inputs of some types of unmanned ve-
hicles are linear velocities, so the dynamics of un-
manned vehicles is of first order if the translation
is viewed as the output. For quite a lot of types
of spacecrafts, such as quadrotors, angular velocities
are control inputs; then the first-order integration of
angular velocities is the attitude of these spacecrafts.
Therefore, we choose the dynamics of agents as single
integrators.

The corresponding optimization problem is to
find ui(t) to obtain the minimal quadratic cost func-
tion J . Each agent should focus on the collective
objective formation and pay attention to its own in-
dividual objective. Both objectives are considered in
this study.

3.1 LQR formation for initially isolated multi-
agent systems

In this subsection, we assume that all agents
are isolated initially, which is the simplest case of
formation problems for multi-agent systems. In this

case, the communication topology between all agents
and the local feedback gain for each agent should
be designed. Hence, this case is the basis of some
more complicated cases, such as the physically cou-
pled case, fixed and unchangeable couplings cases,
which will be discussed later.

Similar to the cost function used in LQR control
for general linear systems, the cost function combin-
ing the interaction-related item and individual con-
trol objective item is given by

J =

∫ ∞

0

(
n∑

i=1

i−1∑
j=1

hij(xi − xj −Δij)
T(xi − xj −Δij)

+

n∑
i=1

ei(xi − δi)
T(xi − δi) +

n∑
i=1

riu
T
i ui

)
dt,

(3)

where δi is the constant objective of the ith agent,
Δij = δi−δj is the desired formation offset between
the ith agent and the jth agent, and hij ≥ 0, ei > 0,
ri > 0. Letting x̃i = xi − δi, the cost function is
rewritten in matrix form as

J =

∫ ∞

0

[x̃T(Q⊗ Im)x̃+ x̃T(E ⊗ Im)x̃

+ uT(R⊗ Im)u]dt, (4)

where x̃ and u are the column stack vectors of x̃i

and ui, respectively. Similar to Cao and Ren (2010),
the matrix Q = [qij ] is a symmetric Laplacian ma-
trix if choosing qij = qji = −hij for i �= j, and
qii =

∑i−1
j=1,j �=i hij . E and R are positive def-

inite diagonal matrices with ei and ri being the
ith diagonal entries respectively. It is clear that
the item

∫∞
0 x̃T(Q ⊗ Im)x̃dt represents the forma-

tion energy of multi-agent systems, while the item
∫∞
0

x̃T(E ⊗ Im)x̃dt represents the energy of each
agent to reach its individual objective.

From Anderson and Moore (2007), if choosing
u = −(R ⊗ Im)−1Px̃, we can obtain the minimum
J , and P ∈ R

(mn)×(mn) is the unique positive semi-
definite matrix satisfying the continuous-time alge-
braic Riccati equation (ARE):

(In ⊗A)TP + P (In ⊗A)

− P (R⊗ Im)−1P + (Q+E)⊗ Im = 0mn.

In this case, A = 0m holds because all agents
can be considered single integrators. Then the above
ARE becomes

−P (R ⊗ I)−1P = −(Q+E)⊗ Im,
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which implies that

[(R ⊗ Im)−1P ]2 = [R−1(Q+E)]⊗ Im. (5)

It is necessary to reduce the dimension of P to lower
the complexity of the algorithm. Denote a positive
definite matrix P̄ ∈ R

n×n to satisfy −P̄R−1P̄ =

−(Q+E), which also means

(R−1P̄ )2 = R−1(Q+E).

Post-multiplying the above equation by ⊗Im, we
obtain

[(R−1P̄ )2]⊗ Im = [R−1(Q+E)]⊗ Im. (6)

Considering the property of the Kronecker product,
ARE (6) is equivalent to ARE (5) if choosing P =

P̄ ⊗Im. The only solution to Eq. (6) is P̄ = [R(Q+

E)]1/2. Then the control input is

u = −[(R−1P̄ )⊗Im]x̃ = −[(R−1(Q+E))1/2⊗Im]x̃.

(7)
In another way, the distributed control law for

each agent should employ only the local information
and the relative information between the agent and
its neighbors. It means that the control input must
be subject to the following form:

ui = −ki(xi − δi)−
n∑

i=1

aij(xi − xj −Δij), (8)

where ki is the local feedback gain to let the ith
agent achieve its objective, and aij is the entry of
the adjacency matrix of the topology that needs to
be designed. The matrix form of ui is

u = −(L⊗ Im)x̃− (K ⊗ Im)x̃, (9)

where K = diag(k1, k2, . . . , kn). Comparing the
form of Eq. (7) with the form of Eq. (9), it is critical
to show that (R−1Q +R−1E)1/2 can be separated
into the sum of a Laplacian matrix and a diagonal
matrix whose diagonal entries are positive.
Theorem 1 In the LQR formation for single-
integrator multi-agent systems with cost func-
tion (3), the optimal algorithm is

u = −[(R−1(Q+E))1/2⊗Im]x̃ = −[(L+K)⊗Im]x̃,

(10)
where

L =(R−1Q+R−1E)1/2

− diag[(R−1Q+R−1E)1/21n] (11)

is a Laplacian matrix, and

K = diag[(R−1Q+R−1E)1/21n] (12)

is a positive definite diagonal matrix.
Proof Q is a symmetric Laplacian matrix, so it
is also a singular M-matrix. Then it is obvious that
matrix R−1Q is a singular M-matrix. As a result,
matrix R−1Q + R−1E is a nonsingular M-matrix,
and its characteristic polynomial has no zero root.
From Lemma 2, (R−1Q+R−1E)1/2 is a nonsingular
M-matrix, and it can be rewritten as αI −C, where
α > 0, C = [cij ] ∈ R

n×n, ρ(C) < α, and all entries
of C are nonnegative. If L is defined as Eq. (11) and
K is defined as Eq. (12), we have

αI −C = L+ diag[(αI −C)1n]

and

diag[(αI −C)1n] =

⎧
⎨

⎩

α−
n∑

i=1

cij , i = j,

0, i �= j.

Let

C ′ = C + diag[(αI −C)1n]

=

⎧
⎨

⎩

α−
n∑

i=1

cij + cii, i = j,

cij , i �= j.

Therefore,

L = αI −C ′ =

⎧
⎨

⎩

n∑

i=1,i�=j

cij , i = j,

−cij , i �= j.

Because all entries of C are nonnegative, the above is
the standard definition of a Laplacian matrix. Thus,
L is a Laplacian matrix.

Choosing the local feedback matrix

K = diag[(R−1Q+R−1E)1/21n],

we have that the diagonal entries of K are positive,
since (R−1Q +R−1E)1/2 is strictly row diagonally
dominant according to Lemma 3.
Remark 1 Note that the matrix (R−1Q +

R−1E)1/2 − diag[(R−1Q+R−1E)1/21n] is not nec-
essarily symmetric in general, so the designed com-
munication topology may be directed. Moreover, the
choice of the symmetric Laplacian matrix Q depends
on the desired energy cost of formation between two
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agents that may not be connected physically. The de-
signed Laplacian matrix L is usually different from
the corresponding matrix Q. Essentially, the com-
munication topology associated with L is a complete
graph; i.e., each pair of distinct nodes is connected
by an edge. This is because it may be impossible to
rely on only local information to obtain the global
optimal objective. Similar discussion was given in
Cao and Ren (2010). In this subsection, we focus on
the global optimization problem, so that each agent
should have the full knowledge of all other agents.
This problem should not be worked out by using lo-
cal information. In addition, in this subsection we
just design a control algorithm to guarantee that the
cost function of the multi-agent systems is optimal,
and do not investigate how to solve a distributed con-
trol problem. Furthermore, if the number of agents
is very small, the all-to-all communication structure
among agents is not very complex, and we can also
obtain the optimal index for the networked system
using the proposed control algorithm.
Remark 2 Different from most literature in which
all agents have the same control parameters, the dis-
tributed optimal formation algorithm (8) has differ-
ent local feedback gains ki for different agents to
make the cost function J minimum.

3.2 LQR formation for physically coupled
multi-agent systems

In the above subsection we have studied the
optimal formation problem for multi-agent systems
with no initial couplings. However, in many cases,
initially there may exist physical couplings between
the agents. For example, in a multi-vehicle coordi-
nated control problem initially some vehicles already
have some communication exchanges with other ve-
hicles for other missions. These actions can be
viewed as physical couplings. In this subsection,
we study the optimal formation for multi-agent sys-
tems with physically interconnected couplings. The
communication and local feedback matrix need to be
designed. The dynamics of the ith agent is given by

ẋi =

n∑

i=1

aij(xj − xi −Δji) + ui,

and its matrix form is

˙̃x = −(L1 ⊗ Im)x̃+ u, (13)

where x̃ is defined the same as in the above subsec-
tion, aij is the existing undirected coupling weight
between the ith agent and the jth agent, and L1

is the Laplacian matrix corresponding to the cou-
plings. Because it is assumed that the communica-
tion topology between the agents is undirected, all
agents in the topology have equal importance, and
thus all agents have the same optimal weights r1 and
r2. The cost function is defined by

J =

∫ ∞

0

(
n∑

i=1

i−1∑
j=1

aij(xi − xj −Δij)
T(xi − xj −Δij)

+
n∑

i=1

r1(xi − δi)
T(xi − δi) +

n∑
i=1

r2u
T
i ui

)
dt

=

∫ ∞

0

[
x̃T(L1 ⊗ Im)x̃+ r1x̃

Tx̃+ r2u
Tu

]
dt. (14)

The control input is subject to the form

ui = −
n∑

i=1

bij(xi − xj −Δij)− ki(xi − δi),

where ki is the local feedback gain, and bij is the
edge weight that needs to be designed. Its matrix
form is

u = −(L2 ⊗ Im)x̃− (K ⊗ Im)x̃,

where K = diag(k1, k2, . . . , kn), and

L2 =

⎧
⎨

⎩

n∑

i=1,i�=j

bij , i = j,

−bij, i �= j.

It is obvious that L21n = 0n always holds. Note
that bij may be negative, so L2 is not a Laplacian
matrix in some cases. To solve the optimal formation
from the LQR perspective, u should be designed to
obtain the minimal J . Then we have the following
theorem:
Theorem 2 In the optimal formation un-
der undirected couplings for the cost function (14)
subject to Eq. (13), the optimal control param-
eter matrices are L2 = r−1

2 P̄ − (r1/r2)
1/2In

and K = (r1/r2)
1/2In, where P̄ can be con-

structed as P̄ = MTdiag(p1, p2, . . . , pn)M with
M being an orthogonal matrix such that L1 =

MTdiag(λ1, λ2, . . . , λn)M ; moreover, we have

pi = −λir2 + [λ2
i r

2
2 + r(λi + r1)]

1/2, i = 1, 2, . . . , n.

Proof From Anderson and Moore (2007), the
optimal solution to Eq. (14) subject to Eq. (13) is
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u = −r−1
2 Px̃, where P ∈ R

(mn)×(mn) is the solution
to the following ARE:

(−L1 ⊗ Im)TP + P (−L1 ⊗ Im)− r−1
2 P 2

+ (L1 + r1In)⊗ Im = 0mn. (15)

Next, to reduce the algorithm complexity, we
denote a symmetrical matrix P̄ ∈ R

n×n to reduce
the complexity of Eq. (15). Assume P̄ satisfies

(−L1)
TP̄ + P̄ (−L1)− r−1

2 P̄ 2 + (L1 + r1In) = 0n.

(16)
Then post-multiplying Eq. (16) by ⊗Im, we obtain

[(−LT
1 P̄ )⊗ Im] + {[P̄ (−L1)]⊗ Im}

− r−1
2 P̄ 2 ⊗ Im + (L1 + r1In)⊗ Im = 0mn. (17)

If P = P̄ ⊗Im, according to the property of the
Kronecker product, ARE (17) is equivalent to ARE
(16). It means that the solution to ARE (17) is given
by P = P̄ ⊗ Im.

Because the couplings are undirected, L1 is sym-
metric. Thus, there exists an orthogonal matrix
M which satisfies L1 = MTdiag(λ1, λ2, . . . , λn)M .
Constructing P̄ = MTdiag(p1, p2, . . . , pn)M , we
obtain

L1P̄ =MTdiag(λ1, λ2, . . . , λn)M

·MTdiag(p1, p2, . . . , pn)M

=MTdiag(p1, p2, . . . , pn)diag(λ1, λ2, . . . , λn)M

=P̄L1.

Pre- and post-multiplying ARE (16) by MT and M

respectively, we have

− 2MTL1P̄M − r−1
2 MTP̄ 2M

+MT(L1 + r1In)M = 0n,

which means that

− 2diag(p1, p2, . . . , pn)diag(λ1, λ2, . . . , λn)

− r−1
2 diag(p21, p

2
2, . . . , p

2
n)

+ diag(λ1 + r1, λ2 + r1, . . . , λn + r1) = 0n.

From the entry-wise aspect, the above matrix equa-
tion becomes

−2λipi − r−1
2 p2i + (λi + r1) = 0, i = 1, 2, . . . , n.

The solution to the above equation is

pi = −λir2 ± [λ2
i r

2
2 + r2(λi + r1)]

1/2.

Because P̄ is positive semi-definite, pi should be
−λir + [λ2

i r
2
2 + r2(λi + r1)]

1/2, which is positive.
It means that P is positive definite. Letting P̄ =

r2(L2 +K) and K = diag(r−1
2 P̄1n), L2 = r−1

2 P̄ −
diag(r−1

2 P̄1n) must be a symmetric matrix because
P̄ and K are symmetric. Next, if choosing the first
column of M as 1n/

√
n, 1n/

√
n is also an eigenvec-

tor of P̄ with the corresponding eigenvalue (r1r2)1/2.
Therefore, K = (r1/r2)

1/2In is a positive definite di-
agonal matrix.
Remark 3 It is obvious that L21n = 0n, but
L2 may not be a Laplacian matrix, because the non-
diagonal entries of L2 may be positive. It means that
the designed edge weights may be negative, that is,
bij < 0. In Altafini (2013), the communication topol-
ogy with negative edge weights has been discussed.
If a multi-agent system network has negative edge
weights and nonnegative weights, it is more plausi-
ble that some agents collaborate, while others com-
pete. In a sense, the traditional consensus Lapla-
cian schemes are a special case for the consensus
scheme with edge weights which may be positive or
nonnegative.
Remark 4 The formation performance for multi-
agent systems essentially depends on matrix L1+L2.
Considering that L2 = r−1

2 P̄ − (r1/r2)
1/2In and P̄

have the same eigenvectors as L1, the eigenvalue of
L1 +L2 is [λ2

i + (λi + r1)/r2]
1/2 − (r1/r2)

1/2, which
is nonnegative, and thus L1 + L2 is positive semi-
definite. All eigenvalues of the closed-loop system
matrix −(L1 +L2 +K) locate on the open left-half
plane.

For a general case in which the couplings are
directed and the gains for different agents are not
equal, the cost function becomes

J =

∫ ∞

0

[x̃T(
L1 + LT

1

2
⊗ Im)x̃+ x̃T(E ⊗ Im)x̃

+ uT(R ⊗ Im)u]dt,
(18)

where E and R are positive definite diagonal ma-
trices to represent the weight of the individual goal
of each agent and the energy of the control inputs
of the overall system, respectively. We also use
(L1 + LT

1 )/2 to describe the formation relative er-
rors between agents.
Corollary 1 Let the dynamics of multi-agent sys-
tems in matrix form be ˙̃x = −(L1 ⊗ Im)x̃+ u, and
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suppose there exists a positive definite matrix P̄ sat-
isfying the following ARE:

(−L1)
TP̄+P̄ (−L1)−P̄R−1P̄+

(
L1 +LT

1

2
+E

)
= 0n.

Then the control law u = −[(R−1P̄ ) ⊗ Im]x̃ is
optimal with respect to cost function (18).

The proof is similar to that of Theorem 2, and
it is omitted here.

3.3 LQR formation for multi-agent systems
under fixed topology

The above two subsections allow the communi-
cation topology between agents to be constructed.
However, in many conditions it is impossible to
design or change the communication topology. It
means that the optimal formation problem has to be
studied under a fixed and unchangeable topology. In
this subsection, we investigate the case in which the
topology between single-integrator multi-agent sys-
tems ẋi = ui is fixed and has been determined in
advance. It means that only the local feedback can
be designed. For simplicity, we assume all agents
employ the same local feedback gain. The dynamics
of each agent is subject to

{
ẋ = ui,

ui = −∑n
i=1 aij(xi − xj −Δij)− k(xi − δi).

(19)

It is assumed that the communication topology
between agents is undirected, so all agents in the
topology have equal importance. Thus, all agents
have the same optimal weights r1 and r2. The cost
function is

J =

∫ ∞

0

⎛

⎝
n∑

i=1

i−1∑

j=1

aij(xi − xj −Δij)
2

+

n∑

i=1

r1(xi − δi)
2 +

n∑

i=1

r2u
T
i ui

)

dt

=

∫ ∞

0

[
x̃T(L⊗ Im)x̃+ r1x̃

Tx̃+ r2u
Tu

]
dt,

(20)

where L is a symmetric Laplacian matrix corre-
sponding to the undirected topology between the
agents. The corresponding optimization formation

problem is to find ui for each agent to minimize J

subject to Eq. (19).
Theorem 3 In the LQR formation control problem
with the cost function J proposed in Eq. (20) subject
to Eq. (19), if the communication topology is fixed
and undirected, the optimal control parameter k is
given by

k = − x̃T(0)(L⊗ Im)x̃(0)

x̃T(0)x̃(0)

+
1

r2x̃T(0)x̃(0)
{r22 [x̃T(0)(L⊗ Im)x̃(0)]2

− r2x̃
T(0)x̃(0)x̃T(0)[r2(L⊗ Im)2

−L⊗ Im − r1Imn]x̃(0)}1/2,
where r2 ≤ 1/(2dmax), and dmax = maxi di, i =

1, 2, . . . , n.
Proof The dynamics of x̃i is rewritten in matrix
form as

˙̃x = −(L⊗ Im)x̃− kx̃,

so
x̃(t) = e−(L⊗Im+kImn)tx̃(0).

Then we have

u = −(L⊗ Im + kImn)e−(L⊗Im+kImn)tx̃(0).

The cost function J becomes

J = x̃T(0)

∫ ∞

0

[e−(L⊗Im+kImn)t(L⊗ Im

+ r1Imn)e−(L⊗Imn+kImn)t

+ r2e−(L⊗Im+kImn)t(L⊗ Im

+ kImn)
2e−(L⊗Im+kImn)t]dtx̃(0). (21)

Because the matrices L ⊗ Im, L ⊗ Im + r1Imn,
L ⊗ Im + kImn, and e(L⊗Im+kImn)t have the same
eigenvectors, the multiplications of these matrices
are commutative. To solve the integration (21), we
employ the approach of integration by parts. In this
way, we have

∫ ∞

0

e−(L⊗Im+kImn)t(L⊗ Im

+ r1Imn)e−(L⊗Im+kImn)tdt

= e−(L⊗Im+kImn)t(L⊗ Im + r1Imn)[−(L⊗ Im

+ kImn)
−1e−(L⊗Im+kImn)t]

∣
∣
∣
∞

0

−
∫ ∞

0

de−(L⊗Im+kImn)t(L⊗ Im + r1Imn)

dt

· [−(L⊗ Im + kImn)
−1e−(L⊗Im+kImn)t]dt
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= (L⊗ Im + r1Imn)(L⊗ Im + kImn)
−1

−
∫ ∞

0

e−(L⊗Im+kImn)t(L⊗ Im

+ r1Imn)e−(L⊗Im+kImn)tdt,
so

∫ ∞

0

e−(L⊗Im+kImn)t(L⊗ Im

+ r1Imn)e−(L⊗Im+kImn)tdt

=
1

2
(L⊗ Im + r1Imn)(L⊗ Im + kImn)

−1.

Similarly, we have
∫ ∞

0

e−(L⊗Im+kImn)t(L⊗ Im

+ kImn)
2e−(L⊗Im+kImn)tdt

= e−(L⊗Im+kImn)t(L⊗ Im + kImn)
2[−(L⊗ Im

+ kImn)
−1e−(L⊗Im+kImn)t]

∣
∣
∣
∞

0

+

∫ ∞

0

de−(L⊗Im+kImn)t

dt
(L⊗ Im

+ kImn)e−(L⊗Im+kImn)tdt

= (L⊗ Im + kImn)−
∫ ∞

0

e−(L⊗Im+kImn)t(L⊗ Im

+ kImn)
2e−(L⊗Im+kImn)tdt.

Therefore,
∫ ∞

0

e−(L⊗Im+kImn)t(L⊗ Im + kImn)
2

· e−(L⊗Im)tekImntdt

= (L⊗ Im + kImn)/2

holds. Then the cost function becomes

J = x̃T(0)

[
1

2
(L⊗ Im + r1Imn)(L⊗ Imn + kImn)

−1

+
r2
2
(L⊗ Im + kImn)

]
x̃(0).

Taking the derivative of J with respect to k gives

dJ

dk
=

1

2
x̃T(0)[−(L⊗ Im + r1Imn)(L⊗ Imn

+ kImn)
−2 + r2Imn]x̃(0).

Setting dJ/dk = 0 gives x̃T(0)[−(L ⊗ Im +

r1Imn)(L⊗ Im + kImn)
−2 + r2Imn]x̃(0) = 0, which

means

k2[r2x̃
T(0)x̃(0)] + 2k[r2x̃

T(0)(L⊗ Im)x̃(0)]

+ x̃T(0)[r2(L⊗ Im)2 −L⊗ Im − r1Imn]x̃(0) = 0

(22)

for any vector x̃(0).
It is obvious that the above equation is a

quadratic equation with respect to k, so the solu-
tion is

k = − x̃T(0)(L⊗ Im)x̃(0)

x̃T(0)x̃(0)

± 1

[rx̃T(0)x̃(0)]
{r2[x̃T(0)(L⊗ Im)x̃(0)]2

− r2x̃
T(0)x̃(0)x̃T(0)[r2(L⊗ Im)2 −L⊗ Im

− r1Imn]x̃(0)}1/2,

To guarantee that k is a real number, the following
inequality should be satisfied:

r22 [x̃
T(0)(L⊗ Im)x̃(0)]2

− r2x̃
T(0)x̃(0)x̃T(0)[r2(L⊗ Im)2 −L⊗ Im

− r1Imn]x̃(0) ≥ 0.

(23)

Because all eigenvalues of L locate in the circle
whose radius is dmax with the center at (dmax, 0),
r2λi − 1 ≤ 0 holds if 2r2dmax ≤ 1. Then
r2L

2 − L is negative semi-definite, inequality (23)
holds, and k is real. Moreover, as k should be
positive, ‘±’ is chosen as ‘+’. Considering that
r2L

2−L is positive semi-definite and [4r22(x̃
T(0)(L⊗

Im)x̃(0))2 + 4r2x̃
T(0)x̃(0)x̃T(0)(r1Imn)x̃(0)]

1/2 >

|2r2x̃T(0)(L⊗ Im)x̃(0)|, k must be positive.
Remark 5 We obtain constraint (23) from
quadratic equation (22) with respect to k. It makes
the control parameter k a real constant, and we have
simplified it to r2 ≤ dmax/2. Moreover, if con-
straint (23) is not satisfied, k will have the imagi-
nary part, which is impossible to apply in practical
systems. The condition r2 ≤ dmax/2 will limit the
weights of the control actions; that is, if r2 is larger
than dmax/2 which is related with the fixed commu-
nication topology, or constraint (23) is not satisfied,
the optimal control parameter k is not applied in
physical systems.
Remark 6 In practice, if inequality (23) holds,
k is a real number. As a result, in many cases, the
condition r2 ≤ 1/(2dmax) is not necessary.

4 Simulation

In this section, we give three examples to il-
lustrate the optimal formation problems from the
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LQR perspective discussed in Sections 3.1–3.3, re-
spectively. To observe the performance of the rela-
tive formations during convergence more intuitively,
we consider the problems in a 2D plane with six
agents. The initial values of all agents are chosen
as x1(0) = [−1,−1]T, x2(0) = [−1, 1]T, x3(0) =

[1,−1]T, x4(0) = [0.5,−0.5]T, x5(0) = [2,−1]T, and
x6(0) = [1.5,−1]T, and the objectives are given by
δ1 = [0, 0]T, δ2 = [1, 0]T, δ3 = [3/2,

√
3/2]T, δ4 =

[1,
√
3]T, δ5 = [0,

√
3]T, and δ6 = [−1/2,

√
3/2]T to

constitute a regular hexagon.
Example 1 To verify the effectiveness of Theo-
rem 1, we simply choose

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 −1 −1 0 0 −1

−1 3 −1 0 −1 0

−1 −1 3 −1 0 0

0 0 −1 1 0 0

0 −1 0 0 1 0

−1 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 4 0 0

0 0 0 0 2 0

0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0

0 0.5 0 0 0 0

0 0 1.5 0 0 0

0 0 0 2 0 0

0 0 0 0 2.5 0

0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then from Theorem 1, we obtain

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.9984 −0.4793 −0.4883 −0.0233

−0.2398 0.5455 −0.2848 −0.0156

−0.1634 −0.1901 0.5615 −0.1821

−0.0059 −0.0021 −0.0022 0.3980

−0.0066 −0.0026 −0.0027 −0.0004

−0.1059 −0.0197 −0.0206 −0.0026

−0.0030 −0.0045

−0.0021 −0.0033

−0.0108 −0.0151

−0.1769 −0.2109

0.2217 −0.2094

−0.0005 0.1493

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

And the optimal local feedback matrix is given
by

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.4109 0 0 0

0 1.4117 0 0

0 0 1.4045 0

0 0 0 1.3337

0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

0.8736 0

0 0.6663

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note thatL is a nonsymmetric Laplacian matrix
and K a positive diagonal matrix consistent with
Theorem 1. The simulation time is set as 7 s. Figs. 1
and 2 show the trajectories of the six agents.

Initial position

Final position

-1   0 1 2 3 4 5
x(t)

5

4

3

2

1

0

-1

y(
t)

Fig. 1 Formation for the six agents (Example 1)
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(c) (d)

x(t) x(t)

x(t) x(t)

y(
t)

y(
t)

y(
t)

y(
t)

Fig. 2 Snapshots for the six agents (Example 1): (a)
t = 1.4 s; (b) t = 2.8 s; (c) t = 4.2 s; (d) t = 5.6 s
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To show that the proposed method is optimal,
we present four trajectories of the cost function (3)
in Fig. 3. The solid line is the result under the the
proposed algorithm, and the other three lines are
the results under the algorithms whose parameter
matrices K and L are chosen randomly. It is seen
that the proposed algorithm is better than the other
three algorithms.

Proposed method

1st group of random parameters

2nd group of random parameters

3rd group of random parameters

0 2 4 6
t (s)

500

400

300

200

100

0

J(
t)

Fig. 3 Trajectories of cost function J (Example 1)

Example 2 To show the effectiveness of Theo-
rem 2, we choose

L1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3 −0.1 −0.1 0 0 −0.1

−0.1 0.3 −0.1 0 −0.1 0

−0.1 −0.1 0.3 −0.1 0 0

0 0 −0.1 0.1 0 0

0 −0.1 0 0 0.1 0

−0.1 0 0 0 0 0.1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

r1 = 0.6, and r2 = 1/3, and set the simulation time
as 10 s. It then follows from Theorem 2 that the
optimal state feedback matrices are given by

L2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0271 −0.0084 −0.0084 −0.0006

−0.0084 0.0271 −0.0084 −0.0006

−0.0084 −0.0084 0.0271 −0.0090

−0.0006 −0.0006 −0.0090 0.0103

−0.0006 −0.0090 −0.0006 −0.0000

−0.0090 −0.0006 −0.0006 −0.0000

−0.0006 −0.0090

−0.0090 −0.0006

−0.0006 −0.0006

−0.0000 −0.0000

0.0103 −0.0000

−0.0000 0.0103

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and K = 1.3416In. The simulation results are
demonstrated in Figs. 4 and 5. These six agents not
only make a regular hexagon, but also reach the ob-
jectives of themselves. Fig. 6 shows the trajectories
of the cost function in (14) with the proposed method
and three random groups of parameters. At a given
t, the J(t) obtained using the proposed method is
smaller than those of three other methods with ran-
dom parameter matrices, which shows that the con-
trol algorithm proposed in Theorem 2 is optimal.

Initial position

Final position

-1 0 1 2 3 4 5
x(t)

5
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0
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y(
t)

Fig. 4 Formation for the six agents (Example 2)
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x(t) x(t)

x(t) x(t)
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y(
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y(
t)

y(
t)

Fig. 5 Snapshots for the six agents (Example 2): (a)
t = 2 s; (b) t = 4 s; (c) t = 6 s; (d) t = 8 s

The designed L2 is a Laplacian matrix in this
example, so the designed communication topology
has positive or nonnegative edge weights. How-
ever, if choosing different L1, r1, or r2, the designed
topology with negative edge weights may be better
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than the topology with nonnegative edge weights ac-
cording to optimal index (14). In future research
more attention should be paid to the study on this
phenomenon.
Example 3 In this example, we choose the Lapla-
cian matrix corresponding to the fixed topology
between agents as

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 −1 −1 0 0 −1

−1 3 −1 0 −1 0

−1 −1 3 −1 0 0

0 0 −1 1 0 0

0 −1 0 0 1 0

−1 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We also choose r1 = 1 and r2 = 0.15. According
to Theorem 3, it can be computed that the optimal
local feedback gain is k = 2.4976. The simulation
time is 4 s. The trajectories of these six agents are
shown in Figs. 7 and 8.
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2nd group of random parameters

3rd group of random parameters
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Fig. 6 Trajectories of cost function J (Example 2)
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Fig. 7 Formation for the six agents (Example 3)

It is seen that all agents reach their objectives
and form a formation. Fig. 9 demonstrates the evolu-
tion of the cost function J in (20) as k varies. When
k = 2.4976, the proposed controller minimizes cost
function J , which is consistent with the theoretical
result.
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y(
t)
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y(
t)
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t)

Fig. 8 Snapshots for the six agents (Example 3): (a)
t = 0.8 s; (b) t = 1.6 s; (c) t = 2.4 s; (d) t = 3.2 s
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k

120

110

100

90

80

J

Fig. 9 Trajectory of cost function J as a function of
k (Example 3)

5 Conclusions

In this paper, we have investigated three opti-
mal formation problems for first-order multi-agent
systems from the LQR perspective. Different from
some existing works, these formation problems not
only focus on the collective objective for all agents,
but also consider each agent’s self-objective. Hence,
the cost functions should contain the interaction en-
ergy cost and the individual energy cost. The opti-
mal formation algorithm for agents with no initial
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coupling is designed. The corresponding optimal
communication topology and local feedback matrix
have been proposed from the solution to an ARE. For
the physically interconnected multi-agent systems,
the optimal formation problem has been discussed.
The corresponding topology and local feedback ma-
trix are obtained from a group of quadratic equations
with one unknown. Due to the situation in which the
communication cannot be changed, optimal forma-
tion with fixed and unchangeable topology has been
considered. The local feedback gain has been derived
by letting the derivative of the cost function be zero.
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