
Huang et al. / Front Inform Technol Electron Eng 2017 18(10):1525-1533

1525

An improved fruit fly optimization algorithm for solving
traveling salesman problem*

Lan HUANG†1,2, Gui-chao WANG†1,2, Tian BAI1,2, Zhe WANG†‡1,2

(1College of Computer Science and Technology, Jilin University, Changchun 130012, China)
(2Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education,

Changchun 130012, China)
†E-mail: huanglan@jlu.edu.cn; wgc290029@163.com; wz2000@jlu.edu.cn

Received June 22, 2016; Revision accepted Jan. 23, 2017; Crosschecked Nov. 6, 2017

Abstract: The traveling salesman problem (TSP), a typical non-deterministic polynomial (NP) hard problem, has been used in
many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm (FOA) is
used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has
problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimi-
zation precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision
search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination
mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They
are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment,
10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms
of the convergence rate and precision.

Key words: Traveling salesman problem; Fruit fly optimization algorithm; Elimination mechanism; Vision search; Operator
https://doi.org/10.1631/FITEE.1601364 CLC number: TP181

1 Introduction

The traveling salesman problem (TSP), a classic
combinatorial optimization problem, is applied in
many engineering applications, such as computer
networking, hardware design, traffic route design,
electronic control systems, and asynchronous transfer
mode (ATM) packet-switched networks. Additional-
ly, it is a typical non-deterministic polynomial (NP)
hard problem, though the solution space for one TSP
including n cities is n!.

TSPs can be easy to describe but difficult to

solve. The ways to solve the problem can be divided
mainly into two categories: One is the exact method
which can ensure obtaining the optimal solution, such
as the branch-and-bound method (Lawler and Wood,
1966) and dynamic programming (Bellman and
Dreyfus, 1962). However, due to the increase in the
number of cities, the execution time for these methods
expands exponentially (Little et al., 1963). Thus,
exact methods are suitable only for solving small-
scale problems. The other is the approximate method
which cannot guarantee obtaining the optimal solu-
tion but take less time, such as the genetic algorithm
(GA), artificial ant colony (ACO) algorithm, particle
swarm optimization (PSO) algorithm, and simulated
annealing (SA) algorithm.

Grefenstette et al. (1985) proposed GA for TSP.
To solve large-scale TSPs, Ding et al. (2007) pre-
sented an adaptive two-level GA. Liu and Zeng

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (Nos. 61472159 and 61373051)

 ORCID: Lan HUANG, http://orcid.org/0000-0003-3223-3777
© Zhejiang University and Springer-Verlag GmbH Germany 2017

javascript:void(0);
javascript:void(0);
http://orcid.org/0000-0002-6574-1542
http://orcid.org/0000-0002-6574-1542
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601364&domain=pdf

Huang et al. / Front Inform Technol Electron Eng 2017 18(10):1525-1533

1526

(2009) proposed a GA with reinforcement learning to
solve TSP. The algorithm uses GA as the framework
and reinforcement learning as a mutation operator,
and increases the convergence rate of GA. Dorigo and
Gambardella (1997) presented an ACO algorithm
which is capable of solving TSP. Escario et al. (2015)
extended the ACO algorithm to solve TSP. The
self-organizing dynamics of a real ant population was
used to provide adaptive capacities to the ACO algo-
rithm for TSP. Hendtlass (2003), Clerc (2004), and
Hoffmann et al. (2011) developed PSO algorithms
with some modifications or hybrid-learning schemes
to solve TSP. Mahi et al. (2015) proposed a new hy-
brid method based on the PSO, ACO, and 3-opt algo-
rithms to solve TSP. In this method, PSO is used for
determining parameters that affect the performance of
ACO, and the 3-opt is used for getting rid of the local
solution found in the ACO algorithm. Kirkpatrick
(1984) first applied the SA algorithm to deal with
TSP. Geng et al. (2011) mixed an effective local
search algorithm with the SA algorithm and greedy
search techniques to solve TSP. Karaboga and Gor-
kemli (2011) proposed a combinatorial artificial bee
colony (ABC) algorithm and applied it to solve TSP.
They proved that the ABC algorithm can also be used
to solve combinatorial optimization problems.
Ouyang et al. (2013) proposed a novel discrete
cuckoo search algorithm for a spherical TSP. Zhou
et al. (2015) proposed a discrete invasive weed op-
timization algorithm to solve TSP. They mixed a
3-opt local search operator and a 2-opt local search
operator with an invasive weed optimization algo-
rithm to search for optimal results. Jolai and Ghanbari
(2010) presented an improved artificial neural net-
work (ANN) approach to solve TSP. They improved
the accuracy of the results and obtained the optimal
tours with smaller total distances with a Hopfield
neural network and data transformation techniques.

Although these algorithms have improved the
precision of the optimal result of TSP, they still run
easily into problems at the local optimum and hardly
meet the requirement of focusing on precision. After
studying a variety of swarm intelligence algorithms
and evaluating their test results, we find that FOA not
only is easy to understand and simple to implement,
but also has a higher expanding ability in its smell
search process. However, the vision search process

always keeps the algorithm trapped in the local
optimum.

To overcome these limitations, in this study, an
elimination-based fruit fly optimization algorithm
(EFOA) is proposed based on FOA to solve TSP.
First, compared with FOA, EFOA reinforces the vi-
sion search process. In the improved vision search
process, other fruit flies constantly observe the loca-
tion of the local optimal fruit fly and approach it
gradually, but not by just rapidly and directly flying to
the position of the best individual. Furthermore, an
elimination mechanism is added to FOA. It means
that some poor individuals of the group will be elim-
inated and some new fruit fly individuals will be
generated. The elimination mechanism adds diversity
to the population to improve the expanding ability and
maintain the convergence ability. Finally, EFOA is
used to solve TSP. In the process, two operators, an
improved reverse operator and a new multiplication
operator, are proposed. Compared with the other
algorithms, EFOA has a better performance when
testing the benchmark data selected from TSPLIB,
and yields a higher precision.

2 Fruit fly optimization algorithm

FOA is a new swarm-intelligence optimization
algorithm proposed by Pan (2011; 2012). It depicts
the foraging behavior of the fruit fly. Due to their keen
sense of smell and vision, fruit flies can judge the
general direction to find food very quickly according
to odor concentrations in the air in the process of
foraging. Within the scope of their proximity to food,
they constantly approach those partners closest to
food using their visual sensitivity. Pan (2011; 2012)
summed up the foraging behavior of fruit flies as a
random search process and visual localization pro-
cess, and then proposed FOA. Compared with other
swarm intelligence algorithms (such as PSO, ACO,
and ABC), FOA has the advantages of being easy to
understand and having a simple implementation. The
specific steps are described as follows:

Step 1: initialization. Define the group size as P,
the maximum number of algorithm iteration as m, and
the original location of group as (X0, Y0).

Step 2: random search according to smell. Fruit

javascript:void(0);

Huang et al. / Front Inform Technol Electron Eng 2017 18(10):1525-1533

1527

flies define the random direction and pace in their
flight according to the food odor concentration they
feel, which can be calculated as

 0

0

,
,

i

i

X X R
Y Y R

= +
 = +

 (1)

where (Xi, Yi) is the current location of the ith fruit fly
and R denotes the random pace.

Step 3: calculation of the odor concentration
decision value Si. The food odor concentration deci-
sion value is the reciprocal of the distance to the
origin of the coordinate axes for the ith fruit fly, which
is calculated as

2 2

1 .i

i i

S
X Y

=
+

 (2)

Step 4: calculation of the odor concentration

value (fitness function value) Smell. The odor con-
centration value is obtained based on the odor-
concentration decision value:

 Smell (),i iF S= (3)

where Smelli refers to the food odor concentration
value (fitness function value) felt by the ith fruit fly.

Step 5: finding the fruit fly that has the greatest
value among Smell (optimal individual), described as
follows:

 bestSmell max{Smell},= (4)

where ‘best’ is the index of the optimal individual in
the group whose odor concentration value is the
largest.

Step 6: visual localization. Suppose that the cur-
rent optimal individual is located in (Xbest, Ybest) and
its odor concentration value is Smellbest. Then the
group flies toward the best individual. The process is
presented as follows:

best

best

best

Smell Smell ,
,

,

i

i

i

X X
Y Y

=
 =
 =

 (5)

where (Xbest, Ybest) indicates the position of the current
optimal individual.

Step 7: iteration optimization. If the current it-
eration number t<m, repeat steps 2–5. Then determine
if the current optimal odor concentration is better than
the previous optimal value. If so, run step 6. The
algorithm terminates when t=m.

3 Elimination-based fruit fly optimization
algorithm

3.1 Reinforced vision search

It should be emphasized that in FOA, all fruit fly
individuals will fly to the optimal individual directly,
meaning that after step 6, all individuals in the group
will arrive at the optimal individual. Thus, this pro-
cess easily causes the algorithm to become trapped in
local optima, resulting in a low optimization preci-
sion. Thus, in this study, we enhance the vision search
ability of the fruit fly in the vision search process. In
the process of flying to the food, other fruit flies con-
stantly observe the location of the fruit fly that has the
largest food odor concentration, and approach it
gradually, but not by just rapidly and directly flying to
the position of the best fruit fly. By adding the vision
search ability, the convergence rate of the algorithm
can be improved, while both the probability of falling
into local optima and the running time are reduced.
The vision search process can be described by

 best

best

(1) ,
(1) ,

i i

i i

X c X c X
Y c Y c Y

= ⋅ + − ⋅

= ⋅ + − ⋅
 (6)

where c is a random number ranging from 0 to 1.
Then calculate the odor concentration value Smelli
according to Eqs. (2) and (3).

3.2 Elimination mechanism

Since the foraging behavior of a fruit fly is sim-
ple, FOA can easily fall into local optima, resulting in
a low optimization precision. In this study, we add an
elimination mechanism to the foraging behavior of
the fruit fly; i.e., some individuals in the group are
eliminated and some new ones are generated in the
fruit fly foraging process. This can not only increase
the population diversity but also maintain the

Huang et al. / Front Inform Technol Electron Eng 2017 18(10):1525-1533

1528

convergence of the algorithm. Therefore, the scala-
bility of the algorithm will be improved. The updating
formula is

 (worst) (new),N N N N= − ∪ (7)

where N(worst) represents the weak fruit flies in the
group, N(new) denotes the newly generated fruit flies,
and ‘−’ and ‘∪’ refer to the set subtraction operation
and set addition operation, respectively. The flow
chart for EFOA is presented in Fig. 1.

4 Elimination-based fruit fly optimization
algorithm for solving the traveling salesman
problem

In the process of using EFOA to solve TSP, an
individual fruit fly represents a solution sequence. For
a TSP of n cities, the solution sequence is a full per-
mutation of integers from 1 to n. For instance, in a
TSP of three cities, individual fruit fly (3, 1, 2) means
an access path from city 3 to city 1 and then city 1 to
city 2.

4.1 Definition of basic operators

Based on the proposed algorithm, two operators,
a reverse operator and a multiplication operator, are
defined. They are performed in the solution sequence
in the smell and vision search processes, respectively.
Definition 1 (Reverse operator) The reverse opera-
tor is an evolution of the 2-opt algorithm (Croes,
1958). Suppose that the TSP solution sequence of n
nodes is F=(ai) (i=1, 2, ..., n), and its reverse term
TR(i, j) refers to nodes ai and aj in F; then F′=F⊕
TR(i, j) means reversing the subsequence between ai

and aj to make them neighbors, leaving the rest of the
solution sequence unchanged. The difference be-
tween a reverse operator and the 2-opt algorithm is in
the selection of nodes ai and aj. In the reverse opera-
tor, node ai is selected randomly, and aj is the closest
node to ai in F.

For example, for a solution sequence F(1, 2, 3, 4,
5), i=2, j=5, we have F′=F⊕TR(i, j)=(1, 2, 5, 4, 3).
Definition 2 (Multiplication operator) Given two
solution sequences A=(ai) and B=(bi) (i=1, 2, ..., n),
we randomly select three adjacent nodes bi−1, bi, and
bi+1 from B, while their corresponding nodes in A are
aj, ak, and am, respectively. Then the multiplication
operator will generate at least one of the following
three subsequences through the reverse operator: (ak,
aj), (ak, am), and (aj, ak, am).

Suppose that solution sequences A1, A2, and A3
are the results of three reverse operations on A. Then
A⊗B returns the best one among them, which has the
largest fitness value. The specific steps are

1

2

3

1 2 3

TR(,),
TR(,),

(TR(,)) TR(,),
best(, ,).

A A k j
A A k m
A A k j k m
A B A A A

= ⊕
 = ⊕
 = ⊕ ⊕
 ⊗ =

 (8)
Fig. 1 Elimination-based fruit fly optimization algorithm
working diagram

Huang et al. / Front Inform Technol Electron Eng 2017 18(10):1525-1533

1529

For example, given two solution sequences A(2,
1, 6, 3, 7, 4, 5) and B(1, 2, 3, 4, 5, 6, 7), if bi=3, bi−1=2,
bi+1=4, then A1=(6, 1, 2, 3, 7, 4, 5), A2=(2, 1, 6, 3, 4, 7,
5), and A3=(6, 1, 2, 3, 4, 7, 5). The best one of them
will be returned in A⊗B.

4.2 Algorithm flow

Step 1: initialization. Define the group size as P,
the maximum number of algorithm iterations as m,
and the original location of the group as (X0, Y0).

Step 2: random search according to smell. t
kX

represents the location of the kth fruit fly in the tth
iteration, and an extra reverse operation is performed
before the search. We should determine two nodes ai
and aj in reverse commutator TR(i, j) first:

(rdx), 1 rdx ,

the index of the node closest to in ,

TR(,),

t
i

t
i i

t t
i i

i X n

j a X

X X i j

 = ≤ ≤

=
 = ⊕

 (9)

where i is the node index in the solution sequence of
the kth fruit fly in the tth iteration, rdx is a random
integer ranging from 1 to n, j represents the location
of the node that is closest to ai in the solution
sequence.

Step 3: calculating the odor concentration of t
iX

and comparing it with that of the current optimal
individual. t

iX is updated to be the new current op-
timal individual in the group if the odor concentration
felt by t

iX is better.
Step 4: visual localization. The other fruit flies

fly to the optimal one through visual observation:

 1
best .

t t
i iX X X+ = ⊗ (10)

Step 5: repeating step 3. 1t

iX + is updated to be
the new current optimal individual in the group if the
odor concentration felt by 1t

iX + is better.
Step 6: elimination mechanism:

 (worst) (new).N N N N= − ∪ (11)

Eq. (11) is similar to Eq. (7) except that N(worst)

has only 10% of the fruit flies in the group.
Step 7: iteration optimization. If the current it-

eration number t<m, repeat steps 2–6. The algorithm
terminates when t=m.

5 Experiment results

Ten benchmarks are selected from TSPLIB to
test the performance of EFOA. Every benchmark is
tested 20 times.

Table 1 shows the results of the experiments re-
peated 20 times. BKS refers to the theoretical value of
the dataset, Average represents the average value of
the experimental results, SD is the standard deviation
in the experiments, and Error is defined as

 Average BKSError 100%.
BKS

−
= × (12)

Figs. 2a–2d present the results of the iteration

optimization using the basic FOA and the improved
version (EFOA) on the Berlin52, Eil51, Lin105, and

Table 1 Results from the elimination-based fruit fly optimization algorithm to solve traveling salesman problem
Dataset BKS Best Worst Average SD Error (%)

Berlin52 7542 7542 7542 7542.00 0 0
Eil51 426 426 431 427.53 1.2600 0.359
Eil76 538 540 550 544.05 2.9100 1.125
St70 675 675 682 677.26 2.3300 0.335
Rat99 1211 1217 1232 1237.20 15.1700 2.164
Kroa100 21 282 21 282 21 527 21 357.00 43.7700 0.352
Krob100 22 141 22 219 22 419 22 355.00 65.7300 0.967
Eil101 629 635 649 642.05 4.7700 2.075
Lin105 14 379 14 379 14 553 14 427.06 44.6700 0.334
Ch150 6528 6558 6660 6618.20 31.6837 1.382
Every benchmark was tested 20 times. BKS: theoretical value of the dataset; SD: standard deviation

Huang et al. / Front Inform Technol Electron Eng 2017 18(10):1525-1533

1530

St70 datasets, respectively. The solid line represents
EFOA, while the dashed line represents FOA. It can
be seen that, in the improved version (EFOA), the
optimization result does not change after 40 itera-
tions, while the values for the basic version (FOA)
continue changing after even more than 100 itera-
tions. In the end, the solid line is beneath the dashed
line. This shows that EFOA can find the optimal so-
lution after just 40 iterations while FOA needs more
than 100 iterations. The former has a much higher
optimization precision than the latter when solving
TSP. Since EFOA reinforces vision search in the for-
aging behavior of the fruit flies and adds an elimina-
tion mechanism to FOA, it consequently improves the
convergence rate and increases the diversity of the
group. Thus, it avoids falling into local optima and
finally improves the optimization precision.

Fig. 3 presents the theoretical and actual values
obtained using the improved FOA (EFOA). We can
see that the theoretical values and actual values have
little difference, and the theoretical values are reached

when using the improved FOA on the Berlin52, Eil51,
St70, Kroa100, and Lin105 datasets.

Table 2 shows the results obtained using EFOA
and the alternatives to solve TSP. The optimal value
of each dataset is marked in bold. It can be seen that
EFOA achieves results of 7542.00, 427.53, 677.26,
1237.20, and 642.05, which are the best compared
with the alternatives on the Berlin52, Eil51, St70,
Rat99, Eil101, and Ch150 datasets.

However, for the Eil76, Krob100, and Kroa100
datasets, the best performance is 542.00 with CGAS
(Dong et al., 2012), 22 336.20 with DWIO (Zhou et
al., 2015), and 21 289.98 with DWIO, while the pro-
posed algorithm achieves results of 544.05,
22 355.00, and 21 357.00, which are comparable with
the best performances. As for the Lin105 dataset, the
four algorithms achieve a similar performance. Each
dataset has its own characteristics; thus, it can be
difficult for a specific algorithm to achieve the opti-
mal value in all of the datasets. From the com-
parisons above, we can see that EFOA improves the

Fig. 2 Comparison of iteration optimization using fruit fly optimization algorithm (FOA) and elimination-based FOA
(EFOA) on the Berlin52 dataset with 7542-opt (a), the Eil51 dataset with 426-opt (b), the Lin105 dataset with 14379-opt
(c), and the St70 dataset with 675-opt (d)

Huang et al. / Front Inform Technol Electron Eng 2017 18(10):1525-1533

1531

Ta
bl

e
2

 C
om

pa
ri

so
n

am
on

g
th

e
el

im
in

at
io

n-
ba

se
d

fr
ui

t f
ly

 o
pt

im
iz

at
io

n
al

go
ri

th
m

 (E
FO

A
) a

nd
 o

th
er

 a
lte

rn
at

iv
es

 fo
r

so
lv

in
g

th
e

tr
av

el
in

g
sa

le
sm

an
 p

ro
bl

em

A
lg

or
ith

m

Th
eo

re
tic

al
 v

al
ue

B

er
lin

52

Ei
l5

1
Ei

l7
6

St
70

R

at
99

Av

er
ag

e
SD

Er

ro
r (

%
)

Av
er

ag
e

SD

Er
ro

r (
%

)
Av

er
ag

e
SD

Er

ro
r (

%
)

Av
er

ag
e

SD

Er
ro

r (
%

)
Av

er
ag

e
SD

Er

ro
r (

%
)

oR
A

B
N

ET
 (P

as
ti

an
d

de
 C

as
tro

, 2
00

6)

80
73

.9
7

27
0.

14

7.
05

43

8.
70

3.

52

2.
98

55

6.
10

8.

03

3.
36

–

–
–

–
–

–

R
A

B
N

ET
 (M

as
ut

ti
an

d
de

 C
as

tro
,

20
09

)
79

32
.5

0
27

7.
25

5.

18

43
7.

47

4.
20

2.

69

55
6.

33

5.
30

3.

41

–
–

–
–

–
–

H
A

C
O

 (W
u

an
d

O
uy

an
g,

 2
01

2)

75
60

.5
4

 6
7.

48

0.
23

43

1.
20

2.

00

1.
22

–

–
–

–
–

–
12

41
.3

3
9.

60

1.
42

C
G

A
S

(D
on

g
et

 a
l.,

20

12
)

76
34

.0
0

–
1.

22

–
–

–
54

2.
00

–

0.
74

–

–
–

–
–

–

A
C

O
TM

 (P
ek

er

et
 a

l.,
 2

01
3)

76

35
.4

0
–

1.
24

43

5.
40

–

2.
21

65

6.
50

–

5.
11

–

–
–

–
–

–

H
A

 (G
ün

dü
z

et
 a

l.,

20
15

)
75

44
.3

7
0

0.
03

44

3.
39

5.

25

4.
08

55

7.
98

4.

10

3.
71

70

0.
58

7.

51

3.
79

–

–
–

D
W

IO
 (Z

ho
u

et
 a

l.,

20
15

)
75

44
.3

6
0

0.
03

42

8.
98

0.

35

7.
00

–

–
–

67
7.

30

0.
34

0.

35

–
–

–

EF
O

A

75
42

.0
0

0
0

42
7.

53

1.
26

0.

36

54
4.

05

2.
91

1.

15

67
7.

26

2.
33

0.

34

12
37

.2
0

15
.1

7
2.

16

A
lg

or
ith

m

Th
eo

re
tic

al
 v

al
ue

K

ro
a1

00

K
ro

b1
00

Ei

l1
01

Li

n1
05

C

h1
50

Av

er
ag

e
SD

Er

ro
r (

%
)

Av
er

ag
e

SD

Er
ro

r (
%

)
Av

er
ag

e
SD

Er

ro
r (

%
)

Av
er

ag
e

SD

Er
ro

r (
%

)
Av

er
ag

e
SD

Er

ro
r (

%
)

oR
A

B
N

ET
 (P

as
ti

an
d

de
 C

as
tro

, 2
00

6)

21
 8

68
.4

7
24

5.
76

2.

76

–
–

–
65

4.
83

6.

57

4.
11

14

 7
02

.2

32
8.

0
2.

25

67
53

.2
0

83
.0

1
3.

45

R
A

B
N

ET
 (M

as
ut

ti
an

d
de

 C
as

tro
,

20
09

)
21

 5
22

.7
3

 9
3.

34

1.
13

–

–
–

64
8.

63

3.
85

3.

12

14
 4

00
.7

 4

4.
0

0.
15

67

38
.3

7
76

.1
4

3.
22

H
A

C
O

 (W
u

an
d

O
uy

an
g,

 2
01

2)

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

C
G

A
S

(D
on

g
et

 a
l.,

20

12
)

21
 4

37
.0

0
–

0.
73

–

–
–

–
–

–
–

–
–

–
–

–

A
C

O
TM

 (P
ek

er

et
 a

l.,
 2

01
3)

21

 5
67

.1
0

–
1.

34

–
–

–
65

5.
00

–

4.
13

14

 4
75

.2

–
0.

67

–
–

–

H
A

 (G
ün

dü
z

et
 a

l.,

20
15

)
22

 4
35

.3
1

23
1.

34

5.
42

–

–
–

68
3.

39

6.
56

8.

65

–
–

–
66

77
.1

2
19

.3
0

2.
28

D
W

IO
 (Z

ho
u

et
 a

l.,

20
15

)
21

 2
89

.9
8

 0

.0
2

0.
04

22

 3
36

 0

.1
9

0.
88

–

–
–

–
–

–
–

–
–

EF
O

A

21
 3

57
.0

0
 4

3.
77

0.

35

22
 3

55

65
.7

3
0.

97

64
2.

05

4.
77

2.

08

14
 4

27
.1

 4

4.
7

0.
33

66

18
.2

0
31

.6
8

1.
38

Ev
er

y
be

nc
hm

ar
k

w
as

 te
st

ed
 2

0
tim

es
. T

he
 o

pt
im

iz
at

io
n

va
lu

e
of

 e
ac

h
da

ta
se

t i
s m

ar
ke

d
in

 b
ol

d.
 B

K
S:

 th
eo

re
tic

al
 v

al
ue

 o
f t

he
 d

at
as

et
; S

D
: s

ta
nd

ar
d

de
vi

at
io

n

Huang et al. / Front Inform Technol Electron Eng 2017 18(10):1525-1533

1532

optimization precision in most datasets, showing the
effectiveness of the proposed algorithm.

6 Conclusions

In this paper, an elimination-based fruit fly op-
timization algorithm (EFOA) was proposed. In
EFOA, the vision search ability of fruit flies is rein-
forced in their foraging behaviors to avoid trapping
the algorithm in local optima, and an elimination
mechanism is added into FOA. The proposed method
improves the convergence rate and the optimization

precision of the result. Two operators, a reverse op-
erator and a multiplication operator, were proposed
when using the improved FOA to solve TSP. Ten
datasets in TSPLIB were tested to validate our me-
thod. The comparison results demonstrate that our
method has much better optimization precision and
stability than other methods.

However, large-scale datasets for TSP were not
tested in this study. Our future research investigations
include exploring how to use this algorithm to obtain
a more satisfactory solution for large-scale TSPs in
shorter time.

References
Bellman, R.E., Dreyfus, S.E., 1962. Applied Dynamic Pro-

gramming. Princeton University Press, New Jersey, USA,
p.50-68.

Clerc, M., 2004. Discrete particle swarm optimization, illus-
trated by the traveling salesman problem. In: Onwubolu,
G.C., Babu, B.V. (Eds.), New Optimization Techniques in
Engineering. Springer Berlin Heidelberg, p.219-239.

 https://doi.org/10.1007/978-3-540-39930-8_8
Croes, G.A., 1958. A method for solving traveling-salesman

problems. Oper. Res., 6(6):791-812.
 https://doi.org/10.1287/opre.6.6.791
Ding, C., Cheng, Y., He, M., 2007. Two-level genetic algorithm

for clustered traveling salesman problem with application
in large-scale TSPs. Tsinghua Sci. Technol., 12(4):459-
465. https://doi.org/10.1016/S1007-0214(07)70068-8

Dong, G.F., Guo, W.W., Tickle, K., 2012. Solving the traveling
salesman problem using cooperative genetic ant systems.
Exp. Syst. Appl., 39(5):5006-5011.

 https://doi.org/10.1016/j.eswa.2011.10.012
Dorigo, M., Gambardella, L.M., 1997. Ant colonies for the

travelling salesman problem. BioSystems, 43(2):73-81.
 https://doi.org/10.1016/S0303-2647(97)01708-5
Escario, J.B., Jimenez, J.F., Giron-Sierra, J.M., 2015. Ant

colony extended: experiments on the travelling salesman
problem. Exp. Syst. Appl., 42(1):390-410.

 https://doi.org/10.1016/j.eswa.2014.07.054
Geng, X.T., Chen, Z.H., Yang, W., et al., 2011. Solving the

traveling salesman problem based on an adaptive simu-
lated annealing algorithm with greedy search. Appl. Soft
Comput., 11(4):3680-3689.

 https://doi.org/10.1016/j.asoc.2011.01.039
Grefenstette, J.J., Gopal, R., Rosmaita, B.J., et al., 1985. Ge-

netic algorithms for the traveling salesman problem. 1st
Int. Conf. on Genetic Algorithms and Their Applications,
p.160-168.

Gündüz, M., Kiran, M.S., Özceylan, E., 2015. A hierarchic
approach based on swarm intelligence to solve the travel-
ing salesman problem. Turk. J. Electric. Eng. Comput.
Sci., 23(1):103-117.

 https://doi.org/10.3906/elk-1210-147

Fig. 3 Comparison between theoretical and actual values
obtained with EFOA on the Berlin52 (a), Eil51 (b), Eil76
(c), St70 (d), Rat99 (e), Kroa100 (f), Krob100 (g), Eil101
(h), and Lin105 (i) datasets

http://dx.doi.org/10.1007/978-3-540-39930-8_8
http://dx.doi.org/10.1287/opre.6.6.791
http://dx.doi.org/10.1016/S1007-0214%2807%2970068-8
http://dx.doi.org/10.1016/j.eswa.2011.10.012
http://dx.doi.org/10.1016/S0303-2647%2897%2901708-5
http://dx.doi.org/10.1016/j.eswa.2014.07.054
http://dx.doi.org/10.1016/j.asoc.2011.01.039

Huang et al. / Front Inform Technol Electron Eng 2017 18(10):1525-1533

1533

Hendtlass, T., 2003. Preserving diversity in particle swarm
optimisation. In: Chung, P.W.H., Hinde, C., Ali, M.
(Eds.), Developments in Applied Artificial Intelligence.
Springer Berlin Heidelberg, p.31-40.

 https://doi.org/10.1007/3-540-45034-3_4
Hoffmann, M., Mühlenthaler, M., Helwig, S., et al., 2011.

Discrete particle swarm optimization for TSP: theoretical
results and experimental evaluations. In: Bouchachia, A.
(Ed.), Adaptive and Intelligent Systems. Springer Berlin
Heidelberg, p.416-427.

 https://doi.org/10.1007/978-3-642-23857-4_40
Jolai, F., Ghanbari, A., 2010. Integrating data transformation

techniques with Hopfield neural networks for solving
travelling salesman problem. Exp. Syst. Appl., 37(7):
5331-5335. https://doi.org/10.1016/j.eswa.2010.01.002

Karaboga, D., Gorkemli, B., 2011. A combinatorial artificial
bee colony algorithm for traveling salesman problem.
IEEE Int. Symp. on Innovations in Intelligent Systems
and Applications, p.50-53.

 https://doi.org/10.1109/INISTA.2011.5946125
Kirkpatrick, S., 1984. Optimization by simulated annealing:

quantitative studies. J. Stat. Phys., 34(5-6):975-986.
 https://doi.org/10.1007/BF01009452
Lawler, E.L., Wood, D.E., 1966. Branch-and-bound methods: a

survey. Oper. Res., 14(4):699-719.
 https://doi.org/10.1287/opre.14.4.699
Little, J.D.C., Murty, K.G., Sweeney, D.W., et al., 1963. An

algorithm for the traveling salesman problem. Oper. Res.,
11(6):972-989. https://doi.org/10.1287/opre.11.6.972

Liu, F., Zeng, G.Z., 2009. Study of genetic algorithm with
reinforcement learning to solve the TSP. Exp. Syst. Appl.,
36(3):6995-7001.
https://doi.org/10.1016/j.eswa.2008.08.026

Mahi, M., Baykan, Ö.K., Kodaz, H., 2015. A new hybrid
method based on particle swarm optimization, ant colony

optimization and 3-opt algorithms for traveling salesman
problem. Appl. Soft Comput., 30:484-490.

 https://doi.org/10.1016/j.asoc.2015.01.068
Masutti, T.A.S., de Castro, L.N., 2009. A self-organizing neural

network using ideas from the immune system to solve the
traveling salesman problem. Inform. Sci., 179(10):1454-
1468. https://doi.org/10.1016/j.ins.2008.12.016

Ouyang, X.X., Zhou, Y.G., Luo, Q.F., et al., 2013. A novel
discrete cuckoo search algorithm for spherical traveling
salesman problem. Appl. Math. Inform. Sci., 7(2):
777-784. https://doi.org/10.12785/amis/070248

Pan, W.T., 2011. Fruit Fly Optimization Algorithm. Tsang Hai
Book Publishing Co., Taipei, China, p.221-232 (in Chi-
nese).

Pan, W.T., 2012. A new fruit fly optimization algorithm: taking
the financial distress model as an example. Knowl.-Based
Syst., 26:69-74.

 https://doi.org/10.1016/j.knosys.2011.07.001
Pasti, R., de Castro, L.N., 2006. A neuro-immune network for

solving the traveling salesman problem. IEEE Int. Joint
Conf. on Neural Network, p.3760-3766.

 https://doi.org/10.1109/IJCNN.2006.247394
Peker, M., Şen, B., Kumru, P.Y., 2013. An efficient solving of

the traveling salesman problem: the ant colony system
having parameters optimized by the Taguchi method.
Turk. J. Electric. Eng. Comput. Sci., 21(55):2015-2036.

 https://doi.org/10.3906/elk-1109-44
Wu, J.Q., Ouyang, A.J., 2012. A hybrid algorithm of ACO and

delete-cross method for TSP. IEEE Int. Conf. on Industrial
Control and Electronics Engineering, p.1694-1696.

 https://doi.org/10.1109/ICICEE.2012.448
Zhou, Y.Q., Luo, Q.F., Chen, H., et al., 2015. A discrete inva-

sive weed optimization algorithm for solving traveling
salesman problem. Neurocomputing, 151:1227-1236.

 https://doi.org/10.1016/j.neucom.2014.01.078

http://link.springer.com/book/10.1007/3-540-45034-3
http://link.springer.com/book/10.1007/978-3-642-23857-4
http://dx.doi.org/10.1016/j.eswa.2010.01.002
http://dx.doi.org/10.1109/INISTA.2011.5946125
http://dx.doi.org/10.1007/BF01009452
http://dx.doi.org/10.1287/opre.14.4.699
http://dx.doi.org/10.1287/opre.11.6.972
http://dx.doi.org/10.1016/j.eswa.2008.08.026
http://dx.doi.org/10.1016/j.asoc.2015.01.068
http://dx.doi.org/10.1016/j.ins.2008.12.016
http://dx.doi.org/10.12785/amis/070248
http://dx.doi.org/10.1016/j.knosys.2011.07.001
http://dx.doi.org/10.1109/IJCNN.2006.247394
http://dx.doi.org/10.3906/elk-1109-44
http://dx.doi.org/10.1109/ICICEE.2012.448
http://dx.doi.org/10.1016/j.neucom.2014.01.078

	Abstract: The traveling salesman problem (TSP), a typical non-deterministic polynomial (NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm (FOA)...
	Key words: Traveling salesman problem; Fruit fly optimization algorithm; Elimination mechanism; Vision search; Operator

