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Abstract:    The traveling salesman problem (TSP), a typical non-deterministic polynomial (NP) hard problem, has been used in 
many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm (FOA) is 
used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has 
problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimi-
zation precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision 
search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination 
mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They 
are performed on the solution sequence in the fruit fly’s smell search and vision search processes, respectively. In the experiment, 
10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms 
of the convergence rate and precision. 
 
Key words:  Traveling salesman problem; Fruit fly optimization algorithm; Elimination mechanism; Vision search; Operator 
https://doi.org/10.1631/FITEE.1601364 CLC number:  TP181 
 
 
1  Introduction 
 

The traveling salesman problem (TSP), a classic 
combinatorial optimization problem, is applied in 
many engineering applications, such as computer 
networking, hardware design, traffic route design, 
electronic control systems, and asynchronous transfer 
mode (ATM) packet-switched networks. Additional-
ly, it is a typical non-deterministic polynomial (NP) 
hard problem, though the solution space for one TSP 
including n cities is n!.  

TSPs can be easy to describe but difficult to 

solve. The ways to solve the problem can be divided 
mainly into two categories: One is the exact method 
which can ensure obtaining the optimal solution, such 
as the branch-and-bound method (Lawler and Wood, 
1966) and dynamic programming (Bellman and 
Dreyfus, 1962). However, due to the increase in the 
number of cities, the execution time for these methods 
expands exponentially (Little et al., 1963). Thus, 
exact methods are suitable only for solving small- 
scale problems. The other is the approximate method 
which cannot guarantee obtaining the optimal solu-
tion but take less time, such as the genetic algorithm 
(GA), artificial ant colony (ACO) algorithm, particle 
swarm optimization (PSO) algorithm, and simulated 
annealing (SA) algorithm. 

Grefenstette et al. (1985) proposed GA for TSP. 
To solve large-scale TSPs, Ding et al. (2007) pre-
sented an adaptive two-level GA. Liu and Zeng 

Frontiers of Information Technology & Electronic Engineering 
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com 
ISSN 2095-9184 (print); ISSN 2095-9230 (online) 
E-mail: jzus@zju.edu.cn 

 

‡ Corresponding author 
* Project supported by the National Natural Science Foundation of 
China (Nos. 61472159 and 61373051) 

 ORCID: Lan HUANG, http://orcid.org/0000-0003-3223-3777 
© Zhejiang University and Springer-Verlag GmbH Germany 2017 

javascript:void(0);
javascript:void(0);
http://orcid.org/0000-0002-6574-1542
http://orcid.org/0000-0002-6574-1542
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601364&domain=pdf


Huang et al. / Front Inform Technol Electron Eng   2017 18(10):1525-1533 
 

1526 

(2009) proposed a GA with reinforcement learning to 
solve TSP. The algorithm uses GA as the framework  
and reinforcement learning as a mutation operator, 
and increases the convergence rate of GA. Dorigo and 
Gambardella (1997) presented an ACO algorithm 
which is capable of solving TSP. Escario et al. (2015) 
extended the ACO algorithm to solve TSP. The 
self-organizing dynamics of a real ant population was 
used to provide adaptive capacities to the ACO algo-
rithm for TSP. Hendtlass (2003), Clerc (2004), and 
Hoffmann et al. (2011) developed PSO algorithms 
with some modifications or hybrid-learning schemes 
to solve TSP. Mahi et al. (2015) proposed a new hy-
brid method based on the PSO, ACO, and 3-opt algo-
rithms to solve TSP. In this method, PSO is used for 
determining parameters that affect the performance of 
ACO, and the 3-opt is used for getting rid of the local 
solution found in the ACO algorithm. Kirkpatrick 
(1984) first applied the SA algorithm to deal with 
TSP. Geng et al. (2011) mixed an effective local 
search algorithm with the SA algorithm and greedy 
search techniques to solve TSP. Karaboga and Gor-
kemli (2011) proposed a combinatorial artificial bee 
colony (ABC) algorithm and applied it to solve TSP. 
They proved that the ABC algorithm can also be used 
to solve combinatorial optimization problems. 
Ouyang et al. (2013) proposed a novel discrete 
cuckoo search algorithm for a spherical TSP. Zhou  
et al. (2015) proposed a discrete invasive weed op-
timization algorithm to solve TSP. They mixed a 
3-opt local search operator and a 2-opt local search 
operator with an invasive weed optimization algo-
rithm to search for optimal results. Jolai and Ghanbari 
(2010) presented an improved artificial neural net-
work (ANN) approach to solve TSP. They improved 
the accuracy of the results and obtained the optimal 
tours with smaller total distances with a Hopfield 
neural network and data transformation techniques. 

Although these algorithms have improved the 
precision of the optimal result of TSP, they still run 
easily into problems at the local optimum and hardly 
meet the requirement of focusing on precision. After 
studying a variety of swarm intelligence algorithms 
and evaluating their test results, we find that FOA not 
only is easy to understand and simple to implement, 
but also has a higher expanding ability in its smell 
search process. However, the vision search process 

always keeps the algorithm trapped in the local  
optimum. 

To overcome these limitations, in this study, an 
elimination-based fruit fly optimization algorithm 
(EFOA) is proposed based on FOA to solve TSP. 
First, compared with FOA, EFOA reinforces the vi-
sion search process. In the improved vision search 
process, other fruit flies constantly observe the loca-
tion of the local optimal fruit fly and approach it 
gradually, but not by just rapidly and directly flying to 
the position of the best individual. Furthermore, an 
elimination mechanism is added to FOA. It means 
that some poor individuals of the group will be elim-
inated and some new fruit fly individuals will be 
generated. The elimination mechanism adds diversity 
to the population to improve the expanding ability and 
maintain the convergence ability. Finally, EFOA is 
used to solve TSP. In the process, two operators, an 
improved reverse operator and a new multiplication 
operator, are proposed. Compared with the other 
algorithms, EFOA has a better performance when 
testing the benchmark data selected from TSPLIB, 
and yields a higher precision. 
 
 
2  Fruit fly optimization algorithm  
 

FOA is a new swarm-intelligence optimization 
algorithm proposed by Pan (2011; 2012). It depicts 
the foraging behavior of the fruit fly. Due to their keen 
sense of smell and vision, fruit flies can judge the 
general direction to find food very quickly according 
to odor concentrations in the air in the process of 
foraging. Within the scope of their proximity to food, 
they constantly approach those partners closest to 
food using their visual sensitivity. Pan (2011; 2012) 
summed up the foraging behavior of fruit flies as a 
random search process and visual localization pro-
cess, and then proposed FOA. Compared with other 
swarm intelligence algorithms (such as PSO, ACO, 
and ABC), FOA has the advantages of being easy to 
understand and having a simple implementation. The 
specific steps are described as follows: 

Step 1: initialization. Define the group size as P, 
the maximum number of algorithm iteration as m, and 
the original location of group as (X0, Y0). 

Step 2: random search according to smell. Fruit 
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flies define the random direction and pace in their 
flight according to the food odor concentration they 
feel, which can be calculated as 

 

 0

0

,
,

i

i

X X R
Y Y R

= +
 = +

 (1)
 

 
where (Xi, Yi) is the current location of the ith fruit fly 
and R denotes the random pace. 

Step 3: calculation of the odor concentration 
decision value Si. The food odor concentration deci-
sion value is the reciprocal of the distance to the 
origin of the coordinate axes for the ith fruit fly, which 
is calculated as 

 

 
2 2
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Step 4: calculation of the odor concentration 

value (fitness function value) Smell. The odor con-
centration value is obtained based on the odor- 
concentration decision value: 

 
 Smell ( ),i iF S=  (3) 
 

where Smelli refers to the food odor concentration 
value (fitness function value) felt by the ith fruit fly. 

Step 5: finding the fruit fly that has the greatest 
value among Smell (optimal individual), described as 
follows: 

 
 bestSmell max{Smell},=  (4) 
 

where ‘best’ is the index of the optimal individual in 
the group whose odor concentration value is the 
largest. 

Step 6: visual localization. Suppose that the cur-
rent optimal individual is located in (Xbest, Ybest) and 
its odor concentration value is Smellbest. Then the 
group flies toward the best individual. The process is 
presented as follows: 

 

 
best

best

best

Smell Smell ,
,

,

i

i

i
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Y Y

=
 =
 =
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where (Xbest, Ybest) indicates the position of the current 
optimal individual.  

Step 7: iteration optimization. If the current it-
eration number t<m, repeat steps 2–5. Then determine 
if the current optimal odor concentration is better than 
the previous optimal value. If so, run step 6. The 
algorithm terminates when t=m. 
 
 
3  Elimination-based fruit fly optimization 
algorithm 

3.1  Reinforced vision search 

It should be emphasized that in FOA, all fruit fly 
individuals will fly to the optimal individual directly, 
meaning that after step 6, all individuals in the group 
will arrive at the optimal individual. Thus, this pro-
cess easily causes the algorithm to become trapped in 
local optima, resulting in a low optimization preci-
sion. Thus, in this study, we enhance the vision search 
ability of the fruit fly in the vision search process. In 
the process of flying to the food, other fruit flies con-
stantly observe the location of the fruit fly that has the 
largest food odor concentration, and approach it 
gradually, but not by just rapidly and directly flying to 
the position of the best fruit fly. By adding the vision 
search ability, the convergence rate of the algorithm 
can be improved, while both the probability of falling 
into local optima and the running time are reduced. 
The vision search process can be described by 

 

 best

best

(1 ) ,
(1 ) ,

i i

i i

X c X c X
Y c Y c Y

= ⋅ + − ⋅


= ⋅ + − ⋅
 (6) 

         

 
where c is a random number ranging from 0 to 1. 
Then calculate the odor concentration value Smelli 
according to Eqs. (2) and (3). 

3.2  Elimination mechanism 

Since the foraging behavior of a fruit fly is sim-
ple, FOA can easily fall into local optima, resulting in 
a low optimization precision. In this study, we add an 
elimination mechanism to the foraging behavior of 
the fruit fly; i.e., some individuals in the group are 
eliminated and some new ones are generated in the 
fruit fly foraging process. This can not only increase 
the population diversity but also maintain the  
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convergence of the algorithm. Therefore, the scala-
bility of the algorithm will be improved. The updating 
formula is 

 
 (worst) (new),N N N N= − ∪  (7) 
 

where N(worst) represents the weak fruit flies in the 
group, N(new) denotes the newly generated fruit flies, 
and ‘−’ and ‘∪’ refer to the set subtraction operation 
and set addition operation, respectively. The flow 
chart for EFOA is presented in Fig. 1. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Elimination-based fruit fly optimization 
algorithm for solving the traveling salesman 
problem 
 

In the process of using EFOA to solve TSP, an 
individual fruit fly represents a solution sequence. For 
a TSP of n cities, the solution sequence is a full per-
mutation of integers from 1 to n. For instance, in a 
TSP of three cities, individual fruit fly (3, 1, 2) means 
an access path from city 3 to city 1 and then city 1 to 
city 2. 

4.1  Definition of basic operators 

Based on the proposed algorithm, two operators, 
a reverse operator and a multiplication operator, are 
defined. They are performed in the solution sequence 
in the smell and vision search processes, respectively. 
Definition 1 (Reverse operator)    The reverse opera-
tor is an evolution of the 2-opt algorithm (Croes, 
1958). Suppose that the TSP solution sequence of n 
nodes is F=(ai) (i=1, 2, ..., n), and its reverse term 
TR(i, j) refers to nodes ai and aj in F; then F′=F⊕ 
TR(i, j) means reversing the subsequence between ai 

and aj to make them neighbors, leaving the rest of the 
solution sequence unchanged. The difference be-
tween a reverse operator and the 2-opt algorithm is in 
the selection of nodes ai and aj. In the reverse opera-
tor, node ai is selected randomly, and aj is the closest 
node to ai in F.  

For example, for a solution sequence F(1, 2, 3, 4, 
5), i=2, j=5, we have F′=F⊕TR(i, j)=(1, 2, 5, 4, 3). 
Definition 2 (Multiplication operator)    Given two 
solution sequences A=(ai) and B=(bi) (i=1, 2, ..., n), 
we randomly select three adjacent nodes bi−1, bi, and 
bi+1 from B, while their corresponding nodes in A are 
aj, ak, and am, respectively. Then the multiplication 
operator will generate at least one of the following 
three subsequences through the reverse operator: (ak, 
aj), (ak, am), and (aj, ak, am). 

Suppose that solution sequences A1, A2, and A3 
are the results of three reverse operations on A. Then 
A⊗B returns the best one among them, which has the 
largest fitness value. The specific steps are 

 

 

1

2

3

1 2 3

TR( ,  ),
TR( ,  ),

( TR( ,  )) TR( ,  ),
best( ,  ,  ).

A A k j
A A k m
A A k j k m
A B A A A

= ⊕
 = ⊕
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 ⊗ =

 (8)  
Fig. 1  Elimination-based fruit fly optimization algorithm 
working diagram 
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For example, given two solution sequences A(2, 
1, 6, 3, 7, 4, 5) and B(1, 2, 3, 4, 5, 6, 7), if bi=3, bi−1=2, 
bi+1=4, then A1=(6, 1, 2, 3, 7, 4, 5), A2=(2, 1, 6, 3, 4, 7, 
5), and A3=(6, 1, 2, 3, 4, 7, 5). The best one of them 
will be returned in A⊗B. 

4.2  Algorithm flow 

Step 1: initialization. Define the group size as P, 
the maximum number of algorithm iterations as m, 
and the original location of the group as (X0, Y0). 

Step 2: random search according to smell. t
kX  

represents the location of the kth fruit fly in the tth 
iteration, and an extra reverse operation is performed 
before the search. We should determine two nodes ai 
and aj in reverse commutator TR(i, j) first: 

 

 

(rdx), 1 rdx ,

the index of the node closest to in ,

TR( ,  ),

t
i

t
i i

t t
i i

i X n

j a X

X X i j

 = ≤ ≤


=
 = ⊕

 (9) 

 
where i is the node index in the solution sequence of 
the kth fruit fly in the tth iteration, rdx is a random 
integer ranging from 1 to n, j represents the location 
of the node that is closest to ai in the solution  
sequence. 

Step 3: calculating the odor concentration of t
iX  

and comparing it with that of the current optimal 
individual. t

iX  is updated to be the new current op-
timal individual in the group if the odor concentration 
felt by t

iX  is better. 
Step 4: visual localization. The other fruit flies 

fly to the optimal one through visual observation: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1
best .

t t
i iX X X+ = ⊗  (10) 

 
Step 5: repeating step 3. 1t

iX +  is updated to be 
the new current optimal individual in the group if the 
odor concentration felt by 1t

iX +  is better. 
Step 6: elimination mechanism: 
 
 (worst) (new).N N N N= − ∪  (11) 
 
Eq. (11) is similar to Eq. (7) except that N(worst) 

has only 10% of the fruit flies in the group. 
Step 7: iteration optimization. If the current it-

eration number t<m, repeat steps 2–6. The algorithm 
terminates when t=m. 
 
 
5  Experiment results  
 

Ten benchmarks are selected from TSPLIB to 
test the performance of EFOA. Every benchmark is 
tested 20 times. 

Table 1 shows the results of the experiments re-
peated 20 times. BKS refers to the theoretical value of 
the dataset, Average represents the average value of 
the experimental results, SD is the standard deviation 
in the experiments, and Error is defined as 

 

 Average BKSError 100%.
BKS

−
= ×  (12) 

 
Figs. 2a–2d present the results of the iteration 

optimization using the basic FOA and the improved 
version (EFOA) on the Berlin52, Eil51, Lin105, and  
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Results from the elimination-based fruit fly optimization algorithm to solve traveling salesman problem 
Dataset BKS Best Worst Average SD Error (%) 

Berlin52    7542    7542    7542    7542.00 0 0 
Eil51      426      426      431      427.53   1.2600 0.359 
Eil76      538      540      550      544.05   2.9100 1.125 
St70      675      675      682      677.26   2.3300 0.335 
Rat99    1211    1217    1232    1237.20 15.1700 2.164 
Kroa100 21 282 21 282 21 527 21 357.00 43.7700 0.352 
Krob100 22 141 22 219 22 419 22 355.00 65.7300 0.967 
Eil101      629      635       649      642.05   4.7700 2.075 
Lin105 14 379 14 379 14 553 14 427.06 44.6700 0.334 
Ch150    6528    6558    6660    6618.20 31.6837 1.382 
Every benchmark was tested 20 times. BKS: theoretical value of the dataset; SD: standard deviation 
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St70 datasets, respectively. The solid line represents 
EFOA, while the dashed line represents FOA. It can 
be seen that, in the improved version (EFOA), the 
optimization result does not change after 40 itera-
tions, while the values for the basic version (FOA) 
continue changing after even more than 100 itera-
tions. In the end, the solid line is beneath the dashed 
line. This shows that EFOA can find the optimal so-
lution after just 40 iterations while FOA needs more 
than 100 iterations. The former has a much higher 
optimization precision than the latter when solving 
TSP. Since EFOA reinforces vision search in the for-
aging behavior of the fruit flies and adds an elimina-
tion mechanism to FOA, it consequently improves the 
convergence rate and increases the diversity of the 
group. Thus, it avoids falling into local optima and 
finally improves the optimization precision. 

Fig. 3 presents the theoretical and actual values 
obtained using the improved FOA (EFOA). We can 
see that the theoretical values and actual values have 
little difference, and the theoretical values are reached 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

when using the improved FOA on the Berlin52, Eil51, 
St70, Kroa100, and Lin105 datasets. 

Table 2 shows the results obtained using EFOA 
and the alternatives to solve TSP. The optimal value 
of each dataset is marked in bold. It can be seen that 
EFOA achieves results of 7542.00, 427.53, 677.26, 
1237.20, and 642.05, which are the best compared 
with the alternatives on the Berlin52, Eil51, St70, 
Rat99, Eil101, and Ch150 datasets. 

However, for the Eil76, Krob100, and Kroa100 
datasets, the best performance is 542.00 with CGAS 
(Dong et al., 2012), 22 336.20 with DWIO (Zhou et 
al., 2015), and 21 289.98 with DWIO, while the pro-
posed algorithm achieves results of 544.05, 
22 355.00, and 21 357.00, which are comparable with 
the best performances. As for the Lin105 dataset, the 
four algorithms achieve a similar performance. Each 
dataset has its own characteristics; thus, it can be 
difficult for a specific algorithm to achieve the opti-
mal value in all of the datasets. From the com- 
parisons above, we can see that EFOA improves the 

 
Fig. 2  Comparison of iteration optimization using fruit fly optimization algorithm (FOA) and elimination-based FOA 
(EFOA) on the Berlin52 dataset with 7542-opt (a), the Eil51 dataset with 426-opt (b), the Lin105 dataset with 14379-opt 
(c), and the St70 dataset with 675-opt (d) 
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optimization precision in most datasets, showing the 
effectiveness of the proposed algorithm. 
 
 
6  Conclusions 
 

In this paper, an elimination-based fruit fly op-
timization algorithm (EFOA) was proposed. In 
EFOA, the vision search ability of fruit flies is rein-
forced in their foraging behaviors to avoid trapping 
the algorithm in local optima, and an elimination 
mechanism is added into FOA. The proposed method 
improves the convergence rate and the optimization 

precision of the result. Two operators, a reverse op-
erator and a multiplication operator, were proposed 
when using the improved FOA to solve TSP. Ten 
datasets in TSPLIB were tested to validate our me- 
thod. The comparison results demonstrate that our 
method has much better optimization precision and 
stability than other methods. 

However, large-scale datasets for TSP were not 
tested in this study. Our future research investigations 
include exploring how to use this algorithm to obtain 
a more satisfactory solution for large-scale TSPs in 
shorter time. 
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