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Abstract: The hot-dip galvanizing line (HDGL) is a typical order-driven discrete-event process in steelmaking. It has some 
complicated dynamic characteristics such as a large time-varying delay, strong nonlinearity, and unmeasured disturbance, all of 
which lead to the difficulty of an online coating weight controller design. We propose a novel neural network based control system 
to solve these problems. The proposed method has been successfully applied to a real production line at VaLin LY Steel Co., Loudi, 
China. The industrial application results show the effectiveness and efficiency of the proposed method, including significant 
reductions in the variance of the coating weight and the transition time. 
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1  Introduction 
 

Hot-dip coating is a popular production process 
after cold milling in steelmaking. This process pro-
duces high value-added products such as galvanized 
sheet, which is widely used in automotive and 
household electrical appliance manufacturing (Jordan 
et al., 1993; Marder, 2000). In recent years, studies 
that incorporate control and information technology 
to realize online coating weight control systems have 
been an attractive research area. A general schematic 
diagram of a typical hot-dip galvanizing line (HDGL) 
is shown in Fig. 1. 

As shown in Fig. 1a, the strip receives heat 
treatment in an annealing furnace, and then passes 
through a molten zinc bath where hot liquid zinc is 
attached to the surface of the strip. The deposited 
coating weight on the strip is controlled by the air 

knife installed just above the zinc pot and close to the 
liquid level. After that, the strip passes through a 
series of auxiliary processes, such as leveling, pas-
sivation, oiling, and finally being wound into a coil. 
As shown in Fig. 1b, a typical air knife includes two 
identical parts, a front air knife and a back air knife. 
At both sides, a series of nozzles are installed to force 
excess zinc to flow back into the pot, by forming a 
high-velocity and horizontally extended gas jet (air or 
nitrogen) toward the moving strip. Each side was 
driven by two motors to regulate its gap to the cen-
terline along which the strips pass. The air knife gap 
(distance between the nozzles and strips) and the air 
pressure (outlet air pressure from nozzles) are two 
major influencing factors of air-jet effect. Thus, the 
design of the coating weight control system is con-
cerned mainly with the set of air knives under varying 
production conditions, with the objective to ensure 
that the thickness of zinc attached on the strip meets 
the requirements of customer orders. 

However, the hot-dip coating process has some 
complicated characteristics such as a large time- 
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varying lag, strong nonlinearity, and unmeasured 
disturbance, all of which lead to difficulty in con-
troller design. So far, manual control has still been 
widely used in HDGLs. With the development of 
modeling techniques, many methods have been pro-
posed to solve the nonlinearity and large measure-
ment lag problems. These model-based control ap-
proaches can be divided into several categories, such 
as first principle (Thornton and Graff, 1976; Adams et 
al., 1996; Tu and Wood, 1996; Elsaadawy et al., 
2007), regression (Shin et al., 2006; Guelton and 
Lerouge, 2010; Guelton et al., 2016), neural network 
(Bloch et al., 1997; Lu and Markward, 1997; Pal et al., 
2006; Martínez-de-Pisón et al., 2010, 2011; Sanz- 
García et al., 2012), and model-free adaptive control 
with a Smith predictor (Zhang et al., 2011; Fei et al., 
2016). Thornton and Graff (1976) first provided a 
coating weight model based on the maximum flux 
theory in which the jet effect is regarded as a body 
force. Tu and Wood (1996) improved the method by 
imposing shear stress on the surface of the liquid. 
Elsaadawy et al. (2007) developed a model that de-
scribes the pressure and wall shear stress distributions 

as functions of the slot gap and impingement distance. 
On the basis of these models, the effect of each pro-
cess variable on the coating weight can be calculated 
quantitatively and independently by the first principle. 
However, these models have difficulty in online 
control of the coating weight due to their complexity 
(Bloch et al., 1997; Shin et al., 2006). 

Conversely, regression models (Shin et al., 2006; 
Guelton and Lerouge, 2010; Guelton et al., 2016) are 
simple exponential models whose parameters were 
tuned based on historical process data. Regression 
models can be easily realized, but the ability to gen-
eralize with respect to the nonlinear characteristics of 
the system is poor (Lu and Markward, 1997). Thus, as 
a powerful nonlinear learning technique (Yu and Li, 
2008), a neural network is incorporated in the mod-
eling of HDGL processes to deal with the complex 
nonlinear interrelations. Combined with other artifi-
cial intelligences such as the genetic algorithm (GA), 
the application results show huge advantages of 
neural networks in prediction accuracy, generaliza-
tion ability, and computational complexity for online 
control compared with conventional regression ap-
proaches (Bloch et al., 1997; Pal et al., 2006; Mar-
tínez-de-Pisón et al., 2010, 2011; Sanz-García et al., 
2012). However, as indicated by Guelton and 
Lerouge (2010), the coating weight on a galvanized 
strip is influenced by many factors, including some 
unmeasured variables like the crossbow and flatness 
of strips. Those unmeasurable external factors will 
reduce the prediction accuracy of the neural network 
and further affect the control performance (Lu, 1996; 
Lu and Markward, 1997). Also, the Smith predictor 
used by Zhang et al. (2011) and Fei et al. (2016) is 
sensitive to the modeling error and may not perform 
well in practice. All the above methods regard air 
pressure as the unique manipulated variable, while the 
air knife gap stays constant. However, based on 
practical experience, the air knife gap also plays an 
important role in the HDGL process, and a proper 
combination of the air knife gap and air pressure in a 
control strategy design will further help improve the 
control performance. 

To enhance further the quality of the coating 
weight and reduce zinc waste, we present a novel 
neural network based coating weight control system 
composed of a feedforward control (FFC) and a 
feedback control (FBC). More specially, FFC  

Fig. 1 Typical hot-dip galvanizing process (a) and the 
air knife (b) 
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regulates both the air knife gap and air pressure when 
a drastic change occurs in the line speed or the target 
coating weight changes, while FBC regulates only the 
air pressure under relatively steady working status. 
The neural network with a bias-update is embedded in 
both FFC and FBC to manage the nonlinear process 
prediction and the large time-variant measurement 
delay problems. 

The notations used in this paper are given in 
Table 1. 

 
 

2  Problem statement 

2.1  System analysis 

A general model of a galvanizing plant, in terms 
of coating weight control, is summarized in the block 
diagram (Fig. 2). The coating weights are affected by 
several factors, and three main factors are the strip 
line speed, the air pressure, and the air knife gap. 
However, only the latter two are selected as manipu-
lated variables (MVs) because the line speed depends 
on the capacity and the pace of upstream and down-
stream processes, which are measurable but uncon-
trollable. There are also other factors, such as air knife 
height, steel grade, and strip temperature, which are 
regarded as disturbances in the HDGL control system. 

Although the current coating weight (CW) of a 
strip is determined by all the previously mentioned 
factors, immediately after the strip passes the air knife, 
it cannot be measured until the zinc cools from liquid 
to solid. Thus, the measurement equipment (X-ray 
coating gauge) is installed about 100 m away from the 
air knife, introducing a dynamic measurement delay τ 
(Fig. 2). 

2.2  Control target 

HDGL is a typical order-driven discrete- 
event production process, in which the target coating 
weight of each strip is determined by the customer 
demand and varies within a wide range. Thus, the first 
objective of the coating weight control system is to 
minimize the error between the target and the actual 
coating weight. In particular, negative error leads to 
off-specification products while positive error results 
in raw material (zinc ingots) waste. 

On the other hand, order scheduling is deter-
mined by the customer order, due date, and product 

inventory. It cannot be guaranteed that strips with the 
same target coating weight will be processed 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Notations used in this paper 
Notation Description 

CV Controlled variable 
CW Coating weight 

CWd(t) Predictive coating weight related to the current 
observed coating weight in bias-update 

CWm(t) Current observed coating weight at time t 
CWp Predictive coating weight 

CWp′(t) Corrected predictive coating weight at time t 
D Air knife gap 

Derror Input term of the derivative operator in the 
real-time optimizer 

DFFC(t) Set point of the air knife gap in speed-FFC 
Dlower Lower bound of the air knife gap 
Dpre(t) Set point of the air knife gap in preview con-

trol at time t 
Dupper Upper bound of the air knife gap 
Ierror Input term of the integral operator in the real- 

time optimizer 
Kd Derivative term 
Ki Integral term 
Kp Proportional term 

MV Manipulated variable 
NNp Neural network relationship 

P Air pressure 
Perror Input term of the proportional operator in the 

real-time optimizer 
PFBC(t) Set point of air pressure in FBC 
PFFC(t) Set point of air pressure in speed-FFC 
Plower Lower bound of air pressure 
Ppre(t) Set point of air pressure in preview control at 

time t 
Pupper Upper bound of air pressure 

Rfcw(t) Future target coating weight at time t 
Rcw(t) Current target coating weight at time t 

S Line speed 
t Time 

Tb Piecewise constant function in calculating tvc 
tvc Optimal timing of the air pressure change in 

preview control 
w1, w2 Two weights used in preview control 
β Weight coefficients in bias-update 
τ Measurement delay 
ΔP Predefined small disturbance term 
ΔT Sample cycle 
Δu Increment of air pressure in the real-time 

optimizer 
Ω Data set used to validate the NN model 
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successively, which leads to frequent changes in the 
target coating weight. Thus, it is important to mini-
mize the transition time when the target coating 
weight changes. Shorter transition time means less 
raw material waste and fewer off-specification 
products. 

2.3  Control difficulty 

HDGL system has some complicated character-
istics that lead to difficulty in coating weight control: 

1. The X-ray coating gauge is installed far away 
from the air knife, inducing a large time-varying 
measurement lag. 

2. Various external disturbances may have im-
pact on model precision and control performance. 

3. Strong nonlinearity makes it quite difficult to 
establish an accurate model covering all the operating 
points. 

4. Due to the nature of the air knife, the settling 
time of air pressure is much longer than that of the air 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

knife gap which is driven by a motor, resulting in an 
unsynchronized regulation problem. 

 
 

3  Design of the control system 

3.1  Framework 

A novel coating weight control system is pro-
posed based on a neural network with the framework 
shown in Fig. 3. The control system has two work 
modes: FFC and FBC. FFC mode is activated when 
the line speed changes significantly or the set point of 
the coating weight is changed with a new strip. FFC 
can dramatically shorten the transition time when the 
set point of the coating weight changes, and can pro-
vide excellent disturbance rejection performance 
when the line speed changes. Considering the dif-
ferent characteristics of the air pressure and air knife 
gap, the execution logic of FFC mode is carefully 
designed. 

A neural network, which is effective in de-
scribing the nonlinear characteristics of a real system, 
is incorporated in FBC to predict the value of the 
online coating weight. This predictive value instead 
of the measured coating weight is used as the feed-
back, so that the large time-variant measurement 
delay is avoided. In addition, the predictive coating 
weight (CWp) is modified through an online bias- 
update algorithm. Through this mechanism, the pre-
diction error induced by the external disturbance can 
be reduced significantly. Based on this, a real-time  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Simplified block diagram of the coating weight 
control plant 
 

Fig. 3  Framework of the control system 
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online optimizer with excellent global search capa-
bility is employed to calculate the optimal set-point 
value of the air pressure. 

To ensure proper control system operation, two 
control modes must not be run simultaneously and a 
well-designed logic must be used to determine the 
switching time between these two modes.  

3.2  Neural network predictive model 

The neural network predictive model was de-
veloped as the basis of FFC and FBC. It describes the 
nonlinear steady-state relationship between CWp and 
the manipulated variables (air pressure P and air knife 
gap D), with major measurable factors that will also 
have an effect on the coating weight, such as line 
speed S. Thus, the nonlinear mapping of the neural 
network can be described as follows: 

 
NNp( , , ) CWp.P S D =                 (1) 

 
Here, a three-layer neural network is adopted 

with three input neurons, one output neuron, and 
seven neurons in a hidden layer. The synaptic weights 
are optimized through off-line back propagation (BP) 
learning. 

The target function that drives the training pro-
cess is the error between CW and CWp in the training 
space, which includes four dimensions (air pressure, 
air knife gap, line speed, and actual coating weight). 

From January 2016 to March 2016, about 
780 000 actual process data pairs were obtained. The 
outlier and abnormal data were eliminated first. The 
representative samples covering all known production 
statuses were extracted from the remaining data 
through clustering. The NN toolbox in MATLAB 
2008b was used to train the neural network automat-
ically. Two-thirds of the samples were used as the 
training and validation set while the remaining 
one-third were used as the testing set. The root mean 
squared error (RMSE) was used to evaluate the 
models: 

 
1/2

21 (CW( ) CWp( ))RMSE ,
s

s s
WW ∈

 −=  
 

∑      (2) 

 
where Ω is the data set used to validate the models. 

During the training, the learning rate in BP is set 
to 0.2, and the momentum is set to 0.9. Due to the 

strong nonlinear mapping ability, the neural network 
can generate an accurate CWp value with a smaller 
prediction error, which is quite important for both 
FFC and FBC. 

3.3  Feedforward control 

3.3.1  Outline 

In this study, FFC consists of two modules: 
preview control and speed-FFC. Preview control 
handles situations in which a new strip with a dif-
ferent target coating weight approaches the air knife, 
whereas speed-FFC works when the line speed 
changes significantly. Preview control calculates the 
optimal timing of air pressure change tvc, the set point 
of air pressure Ppre(t), and the air knife gap Dpre(t), 
based on the predetermined production order sent 
from the L3 manufacturing execution system (MES). 
On the other hand, speed-FFC belongs to the typical 
feedforward approach, which is used to perceive 
drastic speed changes and adjust the MVs in advance 
to maintain the coating weight stability. 

3.3.2  Preview control 

When a strip with a different coating weight set 
point approaches the air knife, preview control (Fig. 4) 
is activated to regulate the air pressure and air knife 
gap. The objective of preview control is to switch the 
coating weight to the new set point as fast as possible. 

As shown in Fig. 4, once preview control is ac-
tivated, an optimization problem P1 is established and 
solved to derive the set points of Ppre(t) and Dpre(t). 
The detailed description of P1 is presented below: 

P1: The major objective of preview control is to 
minimize the error between the future target coating 
weight Rfcw(t) and CWp, which is calculated through 
the previously described neural network model de-
pending on the current line speed S(t) and the set 
points of Dpre(t) and Ppre(t), i.e., 

 

pre pre
pre pre( ), ( )

min NNp( ( ), ( ), ( )) Rfcw( ) .
P t D t

P t S t D t t−   (3) 

 
The other objective is to minimize the gain of the 

coating weight and the air pressure at the current 
operation point, which will minimize the impact of 
natural fluctuations on the air pressure and further 
improve the production quality. 
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pre pre
pre pre( ), ( )

pre pre

1 NNp( ( ) , ( ), ( ))min

NNp( ( ), ( ), ( ))             ,

P t D t
P t P S t D t

P

P t S t D t

+ DD

− 
   

(4) 

 
where PD is a predefined small disturbance term. By 
employing two weights, w1 and w2, Eqs. (3)–(4) can 
be combined into a single one: 

 

pre pre
1 pre pre( ), ( )

pre pre2

pre pre

min NNp( ( ), ( ), ( )) Rfcw( )

1 NNp( ( ) , ( ), ( ))             

NNp( ( ), ( ), ( ))            .

P t D t
w P t S t D t t

P t P S t D tw
P

P t S t D t

 ⋅ −


+ D+ ⋅ D

−   

 

(5)
 In addition, the following conditions should be met: 

 

pre lower upper

pre lower upper

( ) [ , ],
( ) [ , ],

D t D D
P t P P

∈
 ∈

              (6)  

 
where Dlower, Dupper, Plower, and Pupper are the upper and 
lower bounds of the air knife gap and air pressure 
given in advance, respectively. 

Essentially, conventional operational methods 
such as the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) algorithm and other quasi-Newton methods 
may be not applicable to P1 due to the implicit ex-
pression of the neural network mapping NNp and the 
strong nonlinearity involved in the objective. Thus, 
intelligence algorithms such as GA, simulated an-
nealing (SA), and particle swarm optimization (PSO) 
can be used to solve the optimization problem P1 and 
derive the set points of MVs in preview control. Here, 
two different cases are considered in terms of the 
change direction of the target coating weight (Fig. 4): 

Case 1: The target coating weight decreases. 
Fundamentally, when the target coating weight de-
creases, the air pressure should be increased. How-
ever, adjusting the air pressure is a slow process, 
while adjusting the air knife gap is instantaneous. 
Thus, the slow adjustment of the actual air pressure 
means that the actual coating weight can remain 
larger and converge to the target value slowly. In this 
case, the values of Dpre(t) and Ppre(t) derived from 
solving the problem P1 can be sent to L1 just when 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
the weld passes through the air knife (i.e., when the 
target coating weight changes), thus creating tvc=0. 

Case 2: The target coating weight increases. 
When the target coating weight increases, the air 
pressure should be decreased. The slow air pressure 
adjustment process is ‘dangerous’ to the coating 
weight because the actual coating weight will stay 
below the target weight during this process, which is 
strictly forbidden in the transition. Thus, the air 
pressure should be regulated before the weld passes 
through the air knife, whereas the air knife gap is 
regulated when the target coating weight changes. 

To calculate the lead time tvc, problem P1 is 
solved to derive the air pressure Ppre(t) and air knife 
gap Dpre(t) based on the current line speed S(t) and the 
future target coating weight Rfcw(t). Then, we have 

  
vc b pre(| ( ) ( ) |),t T P t P t= −                   (7) 

 
where Tb is a piecewise constant function represent-
ing the settling time from the current air pressure P(t) 
to Ppre(t) approximately. 

3.3.3  Speed-FFC 

When a drastic change occurs in the line speed 

Fig. 4  Workflow of preview control 
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S(t), both the air pressure and the air knife gap should 
be regulated immediately to prevent large fluctuations 
in the coating weight. It is too late to regulate the MVs 
when the fluctuations are observed by the coating 
gauge several minutes later. 

On the other hand, if a small change occurs to the 
line speed, the system will just regulate the air pres-
sure alone by FBC. 

The speed-FFC solves an optimization problem 
similar to that of preview control with the decision 
variables air pressure PFFC(t) and air knife gap DFFC(t), 
based on the current line speed S(t) and the current 
target coating weight Rcw(t). Here, the only differ-
ence between P1 and this problem is that the future 
target coating weight Rfcw(t) is replaced by the cur-
rent target coating weight Rcw(t). 

3.4  Feedback control with neural network 

3.4.1  Outline 

Different from the conventional FBC approaches 
which use the observed coating weight as the feed-
back information, a novel FBC framework is pro-
posed using a bias-updated CWp value rather than the 
actual value with a large time-variant delay (Yu and 
Li, 2008). 

As stated previously, FBC is composed of a 
predictive neural network module, an online bias- 
update module, and a real-time optimization module. 
The detailed FBC workflow is shown in Fig. 5. The 
real-time optimizer generates the set point of the air 
pressure, and feeds it into the neural network model 
with the current knife gap and line speed. Then, the 
primitive CWp from the neural network and the bias 
from bias-update module are added and fed back to 
the real-time optimizer. In this way, the set value of 
the air pressure is optimized iteratively until a satis-
factory result is achieved. 

3.4.2  Bias-update 

The primitive CWp(t) is further corrected by  
an online bias-update module with the following  
workflow: 

Step 1: Calculate the time delay corresponding to 
the current observed coating weight CW(t). Funda-
mentally, this delay equals the travel time of the strip 
from the air knife to the coating gauge. Considering 
the simple relationship among the velocity, time, and 
distance in the first principle, the following equation  

 
 

 

 

 

 

 

 

 

 
 

can be obtained: 
 

( )

0

( ),
t

k
L T S t k

t

=

= D ⋅ −∑                  (8) 

 
where ΔT is the sample time and S(t), S(t−1), …, 
S(t−τ(t)) are a series of line speeds at different sample 
time. The time delay τ(t) is computed as follows: 

Initialization: define variable Lsum=0, k=0. 
Step 1.1: Calculate Lsum=Lsum+ΔT⋅S(t−k). 
Step 1.2: If Lsum<L, let k=k+1, return to step 1.1; 

otherwise, go to step 1.3. 
Step 1.3: Let τ(t)=kΔT, and terminate the  

calculation. 
Step 2: Shift the MVs and line speed by τ(t) in 

the time horizon and find the values of P(t−τ(t)), 
S(t−τ(t)), and D(t−τ(t)) in the historical database. 
Fundamentally, the current observed coating weight 
CWm(t) is affected by these variables at time t−τ(t). 

Step 3: Calculate the model predictive coating 
weight CWd(t) corresponding to the current observed 
coating weight CWm(t) using the past terms P(t−τ(t)), 
S(t−τ(t)), and D(t−τ(t)): 

 
CWd( ) NNp( ( ( )), ( ( )), ( ( ))).t P t t S t t D t tt t t= − − −  

(9) 
 

Restore the coating-weight-tuple (CWm(t), CWd(t)) 
in the database. 

Step 4: Bias calculation. Based on a series of 
coating-weight-tuples in recent sample cycles such as 
(CWm(t), CWd(t)), (CWm(t−1), CWd(t−1)), …, 
(CWm(t−N+1), CWd(t−N+1)), a moving average 
method is used to calculate the adjusted model  

Fig. 5  Schematic of feedback control 
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predictive coating weight as follows: 
 

1

0
CWp ( ) CWp( ) (CWd( )

                 CWm( )),

N

k
k

t t t k

t k

β
−

=

′ = + −

− −

∑      (10) 

 
where βk (k=0, 1, …, N−1) is a series of weight coef-
ficients given in advance. 

Different from the conventional approach of de-
riving the delay parameter approximately with the 
identification method as in the Smith predictor 
(Warwick and Rees, 1988), in bias-update algorithm 
the measurement delay of the coating gauge is derived 
precisely, so that the CWp is matched with the plant 
value by shifting the MVs and line speed. Based on 
these coating-weight-tuples, the corrected CWp 
(CWp′(t)) is derived. The prediction error caused by 
the inaccurate model, working condition changes, and 
other disturbances can be significantly reduced by 
bias-update. 

3.4.3  Real-time optimizer 

Based on the predictive model and bias-update, 
the optimizer calculates the set point of the air pres-
sure, which minimizes the error between the target 
Rcw(t) and the predicted coating weight CWp′ with a 
given air pressure PFBC(t), that is, 

 

FBC ( )
min | Rcw( ) CWp |.
P t

t ′−                     (11) 

 
Given the current actual line speed S(t), air knife 

gap D(t), and the recent several coating-weight-tuples, 
the CWp' in Eq. (11) is a single-variable function of 
the variable PFBC(t) according to bias-update algo-
rithm. However, due to the strong nonlinearity of the 
coating production line, it is difficult to find the op-
timal PFBC(t). To improve the FBC performance, a 
discrete proportional-integral-derivative (PID) con-
troller based optimization approach is used to solve 
the above nonlinear problem. The workflow of the 
algorithm is as follows: 

Initialization: Determine the proportional term 
Kp, integral term Ki, and derivative term Kd in PID. 
Let P=P(t), the number of iterations k=1, the initial 
input terms Perror0=0, Ierror0=0, Derror0=0, Perror1=0, 
Ierror1=0, Derror1=0. 

Step 1: Calculate bias-update predictive coating 
weight CWp′k with Pk and the current actual plant 

values such as S(t) and D(t), according to bias-update 
algorithm, and then errork+1=Rcw(t)−CWp'k. 

Step 2: If errork+1 is less than a predefined 
threshold value, terminate the algorithm and return 
the current Pk as PFBC(t). 

Step 3: k=k+1, and update the input terms of PID 
in incremental form as follows: 

 
error 1

error

error 1 2

error erro ,

error ,

error 2error error .

k

k

k

k k

k

k k k

P r

I

D

−

− −

= −


=
 = − +

         (12) 

 
Step 4: The increment of air pressure is Δuk= 

KpPerrork+KiIerrork+KdDerrork. 
Step 5: Pk=Pk–1−Δuk, and return to step 1. 

3.5  Switch logic 

The switch logic between FBC and FFC is 
carefully designed as shown in Fig. 6. The workflow 
of the switch logic can be summarized as follows: 

Step 1: Judge the current status of the control 
system, if in FFC, go to step 2, and if in FBC, go to 
step 5. 

Step 2: Judge whether a drastic change occurs to 
the line speed. If yes, regardless of whether the sys-
tem is currently in preview control or speed-FFC, 
start the speed-FFC computation immediately and 
terminate the logic; otherwise, go to step 3. 

Step 3: Judge whether the measurement coating 
weight (MCW) achieves a relatively stable value; i.e., 
the deviation of several consecutive MCWs is less 
than a given threshold value. If yes, go to step 4; 
otherwise, end the logic. 

Step 4: Start FBC and terminate the logic. 
Step 5: Judge whether any new strip with a dif-

ferent target coating weight approaches. If yes, start 
preview control and end the logic; otherwise, go to 
step 6. 

Step 6: Judge whether a drastic change occurs in 
the line speed. If yes, start speed-FFC and end the 
logic; otherwise, end the logic immediately. 

The switch logic workflow will be first executed 
during each control cycle. In addition, when the sys-
tem is shifted from manual mode to automatic mode, 
the initial state of the control system is set to FBC to 
maintain system stability during the switch process. 
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4  Application and results 

4.1  System implementation 

Based on the proposed algorithms, an HDGL 
control system was developed and implemented at 
VaLin LY Steel Co., Loudi, Hunan, China. The ar-
chitecture of the control system is presented in Fig. 7. 

 
 
 
 
 
 
 

 
 
 
 
 
 

The existing level I (L1 level) control system 
was implemented by a Siemens S7-300 PLC. Based 
on this control system, a supervisory control and data 
acquisition (SCADA) software was integrated to 
bridge the level I control system and the coating 
weight control system through OLE for process con-
trol (OPC), and to provide a human-machine interface 
(HMI). The coating weight control software was 

coded in C++ and stored in an IBM X3650 server. In 
addition to FFC and FBC, several software modules 
were developed as follows: 

1. Data gathering: collect and preprocess the 
actual process data. 

2. Offline training: derive a good neural network 
model. 

3. Strip tracking: track the processing strip on the 
HDGL to achieve the current target coating weight, 
strip thickness, and other information, and compute 
the distance between the weld and the air knife. 

4. Manual/Auto switch logic: switch the mode of 
the control system between the manual and automatic 
modes without disturbance. 

5. Performance analysis: collect the actual data 
related to the performance index online and do sta-
tistical analysis. 

6. Heartbeat: test the connection status between 
the server and L1 level periodically, and switch the 
system to the manual mode immediately once the 
communications fail.  

4.2  Parameter setting 

After an online test for several weeks, the pa-
rameters included in the control system were opti-
mized to achieve better control performance. The 
cycle of bias-update was set to 60 s. The control cycle 
was set to 5 s. The proportional term Kp∈[0.1,  
0.2], integral term Ki∈[0.01, 0.02], and derivative 
term Kd∈[0, 0.01] were set in the real-time optimizer. 

4.3  Application results 

4.3.1  Performance of bias-update 

To show the effectiveness of bias-update, the 
online predictions of the coating weight before and 
after bias-update are compared in Fig. 8. 

Within seven hours, the prediction before bias- 
update and the actual plant value were in substantial 
agreement, indicating that the neural network model 
is close to the practical system with a small modeling 
error. The prediction accuracy can be further im-
proved using bias-update, in which the average error 
of the predicted value was significantly reduced from 
2.26 g/m2 to 0.54 g/m2. 

4.3.2  Performance of preview control 

To show the performance of preview control, the 

Fig. 6  Workflow of the switch logic 

Fig. 7  Architecture of a real control system 



Pan et al. / Front Inform Technol Electron Eng   2018 19(7):834-846 843 

process data of about 1 month measured by the coat-
ing gauge was collected. A transition began with the 
change of the target coating weight and ended when 
the actual coating weight fell within a target neigh-
borhood ([80, 85] for Z80, [120, 125] for Z120), and 
the actual coating weight remained in the neighbor-
hood for at least 200 s. The average transition time 
was significantly reduced by the proposed preview 
control from 580 s in the manual mode to 328 s in the 
automatic mode. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Four typical transition processes corresponding 
to the increase or decrease of the target coating weight 
under manual or automatic control were compared in 
Fig. 9. The transition time under automatic control 
was significantly shorter than that under manual 
control. In addition to the long transition time, the 
coating weight stayed below the target for a long time 
under manual control (Fig. 9d), and a large number of 
off-spec products were produced and wasted. 

In Fig. 9a, the air pressure and air knife gap were 
regulated simultaneously once the target decreased, 
which forced the actual value to drop to the target 
quickly and then track smoothly the target without 
overshooting. On the other hand, as shown in Fig. 9c, 
the air pressure was regulated before the target 
changed, leading to a gradual increase in the actual 
coating weight. Meanwhile, the air knife gap was 
enlarged when the target changed. After that, the ac-
tual coating weight converged to the target quickly. 
Note that the coating gauge stopped working when a 
weld passed through it for the safety of the X-ray 
sensors. Thus, in both of the above cases, the meas-
ured value of the coating weight remained constant 
for a period of time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  Comparison of the predictive coating weight before 
and after bias-update (References to color refer to the 
online version of this figure) 

Fig. 9  Comparison between manual and automatic control during transition: (a) target coating weight decreases 
(automatic control); (b) target coating weight decreases (manual control); (c) target coating weight increases (auto-
matic control); (d) target coating weight increases (manual control) 



Pan et al. / Front Inform Technol Electron Eng   2018 19(7):834-846 844 

4.3.3  Performance of feedback control 

The data of seven successive days measured by 
the coating gauge with about half under manual 
control and half under automatic control was 
collected to evaluate the performance of FBC. The 
data corresponded to two main kinds of products, Z80 
and Z120, with the target coating weights of 80 g/m2 
and 120 g/m2, respectively. The probability density 
function (PDF) of the actual coating weight and its 
mean and variance were calculated based on different 
operational modes and product types (Fig. 10). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
As shown in Fig. 10a, the coating weight under 

automatic control concentrated in a small area be-
tween 82 g/m2 and 85 g/m2 with an average of 83.075 
g/m2 and a variance of 2.13 g/m2. In contrast, under 
manual control, more records were distributed above 
84 g/m2, especially above 87 g/m2, which means more 
zinc was wasted, leading to an average of 84.52 g/m2 
and a variance of 4.48 g/m2. It is obvious that auto-

matic control outperforms manual control in terms of 
Z80 strips. 

Similarly, as shown in Fig. 10b, the coating 
weight under automatic control concentrated in a 
small area between 124 g/m2 and 126 g/m2 with an 
average of 125.57 g/m2 and a variance of 1.847 g/m2. 
In contrast, under manual control, the records were 
distributed with a larger average value of 126.2 g/m2 
and a larger variance of 4.738 g/m2. Compared to the 
Z80 case, automatic control showed more significant 
improvement than manual control in the case of Z120. 

Due to the decrease of production variance under 
automatic control, the set point of the target coating 
weight can be set closer to the product specification, 
and thus the passing rate can be further improved and 
the zinc material can be saved. Based on the mean and 
variance of the coating weight under both manual  
and automatic control, the potential zinc savings  
under the automatic control system can be calculated  
quantitatively. 

The Z80 case is shown in Fig. 11a. The set point 
of Z80 can be decreased from 84.52 g/m2 to 83.5 g/m2, 
which creates zinc savings of 1.2% in Z80 production. 
Moreover, the area under 80 g/m2 covered by the 
dashed line is smaller than that by the solid line, 
which means the passing rate will be improved. Sim-
ilarly, as shown in Fig. 11b, the set point of Z120 can 
be decreased from 126.2 g/m2 to 123.8 g/m2, which 
creates zinc savings of 1.9% in Z120 production. 
According to the statistics in 2015, Z80 and Z120 
made up about 90% of the total production and con-
sumed 3120 and 3680 tons of zinc, respectively. Thus, 
a total of 107 tons of zinc can be saved per year, which 
is equivalent to about £200 000. 

4.3.4  Long-term performance 

The long-term performance of the proposed 
control system was evaluated based on the online 
running results during April 2016. The rate of auto-
matic mode was about 80% where a total of 480 strips 
were produced, including 246 strips of Z80 and 206 
strips of Z120. The statistical results were compared 
with the manual operation baseline before the im-
plementation of the control system. 

As shown in Table 2, in automatic control mode, 
the variance of the coating weight decreased by 
52.8% and 14.6% for Z80 and Z120, respectively. 
This indicates that the fluctuation of the actual coating 

Fig. 10  Probability density function (PDF) of the actual 
coating weight with different operation modes and 
product types: (a) Z80 (automatic: 27 937 records; 
manual: 34 584 records); (b) Z120 (automatic: 19 125 
records; manual: 29 094 records) 
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weight in the production line decreased so that the 
quality of the products improved and more than 100 
tons of zinc can be saved per year. Meanwhile, the 
average transition time was reduced by 43.4%. The 
experimental results on the real HDGL production 
line showed a great performance improvement com-
pared with manual operation, which resulted in less 
quality fluctuation, shortened transition time, higher 
passing rate, and more zinc savings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

5  Conclusions 
 

In this study, we have proposed a novel neural  
network based coating weight control approach for 
HDGL. The system consisted of an FFC and an FBC, 
combined with a neural network predictive model, a 
bias-update module, and a real-time optimizer. 
Through this framework, four types of control diffi-
culty—strong nonlinearity, large time-variant delays, 
strong disturbances, and unsynchronized regulation 
of two MVs—have been addressed. 

The long-term industrial application results have 
shown the effectiveness and efficiency of the pro-
posed method, and both the coating weight variance 
and the transition time were significantly reduced. 
About 107 tons of zinc can be saved per year, worth 
£200 000 according to statistical analysis. 

Future work will include realizing automatic 
control of the production of Zn-Al coating strips and 
extending the control approach to other galvanized 
production lines such as those that produce galva-
nized pipe. 
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