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Abstract:    Visual tracking, which has been widely used in many vision fields, has been one of the most active research topics in 
computer vision in recent years. However, there are still challenges in visual tracking, such as illumination change, object occlu-
sion, and appearance deformation. To overcome these difficulties, a reliable point assignment (RPA) algorithm based on wavelet 
transform is proposed. The reliable points are obtained by searching the location that holds local maximal wavelet coefficients. 
Since the local maximal wavelet coefficients indicate high variation in the image, the reliable points are robust against image noise, 
illumination change, and appearance deformation. Moreover, a Kalman filter is applied to the detection step to speed up the de-
tection processing and reduce false detection. Finally, the proposed RPA is integrated into the tracking-learning-detection (TLD) 
framework with the Kalman filter, which not only improves the tracking precision, but also reduces the false detections. Exper-
imental results showed that the new framework outperforms TLD and kernelized correlation filters with respect to precision, 
f-measure, and average overlap in percent. 
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1  Introduction 
 

Visual tracking is the locating and tracing of one 
or multiple objects in video sequences. In recent years, 
with the development of computer hardware and 
image processing, visual tracking has become one of 
the most active research areas in computer vision. It 
has been widely applied in many fields, e.g., intelli-

gence surveillance (Jeong et al., 2014; Prakash and 
Thamaraiselvi, 2014), traffic monitoring (Kaur and 
Sahambi, 2015), public security (Xu and Gao, 2010), 
anti-terrorism (Elhamod and Levine, 2013; Jung and 
Yoon, 2015), advanced driver assistance systems 
(ADASs) (Elmenreich and Koplin, 2011), and human 
computer interaction (Cheng et al., 2016). However, 
tracking objects is a complicated task, especially for 
long-term tracking. The technology still faces various 
challenges, such as illumination change, object oc-
clusion, appearance deformation, scale change, 
background clutter, camera viewpoint change, and 
real-time processing.  

Numerous approaches for visual tracking have 
been proposed in the literature over the past two 
decades, and great achievements have been made. 
Some of these approaches, such as the optical flow 
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tracker (Brox et al., 2004), mean shift tracker (Yu et 
al., 2015), tracking-learning-detection (TLD) tracker 
(Kalal et al., 2012), and kernelized correlation filters 
(KCF) tracker (Henriques et al., 2015), have per-
formed well in solving the tracking problems. The 
optical flow tracker does well in tracking a moving 
object against an unaware background, but it is sen-
sitive to illumination change and has an expensive 
time calculation. The mean shift tracker performs 
well in real-time processing and partial occlusion, but 
it will fail when the scale changes or the object is fully 
occluded and then reappears. The KCF tracker per-
forms well in real-time processing, illumination 
change, image noise, and background clutter, but the 
performance during scale change and appearance 
deformation is not good. KCF may fail in object 
tracking if the target disappears from the video and 
reappears. Recently, the proposed TLD method has 
become a popular visual tracking algorithm because it 
has been shown to provide promising performances in 
object occlusion, scale change, and background clut-
ter. However, experiments show that this method is 
sensitive to changing illumination (Jia et al., 2015). 
Moreover, the high computational cost of the algo-
rithm prevents it from being used at higher resolutions 
and frame rates. Recently, a reliable part-based 
tracking strategy (Li et al., 2015; Liu et al., 2015) was 
proposed to track objects by modeling the target’s 
appearance based on multiple parts. This strategy 
successfully resolves the tracking problem of partial 
occlusions. However, as Liu et al. (2016) pointed out, 
the performance of this strategy depends on the 
tracker being employed. Tracking objects by machine 
learning has been another research topic over these 
years. Tarkov and Dubynin (2013) proposed an algo-
rithm for tracking objects in real time based on back 
propagation neural networks and used graphics pro-
cessing unit (GPU) for speed acceleration. Experi-
mental results show that this approach can success-
fully track objects in real time. However, the per-
formance of this method is strongly dependent on the 
training dataset and GPU hardware. More recently, 
Redmon et al. (2016) and Ning et al. (2016) presented 
deep learning based approaches for object detection 
and tracking. Since these methods detect or track the 
object using deep learning approaches and use GPU 
to increase the speed, their performance is notable. On 
the other hand, the performance of these methods 

strongly depends on the training dataset and the 
hardware. Furthermore, as the authors claimed, these 
methods had limitations in detecting small objects 
that appear in groups, and they can struggle to gen-
eralize objects in new or unusual aspect ratios or 
configurations.  

Because an increasing number of applications 
are going to employ visual tracking in the future, a 
number of issues remain to be solved. The aim of this 
study is to improve the performance of object tracking 
in cases of illumination change, object occlusion, 
appearance deformation, and real-time processing 
with an improved TLD framework. To do this, a re-
liable point assignment (RPA) algorithm based on a 
wavelet transform is proposed to improve the per-
formance of the tracker. By taking advantage of 
wavelet transform properties, the proposed RPA de-
composes the input image region, which includes the 
tracking target, by several scales. The reliable points 
are located by searching the points that possess local 
maximal wavelet coefficients. Due to the fact that the 
wavelet coefficient denotes image variation, the re-
liable points are rich with discriminant information 
for tracking, which makes the points robust against 
image noise, illumination change, and change in tar-
get size. Hence, as shown in our previous work 
(Zhang et al., 2016), RPA improves the tracking pre-
cision. However, the experimental results in Zhang et 
al. (2016) showed that the false detection of RPA 
needs to be further improved and the processing needs 
to be speeded up. Therefore, to reduce the processing 
time and false detections, a Kalman filter is applied to 
the tracking and detection model, which can greatly 
reduce the search space of the detection model. By 
cutting down the search space, false detection results 
from the detector in TLD decrease because back-
ground interference is reduced. Owing to RPA and the 
fusion of the Kalman filter, the learning step is im-
proved. Consequently, the method proposed in this 
study is faster and more robust against image noise, 
illumination change, and tracking target size than the 
original TLD. 

The main contributions of this paper are as  
follows: 

1. A wavelet transform based RPA algorithm is 
proposed for the tracker, which makes the TLD 
framework robust against image noise, illumination 
change, and tracking target size. 
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2. The Kalman filter is adopted to fuse with the 
tracking and detection model, which not only speeds 
up the processing of TLD framework, but also im-
proves the detection performance.  

 
 

2  Related works 
 

The TLD algorithm was proposed for long-term 
tracking of a single target. Fig. 1 illustrates its main 
procedure. One of the advantages of the system is that 
it does not need to separate an offline learning stage. 
As shown in Fig. 1, there are mainly three steps in the 
TLD algorithm: tracking, detection, and feedback 
learning. To initialize tracking, a bounding box is 
drawn to include the target object and an equally 
spaced set of points (10×10) is constructed in the 
bounding box for tracking. The tracking component 
based on the Median Flow tracker (Kalal et al., 2010a; 
Yu and Zeng, 2015) is used to obtain a tracking 
bounding box that covers the target object. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The detecting component is based on a sliding- 

window approach (Viola and Jones, 2001; Dalal and 
Triggs, 2005) that can generate up to 200 000 sub- 
windows for a 640×480 video graphics array (VGA) 
image resolution. The sub-windows are tested by a 
cascade procedure that includes a variance filter, a 
random forest classifier, and a normalized cross cor-
relation (NCC) filter to produce one or more detecting 
bounding boxes. If the tracker tracks the target suc-
cessfully, the detecting bounding boxes will fuse with 
the tracking bounding box to generate a final result. 
Otherwise, the detector is considered to be successful 

only if it generates only one detecting bounding box. 
In this way, if the object disappears from the camera 
view, the detector will capture the object and recover 
the tracking process when the target reappears.  

For long-term tracking, the target object may 
change its appearance, which can result in tracking 
and detection failures. Therefore, TLD introduces an 
online learning approach (P-N learning) that uses the 
tracker and detector results to generate positive (P) 
and negative (N) examples, which are added to the 
model of the detector to produce stable outputs. 

 
 

3  The proposed method 
 

The TLD algorithm has demonstrated good 
performance in long-term object tracking. However, 
as described in Section 2, 100 points having equal 
space are constructed in the initial step. This may be 
sensitive to image noise and illumination change 
since the position of the point may be coincidently 
located on an image noise or an image area that is 
sensitive to illumination. Therefore, a more robust 
point assignment algorithm is drastically needed so as 
to improve the performance of the tracking step. An-
other limitation of TLD is that the detector needs to 
verify up to 200 000 sub-windows for searching the 
target, which is a bottleneck in real-time applications. 
To overcome these two limitations, we propose a 
wavelet-based reliable point assignment approach so 
that the positions of the initial points can be robust 
against image noise and illumination change. More-
over, to reduce the tracking time and false detections, 
a Kalman filter is used to cooperate with the tracker 
and detector. 

3.1  Reliable point assignment 

Corner or blob detectors such as the Harris cor-
ner detector (Harris and Stephens, 1988), Laplacian of 
Gaussian (LoG) detector (Kong et al., 2013), differ-
ence of Gaussian (DoG) detector (Lowe, 2004), and 
speeded-up robust features (SURF) detector (Bay et 
al., 2008) are used in the first step for many tracking 
algorithms. Most of the detectors are based on the 
second derivatives of the image, and for multiscale 
analysis, the Gaussian function (or approximation of 
the Gaussian, such as SURF) is applied to construct 
an image pyramid. Due to the complex computation 

Fig. 1  Procedure for the tracking-learning-detection 
(TLD) framework 
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of these detectors, they are limited to real-time 
tracking. Moreover, since these detectors try to search 
interest points based on the corner or blob regions, 
their performances in tracking are not reliable due to 
the fact that not all the tracking objects have corners 
or blobs inside. Furthermore, the size of the tracking 
object may change severely, and as a result, the 
number of interest points can vary drastically. Spe-
cifically, for those very small tracking objects, there 
can be very few points generated by these detectors, 
which leads to tracking failures.  

To determine interest points that have distin-
guished information and whose locations are reliable 
when the object lacks corners or blobs, or the object is 
of small size, an ingenious point location algorithm 
based on wavelet transform is proposed in this study. 

The wavelet transform is a multi-resolution 
representation that can be applied to study the signal 
at different scales using scaling functions and wavelet 
functions. Suppose that f(x) is a discrete signal. The 
discrete wavelet transform (DWT) coefficients of f(x) 
are defined as (Details can be found in Gonzalez and 
Woods (2002)) 

 

2 , 0
( , ) ( ) ( 1, ) ,

n k k
W j k h n W j n    

          (1) 

2 , 0
( , ) ( ) ( 1, ) ,

n k k
W j k h n W j n    

          (2) 

 
where Wφ(j, k) is the scaling coefficient (approxima-
tion of f(x)) obtained by convoluting f(x) with low 
pass filter hφ(−n) at scale j and down sampling the 
result by 2. WΨ(j, k) is the wavelet coefficient (details 
for f(x)) obtained by convoluting the function with 
high pass filter hψ(−n) at scale j and down sampling 
the result by 2. Fig. 2 shows a DWT procedure, which 
applies Eqs. (1) and (2) iteratively.  

To obtain the wavelet coefficients of an image, a 
one-dimensional transform is performed on the rows 
following on the columns. As a result, an input image 
can be transformed into an approximation image, and 
three detail images corresponding to the image varia-
tion in horizontal, vertical, and diagonal directions. 
By transforming the image at different scales, we can 
study the image at different resolutions with the ap-
proximation and detail information. 

The intention of RPA is to find the reliable points 
in the image that have as much distinguished infor-
mation as possible using wavelet transformation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

As described above, the detailed images at different 
scales represent the image variation at different res-
olutions, and a high wavelet coefficient (in absolute 
value) at a low resolution is related to a region with 
high global variation. Therefore, it is obvious that any 
point in the image related to high global variation is 
robust to image noise and illumination change. On the 
other hand, a high wavelet coefficient (in absolute 
value) at a high resolution provides detailed infor-
mation of the image, which can be used to discrimi-
nate a local region from another. Thus, by tracing a 
point’s wavelet coefficients from a high resolution to 
a low resolution, the point is more discriminative and 
robust if the summation of its wavelet coefficients at 
different scales is greater than the other points. Con-
sequently, a straightforward approach is to decom-
pose the input image at several scales and find those 
points that have a high summation of wavelet coeffi-
cients by thresholding. However, this is not correct 
for the object tracking case because the number of 
points may vary seriously with respect to object ap-
pearance, and the location of the points may converge 
to the strong edge. Fig. 3a shows a sub-region 
(marked by a white rectangle) for tracking in a video 
frame and Fig. 3b the interest points for tracking using 
the TLD approach. Fig. 3c is the interest point loca-
tion by using the top-100 high-wavelet-coefficient 
points. As we can see, though, the points in Fig. 3c are 
those with high local variation, and the points con-
verge to limited areas. This is not a good selection 
since some information from the sub-region is  
discarded. 

Fig. 2  A discrete wavelet transform procedure  

Wφ(j−1, k) WΨ(j−1, k)

2↓ 2↓

Wφ(j, k)
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Therefore, we propose to find the reliable points 
based on the local maximal wavelet coefficients. To 
do this, the input image (or an image region) is sep-
arated into some non-overlapping regions with equal 
sizes. For a point in a sub-region, the wavelet coeffi-
cients are summed up from the highest resolution to 
the lowest resolution (Fig. 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Suppose that an input image is decomposed by n 

scales, and for a point p(x, y) in the image, the wavelet 
coefficient set S(x, y) of p(x, y) is defined as 

 




h v

d
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               ( * 2 , * 2 ) ,

j j j j

j j
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where j (−n≤j≤−1) denotes the wavelet scale and 

Wh(x*2j, y*2j), Wv(x*2j, y*2j), and Wd(x*2j, y*2j) are 
the details in horizontal, vertical, and diagonal direc-
tions, respectively. Therefore, the summation of the 
details for p(x, y) can be defined as 
 

1

h v

d
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Suppose that (l, t) is the left-top coordination of a 
sub-region R(x, y) in the image, and that the width and 
height of R(x, y) are rw and rh, respectively. The local 
maximum is then defined as 
 

( , ) max{Sum( , )},R x yE x y                 (5) 

 

where l≤x<l+rw, t≤y<t+rh. 
As described in Eq. (5), the point corresponding 

to the local maximum is defined as the reliable point 
in this paper. Since the reliable point is located by 
searching the local maximal wavelet coefficient in 
each non-overlapping sub-region, the number of 
points for object tracking can be pre-determined and it 
is stable during the tracking. Furthermore, due to the 
selection of the maximal summation of all the details 
in all the scales, the point clearly has rich information 
for tracking, which leads to an improvement in 
tracking performance. For real-time processing, the 
Haar wavelet is chosen in this study for simplicity.  
Fig. 3d is an example of the reliable point for the 
sub-region of Fig. 3a. 

3.2  Integration of the Kalman filter and RPA into 
TLD 

The Kalman filter is an estimator that provides 
an efficient recursive method to estimate the state of a 
linear process, in a way that minimizes the mean of 
the squared error (Kalman, 1960). The Kalman filter 
is typically divided into two stages. One is time up-
date (prediction), and the other is measurement up-
date (correction). Time update advances the state 
based on the state equation until the next measure-
ment is obtained. Measurement update incorporates 
the measurement from sensors based on the meas-
urement equation (Jeong et al., 2014). It has been 
widely used to estimate the position of an object in 
each frame of the sequence (Sun et al., 2010). 

Fig. 3  Interest point assignment: (a) sub-region for 
tracing; (b) TLD interest points; (c) interest points for 
the highest wavelet coefficients; (d) interest points for 
the proposed method 

Fig. 4  Summation of wavelet coefficients for a point at 
each scale 
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As mentioned in Section 2, the detection step in 
TLD needs to perform a variance filter, a random 
forest classifier, and an NCC filter for many 
sub-windows, which is a bottleneck in real-time 
tracking. Therefore, to speed up the detection step and 
improve the tracking performance, in this study we 
integrate the Kalman filter and RPA into the TLD 
framework. The proposed framework is illustrated in 
Fig. 5. 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
For an input region of interest (ROI), the reliable 

points are assigned by the proposed RPA based on the 
Haar wavelet transform and the location of this ROI 
in the frame is used to initialize the Kalman filter first. 
During the object tracking procedure, the tracking 
step described in Section 2 is first applied and the 
Kalman filter is updated when tracking is successful 
(the Kalman filter is set to invalid when tracking has 
failed). Next, the location predicted by the Kalman 
filter is used in the detection step if the Kalman filter 
is valid for the current frame. Instead of detecting all 
sub-windows of the current frame, in this study we 
check only those sub-windows that overlap with the 
predicted location using the variance filter, random 
forest classifier, and NCC filter. If there are still valid 
sub-windows after applying these three filters, the 
sub-windows are used to fuse with the tracking result. 
Otherwise, these three filters are applied to other 
sub-windows that do not overlap with the predict 
location, which executes in the same way as the 
original TLD method does. The fusion result of the 
detection and tracking is then checked and the learn-
ing step is applied if it is necessary. During the 
learning step, if any new appearance of the object is 
found, the reliable point is then re-assigned, and the 

positions of the points are updated for the tracking 
step. With this strategy, the new framework does not 
need to compute the reliable points frequently. As a 
result, less time is consumed with RPA.  

 
 
4  Results 

4.1  Dataset 

The video sets for performance evaluation in-
clude 9 videos (Kalal et al., 2010b) and 50 videos 
(http://cvlab.hanyang.ac.kr/tracker_benchmark/datas
ets.html), respectively, which also provide the ground 
truth data and the initial tracking box position. Note 
that since there are four reduplicate videos in both 
datasets, the number of videos for the experiment is 
55. Table 1 shows the information from the testing 
videos and Fig. 6 shows some example frames from 
the videos. 

4.2  Experimental environment 

The code for the proposed method is written in 
C++. For a fair comparison, TLD and KCF are also 
tested using C++ code downloaded from https:// 
github.com/arthurv/OpenTLD and https://github. 
com/victorgan/henriques2014high, respectively. Ta-
ble 2 shows the experimental environment for the 
proposed method, TLD, and KCF. 

4.3  Evaluation criteria 

The performance of the proposed method is 
evaluated by comparison with those of TLD and KCF. 
The evaluation criteria include precision (P), recall 
(R), f-measure (F), frame rate (FR, frame/s), average 
overlap in percent (AOP), and average number of 
failures in 1000 frames (ANF) (http://cvlab.hanyang. 
ac.kr/tracker_benchmark/datasets.html). The method 
of calculating AOP is shown in Fig. 7 and P, R, F, and 
FR are defined in Eqs. (6)–(9): 

 
TP / RN,P                           (6) 

TP / ON,R                           (7) 

2 / ( ), F PR P R                      (8) 

tFR 1000 / ,F                        (9) 

 
where TP represents the true positives of the method, 
RN is the number of all responses of the method, ON  

Fig. 5  The proposed tracking framework 
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is the number of object occurrences that should have 
been detected, and Ft is the average time consumption 
(in ms) of a frame. Following Kalal et al. (2012), a 
resulting box is considered to be correct if its overlap 
with the ground truth bounding box is larger than 25% 
(Fig. 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1  Information from the testing videos 

Video 
index 

Video 
Frame 
number

Number of 
occurrences* 

Resolution

1 Basketball 725 725 576×432
2 Biker 142 142 640×360
3 Bird1 408 408 720×400
4 BlurBody 334 334 640×480
5 BlurCar2 585 585 640×480
6 BlurFace 493 493 640×480
7 BlurOwl 631 631 640×480
8 Bolt 350 350 640×360
9 Box 1161 1161 640×480
10 Car1 1020 1020 320×240
11 Car4 659 659 360×240
12 CarDark 393 393 320×240
13 CarScale 252 252 640×272
14 ClifBar 472 472 320×240
15 Couple 140 140 320×240
16 Crowds 347 347 600×480
17 David 761 761 320×240
18 Deer 71 71 704×400
19 Diving 231 215 400×224
20 DragonBaby 113 113 640×360
21 Dudek 1145 1145 720×480
22 Football 362 362 624×352
23 Freeman4 297 283 360×240
24 Girl 500 500 128×96 .
25 Human3 1698 1698 480×640
26 Human4 667 667 640×480
27 Human6 792 792 480×640
28 Human9 305 305 320×240
29 Ironman 166 166 720×304
30 Jump 122 122 416×234
31 Jumping 313 313 352×288
32 Liquor 1741 1741 640×480
33 Matrix 100 100 800×336
34 MotorRolling 164 164 640×360
35 Panda 3000 2730 312×233
36 RedTeam 1918 1918 352×240
37 Shaking 365 365 624×352
38 Singer2 366 366 624×352
39 Skating1 400 400 640×360
40 Skating2 473 473 640×352
41 Skiing 81 81 640×360
42 Soccer 392 392 640×360
43 Surfer 376 376 480×360
44 Sylvester 1345 1345 320×240
45 Tiger2 365 365 640×480
46 Trellis 569 569 320×240
47 Walking 412 412 768×576
48 Walking2 500 500 384×288
49 Woman 597 597 352×288
50 Pedestrian2 338 266 320×240
51 Pedestrian3 184 156 320×240
52 Car 945 860 320×240
53 Motorcross 2665 1412 470×310
54 Volkswagen 8576 5141 640×240
55 Carchase 9928 8660 290×217

* Number of frames where the tracking object appears 

 

Table 2  The experimental environment 

Item Description 

CPU Intel® Core™ i7-4710MQ, 2.50 GHz

Memory 16 GB 

Hard disk 1000 GB 

OS Windows 8, 64-bit 

Programming tool VS2013, OpenCV 2.4.10 

 

Fig. 6  Some frames from the video data 
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Fig. 7  The overlap of two bounding boxes 
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4.4  Tracking results 

The tracking results for TLD, KCF, and the 
proposed method are shown in Tables 3–5. Table 6 
shows an overall comparison of the proposed method, 
KCF, and TLD with respect to the precision, recall, 
f-measure, FR, and AOP. Figs. 8–12 also show the 
precision, recall, f-measure, FR, and AOP of the three 
methods.  

As we can see from Tables 3 and 6, the average 
precision of the proposed method is 84.63%, which is 
6.54% and 21.83% higher than those of TLD and 
KCF methods, respectively. This is owing to the use 
of RPA, which provides reliable points for tracking. 
Since the tracking performance is improved, the pre-
cision is also promoted. For the KCF method, since 
this method tracks the object using a simple training 
and detecting framework, it generated more false 
detection results than the other methods. Furthermore, 
the simple tracking framework of KCF made the 
method fail to track the target when it disappeared 
from the video and reappeared (such as Motocross, 
Volkswagen, and Carchase videos). Therefore, the 
precision of KCF is lower than that of the other two 
methods.  

For the recall results, the proposed method out-
performed the TLD method by 12.03%, due to the 
improvement in the tracking process and the use of a 
Kalman filter to reduce false detections (Table 6).  
Compared to the KCF method, the proposed method 
obtained a 3.76% lower recall than KCF did (Table 6). 
The reason is that the proposed method uses a vari-
ance filter, a random forest classifier, and an NCC 
filter to verify the tracking result (as TLD does), 
which, on one hand, can help to reduce false detection, 
and on the other hand, can lead to some rejection of 
the tracking results. Compared to the TLD method,  
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 12  AOP of TLD, KCF, and the proposed method 
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Fig. 11  FR for TLD, KCF, and the proposed method 
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Table 3  Tracking results of the proposed method 

Video Response ON TP P R F FR AOP ANF 
Basketball 329 725 20 6.08% 2.76% 3.80% 17.16 2.07% 892.41 
Biker 66 142 66 100.00% 46.48% 63.46% 21.41 30.01% 535.21 
Bird1 10 408 10 100.00% 2.45% 4.78% 36.89 1.30% 975.49 
BlurBody 318 334 318 100.00% 95.21% 97.55% 17.24 62.94% 47.90 
BlurCar2 575 585 574 99.83% 98.12% 98.97% 14.01 80.90% 18.80 
BlurFace 490 493 490 100.00% 99.39% 99.69% 11.61 68.97% 6.09 
BlurOwl 353 631 353 100.00% 55.94% 71.75% 26.91 48.87% 440.57 
Bolt 51 350 9 17.65% 2.57% 4.49% 7.67 2.01% 965.71 
Box 1099 1161 1098 99.91% 94.57% 97.17% 14.77 59.77% 121.45 
Car1 852 1020 711 83.45% 69.71% 75.96% 30.19 49.26% 266.67 
Car4 604 659 604 100.00% 91.65% 95.65% 28.16 65.49% 83.46 
CarDark 369 393 252 68.29% 64.12% 66.14% 33.40 33.14% 302.80 
CarScale 246 252 236 95.93% 93.65% 94.78% 16.91 38.89% 35.71 
ClifBar 329 472 329 100.00% 69.70% 82.15% 14.28 54.39% 302.97 
Couple 121 140 93 76.86% 66.43% 71.26% 26.23 24.55% 271.43 
Crowds 347 347 346 99.71% 99.71% 99.71% 24.70 66.01% 0.00 
David 761 761 761 100.00% 100.00% 100.00% 34.42 56.30% 0.00 
Deer 68 71 67 98.53% 94.37% 96.40% 13.96 68.04% 56.34 
Diving 53 215 45 84.91% 20.93% 33.58% 22.57 12.08% 753.49 
DragonBaby 27 113 27 100.00% 23.89% 38.57% 14.44 17.36% 761.06 
Dudek 1145 1145 1127 98.43% 98.43% 98.43% 11.45 62.20% 0.00 
Football 362 362 346 95.58% 95.58% 95.58% 9.56 55.57% 0.00 
Freeman4 156 283 107 68.59% 37.02% 48.09% 35.27 19.51% 621.91 
Girl 472 500 437 92.58% 87.40% 89.92% 39.13 56.43% 56.00 
Human3 299 1698 21 7.02% 1.24% 2.10% 9.36 1.70% 918.14 
Human4 623 667 266 42.70% 39.88% 41.24% 22.71 19.78% 565.22 
Human6 744 792 629 84.54% 79.42% 81.90% 15.13 45.04% 176.77 
Human9 192 305 54 28.13% 17.70% 21.73% 21.75 11.43% 763.93 
Ironman 5 166 5 100.00% 3.01% 5.85% 12.43 2.79% 969.88 
Jump 83 122 10 12.05% 8.20% 9.76% 18.20 6.27% 860.66 
Jumping 313 313 313 100.00% 100.00% 100.00% 32.01 62.83% 0.00 
Liquor 1578 1741 1240 78.58% 71.22% 74.72% 15.77 47.10% 240.67 
Matrix 1 100 1 100.00% 1.00% 1.98% 7.77 0.42% 990.00 
MotorRolling 26 164 26 100.00% 15.85% 27.37% 35.06 14.40% 841.46 
Panda 1904 2730 1567 82.30% 57.40% 67.63% 37.90 27.75% 349.82 
RedTeam 1670 1918 1659 99.34% 86.50% 92.47% 20.73 53.95% 129.30 
Shaking 57 365 57 100.00% 15.62% 27.01% 32.26 11.98% 843.84 
Singer2 11 366 11 100.00% 3.01% 5.84% 16.45 2.77% 969.95 
Skating1 293 400 249 84.98% 62.25% 71.86% 17.38 35.73% 340.00 
Skating2 296 473 160 54.05% 33.83% 41.61% 13.87 22.89% 623.68 
Skiing 8 81 8 100.00% 9.88% 17.98% 22.73 9.68% 901.23 
Soccer 32 392 32 100.00% 8.16% 15.09% 19.59 13.98% 918.37 
Surfer 375 376 375 100.00% 99.73% 99.87% 23.24 56.26% 2.66 
Sylvester 1345 1345 1225 91.08% 91.08% 91.08% 36.33 53.60% 14.13 
Tiger2 244 365 196 80.33% 53.70% 64.37% 22.84 25.78% 339.73 
Trellis 190 569 190 100.00% 33.39% 50.07% 38.55 29.33% 666.08 
Walking 412 412 411 99.76% 99.76% 99.76% 10.35 70.86% 0.00 
Walking2 488 500 481 98.57% 96.20% 97.37% 24.39 66.30% 38.00 
Woman 596 597 489 82.05% 81.91% 81.98% 22.45 41.41% 122.28 
Pedestrian2 325 266 243 74.77% 91.35% 82.23% 55.02 35.23% 22.56 
Pedestrian3 149 156 149 100.00% 95.51% 97.70% 32.85 71.93% 44.87 
Car 899 860 833 92.66% 96.86% 94.71% 30.06 71.13% 31.40 
Motorcross 1014 1412 981 96.75% 69.48% 80.87% 25.92 38.18% 303.82 
Volkswagen 5663 5141 4738 83.67% 92.16% 87.71% 23.16 12.91% 63.80 
Carchase 1614 8660 1537 95.23% 17.75% 29.92% 22.86 20.33% 822.06 
Average 557.31 818.44 483.31 84.63% 58.97% 63.48% 22.94 41.84% 388.90



Zhang et al. / Front Inform Technol Electron Eng   2017 18(4):545-558 554

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 4  Tracking results for KCF 

Video Response ON TP P R F FR AOP ANF 
Basketball 725 725 720 99.31% 99.31% 99.31% 63.44 24.55% 0.00 
Biker 142 142 67 47.18% 47.18% 47.18% 42.93 15.14% 521.13 
Bird1 408 408 153 37.50% 37.50% 37.50% 32.79 48.77% 375.00 
BlurBody 334 334 262 78.44% 78.44% 78.44% 57.70 87.04% 161.68 
BlurCar2 585 585 585 100.00% 100.00% 100.00% 32.68 85.02% 0.00 
BlurFace 493 493 493 100.00% 100.00% 100.00% 31.73 1.92% 0.00 
BlurOwl 631 631 46 7.29% 7.29% 7.29% 63.82 67.14% 925.52 
Bolt 350 350 350 100.00% 100.00% 100.00% 63.53 64.90% 0.00 
Box 1161 1161 1056 90.96% 90.96% 90.96% 38.00 85.09% 66.32 
Car1 1020 1020 1020 100.00% 100.00% 100.00% 37.51 85.61% 0.00 
Car4 659 659 659 100.00% 100.00% 100.00% 35.07 82.12% 0.00 
CarDark 393 393 393 100.00% 100.00% 100.00% 33.71 55.18% 0.00 
CarScale 252 252 252 100.00% 100.00% 100.00% 46.61 61.20% 0.00 
ClifBar 472 472 472 100.00% 100.00% 100.00% 62.49 6.75% 0.00 
Couple 140 140 31 22.14% 22.14% 22.14% 63.93 69.66% 714.29 
Crowds 347 347 347 100.00% 100.00% 100.00% 62.97 74.14% 0.00 
David 761 761 761 100.00% 100.00% 100.00% 30.86 18.20% 0.00 
Deer 71 71 24 33.80% 33.80% 33.80% 48.43 0.18% 591.55 
Diving 215 215 1 0.47% 0.47% 0.47% 64.71 36.76% 995.35 
DragonBaby 113 113 82 72.57% 72.57% 72.57% 31.79 84.39% 168.14 
Dudek 1145 1145 1145 100.00% 100.00% 100.00% 38.42 52.83% 0.00 
Football 362 362 290 80.11% 80.11% 80.11% 9.56 14.47% 74.59 
Freeman4 283 283 132 46.64% 46.64% 46.64% 31.93 77.26% 321.55 
Girl 500 500 500 100.00% 100.00% 100.00% 63.85 0.26% 0.00 
Human3 1698 1698 26 1.53% 1.53% 1.53% 58.46 26.31% 978.21 
Human4 667 667 347 52.02% 52.02% 52.02% 65.48 53.92% 470.76 
Human6 792 792 732 92.42% 92.42% 92.42% 66.03 26.41% 51.77 
Human9 305 305 114 37.38% 37.38% 37.38% 64.81 2.26% 586.89 
Ironman 116 166 8 4.82% 4.82% 4.82% 32.00 5.38% 933.73 
Jump 122 122 17 13.93% 13.93% 13.93% 61.30 5.96% 819.67 
Jumping 313 313 47 15.02% 15.02% 15.02% 32.48 51.32% 760.38 
Liquor 1741 1741 1436 82.48% 82.48% 82.48% 66.01 9.51% 168.87 
Matrix 100 100 35 35.00% 35.00% 35.00% 31.77 6.85% 600.00 
MotorRolling 164 164 30 18.29% 18.29% 18.29% 31.83 6.31% 792.68 
Panda 3000 2730 967 32.23% 35.42% 33.75% 32.73 78.22% 628.57 
RedTeam 1918 1918 1918 100.00% 100.00% 100.00% 64.65 73.33% 0.00 
Shaking 365 365 364 99.73% 99.73% 99.73% 32.20 73.05% 0.00 
Singer2 366 366 366 100.00% 100.00% 100.00% 65.29 56.56% 0.00 
Skating1 400 400 360 90.00% 90.00% 90.00% 64.76 30.51% 60.00 
Skating2 473 473 332 70.19% 70.19% 70.19% 65.82 3.23% 190.27 
Skiing 81 81 6 7.41% 7.41% 7.41% 31.21 21.77% 901.23 
Soccer 392 392 90 22.96% 22.96% 22.96% 32.54 72.14% 706.63 
Surfer 376 376 376 100.00% 100.00% 100.00% 32.62 71.95% 0.00 
Sylvester 1345 1345 1345 100.00% 100.00% 100.00% 31.66 54.70% 0.00 
Tiger2 365 365 364 99.73% 99.73% 99.73% 32.32 68.76% 0.00 
Trellis 569 569 569 100.00% 100.00% 100.00% 32.25 42.66% 0.00 
Walking 412 412 380 92.23% 92.23% 92.23% 66.68 26.75% 0.00 
Walking2 500 500 211 42.20% 42.20% 42.20% 60.33 11.59% 502.00 
Woman 597 597 102 17.09% 17.09% 17.09% 65.03 8.88% 643.22 
Pedestrian2 338 266 35 10.36% 13.16% 11.59% 65.50 12.30% 864.66 
Pedestrian3 184 156 52 28.26% 33.33% 30.59% 65.23 80.21% 608.97 
Car 945 860 860 91.01% 100.00% 95.29% 64.59 0.01% 0.00 
Motorcross 2665 1412 3 0.11% 0.21% 0.15% 32.02 30.69% 881.73 
Volkswagen 3923 5141 2711 69.11% 52.73% 59.82% 23.27 5.20% 473.84 
Carchase 2813 8660 351 12.48% 4.05% 6.12% 22.86 37.34% 959.35 
Average 720.13 818.44 443.55 62.81% 62.72% 62.69% 46.95 37.34% 336.34
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Table 5  Tracking results for TLD 

Video Response ON TP P R F FR AOP ANF 
Basketball 225 725 20     8.89% 2.76% 4.21% 7.52 1.54% 965.52 
Biker 65 142 65 100.00% 45.77% 62.80% 12.62 33.97% 542.25 
Bird1 1 408 1 100.00% 0.25% 0.49% 15.88 0.24% 997.55 
BlurBody 202 334 202 100.00% 60.48% 75.37% 12.26 41.75% 395.21 
BlurCar2 435 585 435 100.00% 74.36% 85.29% 10.60 64.84% 256.41 
BlurFace 493 493 493 100.00% 100.00% 100.00% 6.37 66.18% 0.00 
BlurOwl 320 631 320 100.00% 50.71% 67.30% 14.45 40.90% 492.87 
Bolt 5 350 5 100.00% 1.43% 2.82% 6.87 1.22% 985.71 
Box 1033 1161 720   69.70% 62.02% 65.63% 6.06 35.99% 235.14 
Car1 501 1020 314   62.67% 30.78% 41.29% 15.67 17.22% 645.10 
Car4 309 659 232   75.08% 47.93% 47.93% 13.86 25.19% 531.11 
CarDark 393 393 212   53.94% 53.94% 53.94% 15.29 22.33% 335.88 
CarScale 170 252 158   92.94% 62.70% 74.88% 10.44 7.76% 353.17 
ClifBar 201 472 201 100.00% 42.58% 59.73% 14.01 38.43% 574.15 
Couple 90 140 74   82.22% 52.86% 64.35% 15.08 19.18% 457.14 
Crowds 347 347 69   19.88% 19.88% 19.88% 8.37 7.76% 789.63 
David 761 761 761 100.00% 100.00% 100.00% 11.65 69.61% 0.00 
Deer 43 71 29   67.44% 40.85% 50.88% 12.02 28.51% 591.55 
Diving 189 215 46   24.34% 21.40% 22.77% 7.58 10.69% 493.02 
DragonBaby 35 113 30   85.71% 26.55% 40.54% 9.04 21.58% 734.51 
Dudek 1145 1145 1028   89.78% 89.78% 89.78% 5.60 60.22% 0.00 
Football 362 362 287   79.28% 79.28% 79.28% 6.80 50.09% 151.93 
Freeman4 171 283 83   48.54% 29.33% 36.56% 15.10 11.56% 628.98 
Girl 475 500 390   82.11% 78.00% 80.00% 10.88 49.55% 90.00 
Human3 128 1698 16   12.50% 0.94% 1.75% 7.47 0.70% 987.04 
Human4 667 667 376   56.37% 56.37% 56.37% 5.38 28.32% 401.80 
Human6 556 792 461   82.91% 58.21% 68.40% 5.03 35.95% 392.68 
Human9 146 305 49   33.56% 16.07% 21.73% 11.10 11.87% 780.33 
Ironman 4 166 4 100.00% 2.41% 4.71% 9.06 2.15% 975.90 
Jump 4 122 4 100.00% 3.28% 6.35% 15.68 9.60% 967.21 
Jumping 247 313 247 100.00% 78.91% 88.21% 14.14 58.36% 210.86 
Liquor 1089 1741 1007   92.47% 57.84% 71.17% 7.21 50.32% 407.24 
Matrix 1 100 1 100.00% 1.00% 1.98% 6.03 0.42% 990.00 
MotorRolling 26 164 26 100.00% 15.85% 27.37% 14.82 14.37% 841.46 
Panda 1396 2730 1080   77.36% 39.56% 52.35% 18.25 21.58% 530.40 
RedTeam 1536 1918 1332   86.72% 69.45% 77.13% 6.17 44.04% 227.84 
Shaking 132 365 66   50.00% 18.08% 26.56% 13.19 12.15% 778.08 
Singer2 11 366 10   90.91% 2.73% 5.31% 10.35 2.49% 972.68 
Skating1 192 400 166   86.46% 41.50% 56.08% 10.12 18.89% 575.00 
Skating2 343 473 9     2.62% 1.90% 2.21% 9.18 2.02% 904.86 
Skiing 26 81 6   23.08% 7.41% 11.22% 11.33 6.49% 925.93 
Soccer 27 392 27 100.00% 6.89% 12.89% 12.01 12.69% 931.12 
Surfer 376 376 369   98.14% 98.14% 98.14% 11.74 57.01% 5.32 
Sylvester 1345 1345 1213   90.19% 90.19% 90.19% 6.47 57.16% 44.61 
Tiger2 170 365 132   77.65% 36.16% 49.35% 11.68 20.29% 569.86 
Trellis 235 569 190   80.85% 33.39% 47.26% 15.61 28.47% 644.99 
Walking 412 412 384   93.20% 93.20% 93.20% 5.54 58.25% 2.43 
Walking2 497 500 471   94.77% 94.20% 94.48% 11.71 55.23% 22.00 
Woman 392 597 231   58.93% 38.69% 46.71% 13.08 22.16% 584.59 
Pedestrian2 270 266 254   94.07% 95.49% 94.78% 19.50 38.11% 293.23 
Pedestrian3 148 156 147   99.32% 94.23% 94.23% 11.63 65.21% 0.00 
Car 894 860 854   95.53% 99.30% 97.38% 11.23 77.94% 17.44 
Motorcross 720 1412 696   96.67% 49.29% 65.29% 18.33 33.45% 542.49 
Volkswagen 6187 5141 4847   78.34% 94.28% 85.58% 12.10 12.04% 592.49 
Carchase 1120 8660 1119   99.91% 12.92% 22.88% 16.45 17.43% 854.62 
Average 495.78 818.44 399.44   78.09% 46.94% 52.67% 11.19 37.58% 513.12
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since the proposed RPA can improve the tracking step 
and the utilization of the Kalman filter can improve 
the detection step, as described in Section 2, the 
learning step is affected positively by these im-
provements. Consequently, the proposed method 
shows better recall than the TLD method in most of 
the videos. 

For the f-measure results, as defined in Eq. (8), 
f-measure is a measurement of precision and recall. 
Since the proposed method outperformed TLD and 
KCF by precision, the f-measure for the proposed 
method is 0.79% and 10.81% higher than that of KCF 
and TLD, respectively (Table 6 and Fig. 13). 

Regarding AOP, as shown in Tables 3–6, the 
performance of the proposed method is 4.5% and 
4.26% higher than that of KCF and TLD, respectively. 
Note that the average AOP was calculated using the 
method illustrated in Fig. 7 and all the response re-
sulting bounding boxes of the tracking were used for 
calculation. Since the KCF method generated more 
false detections than the proposed method and TLD, 
AOP was decreased by this false detection. For ANF, 
the proposed method outperformed TLD by 124.21 
frames (Table 6). As analyzed before, KCF achieved 
better recall than the proposed method due to its 
simple and effective framework. As a result, ANF of 
KCF is better than that of the proposed method by 
52.57 frames (Table 6).  

For FR, as shown in Table 6, since the KCF 
tracking framework is simpler than the frameworks 
for TLD and the proposed method, KCF obtained a 
faster speed than TLD and the proposed method. For 
the proposed method, due to the use of a Kalman filter, 
the detection step was greatly accelerated; as a result, 
the FR of the proposed method is 1.05 times higher 
than that of TLD. 
 
 
5  Conclusions 
 

Long-term visual tracking is a challenging task 
in the field of computer vision. The difficulties in 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
long-term tracking include illumination change, im-
age noise, occlusions, and change in the object size or 
its appearance. The aim of this study is to develop a 
robust long-term object-tracking framework to 
overcome these challenges by improving the perfor-
mance in TLD. To do this, a reliable point assignment 
algorithm based on the wavelet transform is proposed. 
By searching the local maximal wavelet coefficients, 
the reliable points located by the proposed method are 
rich with information and discriminant for object 
tracking. Therefore, the proposed method is robust 
against image illumination change, image noise, and 
object appearance deformation, leading to an im-
provement in the tracking step. To speed up the de-
tection step and reduce the false detection results, the 
Kalman filter is applied to integrate with the TLD 
framework. RPA improves the tracking precision and 
the Kalman filter reduces the false detections. Con-
sequently, the learning step is improved by the 
tracking and detection step, which feeds back to the 
detection step positively. As a result, compared with 
the TLD and KCF approaches, the new framework 
obtains better tracking precision, f-measure, and AOP. 
Since KCF tracks objects by training and detection, 
the KCF processing speed is much higher than those 
of the proposed method and TLD. However, the 
simple KCF framework makes it generate higher false 
detection than the other two methods do. Moreover, 

 

Table 6  An overall comparison of the proposed method, KCF, and TLD 

Method Response ON TP P R F FR AOP ANF 
Proposed  557.31 818.44 483.31 84.63% 58.97% 63.48% 22.94 41.84% 388.90

KCF 720.13 818.44 443.55 62.81% 62.72% 62.69% 46.95 37.34% 336.34
TLD 495.78 818.44 399.44 78.09% 46.94% 52.67% 11.19 37.58% 513.12
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Fig. 13  ANF for TLD, KCF, and the proposed method
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the simple KCF framework makes it fail to track those 
targets that disappear from the video and reappear. 
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