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Abstract: We present a method of discriminant diffusion maps analysis (DDMA) for evaluating tool wear during milling pro-
cesses. As a dimensionality reduction technique, the DDMA method is used to fuse and reduce the original features extracted from 
both the time and frequency domains, by preserving the diffusion distances within the intrinsic feature space and coupling the 
features to a discriminant kernel to refine the information from the high-dimensional feature space. The proposed DDMA method 
consists of three main steps: (1) signal processing and feature extraction; (2) intrinsic dimensionality estimation; (3) feature fusion 
implementation through feature space mapping with diffusion distance preservation. DDMA has been applied to current signals 
measured from the spindle in a machine center during a milling experiment to evaluate the tool wear status. Compared with the 
popular principle component analysis method, DDMA can better preserve the useful intrinsic information related to tool wear 
status. Thus, two important aspects are highlighted in this study: the benefits of the significantly lower dimension of the intrinsic 
features that are sensitive to tool wear, and the convenient availability of current signals in most industrial machine centers. 
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1  Introduction 

 
Tool condition monitoring (TCM) is a key 

technology in modern manufacturing processes. In 
the manufacturing process, tool wear caused by 
abrasion can severely harm the processing precision 
and productivity. Thus, it is necessary to develop 
effective TCM systems to reduce costs and improve 
productivity. There are two main challenges in TCM 
development: finding signals that are suitable to de-
scribe the tool status, and determining a feature set 

extracted from the signals that can effectively capture 
the performance degradation of the tools. 

The conventional way to measure tool wear is to 
use some devices to measure the wear directly. A 
drawback of this type of direct measurement is that 
the tool must be taken out of circulation to be checked 
for tool wear. Some researchers have tried another 
way that is more direct to measure tool wear, which 
involves applying non-contact machine vision tech-
niques (Sortino, 2003; Su et al., 2006; D’Addona and 
Teti, 2013; D’Addona et al., 2015, 2017). However, in 
vision analysis techniques, special care must be taken 
to avoid the interference of reflections from the cut-
ting edge. Moreover, disturbances from cutting fluids 
or lubricants may severely hinder vision-based wear 
detection. Thus, considerable research has been de-
voted to finding indirect ways to conduct automated 
evaluation of tool wear status. Various models have 
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been established to describe the relationships between 
tool wear and indirect signals such as vibration 
(Scheffer and Heyns, 2001; Abu-Mahfouz, 2003), 
acoustic emission (Lee et al., 2006; Yao and Chien, 
2014), force (Huang et al., 2007; Zhou et al., 2009), 
temperature (Young, 1996), spindle motor current (Li 
and Tso, 1999; Oh et al., 2004; Franco-Gasca et al., 
2006), and sensor fusion (Karam et al., 2016). To find 
suitable signals to describe the tool status in industrial 
applications, the cost, availability, and robustness of 
the TCM system should be considered. As mentioned, 
vision-based techniques may be easily interfered with 
and they are expensive. Vibration sensors are usually 
costly, and when they are installed closely or attached 
to the workpiece, sensor wires may interfere with the 
movements of the spindle and the holder during the 
machining process, which means an additional rede-
sign cost and technical difficulties to reduce the in-
terference. The cost of the acoustic emission tech-
nique is also high and it is ineffective in detecting 
gradual failures (Dimla, 2000). For temperature sig-
nals, the infrared thermograph camera is perhaps the 
most expensive sensor and can be impaired easily by 
lubricants. Force signals suffer from a similar prob-
lem because of the vibration affecting the sensor 
wires, which requires a lot of extra consideration due 
to possible dynamic interference. Thus, the current 
signals from servomotors may be the most practical 
variable because they are closely related to forces that 
are similar to torque measurements, and the current 
signals are usually available in most modern manu-
facturing systems. Furthermore, there is no problem 
with the dynamic interference of lubricants or sensor 
wires. Thus, we choose to analyze current signals in 
this study. 

When analyzing signals, researchers have de-
veloped numerous techniques to extract the correct 
feature set. Abu-Mahfouz (2003) analyzed vibration 
signals by transforming the signals into 28 features 
including averaged harmonic wavelet coefficients, 
local peaks of the Burg power spectral density, and 
some statistical measures, and then used a multi-layer 
feed-forward neural network to detect and classify the 
drill wear. Scheffer and Heyns (2001) selected 13 
features to identify tool status including mean, root 
mean square (RMS), crest factor, variance, skewness 
and kurtosis, spectral energies, Shannon entropy from 
wavelet analysis, and the coefficients for auto- 

regressive, moving average, and auto-regressive 
moving average models. Handling and processing 
such a large number of features would not be easy, 
and could lead to the problem of “the curse of di-
mensionality” (Korn et al., 2001). The high- 
dimensionality of features has always been an obsta-
cle to efficient data processing and fusion. Traditional 
techniques to tackle this high-dimensionality problem 
include principle component analysis (PCA) (Zhou et 
al., 2009), independent component analysis (ICA) 
(Bingham and Hyvärinen, 2000), and linear discri-
minant analysis (LDA) (Harmouche et al., 2014). 
However, most of these methods are suitable for lin-
ear analysis, and cannot sufficiently capture the non-
linear characters from manufacturing systems. Re-
cently, a new trend in dimensionality reduction tech-
niques, the manifold learning method, has emerged 
and been successfully applied to condition- 
based monitoring (CBM) of gear or bearing systems 
(Jiang et al., 2009; Sipola et al., 2014). In this study, 
we introduce a manifold learning method to analyze 
current signals and fuse the features for tool wear 
evaluation. Discriminant diffusion maps analysis 
(DDMA) (Huang et al., 2013) is used for current 
signal analysis. This method consists of mainly three 
steps: (1) extraction of original features from raw 
signals; (2) parameter estimation of DDMA, includ-
ing dimensionality estimation of the original feature 
space, estimation of the discriminant information, and 
the establishment of the affinity matrix; (3) feature 
fusion implementation through feature space mapping 
with diffusion distance preservation. Then the low- 
dimensional features can be input to classifiers or 
estimators for tool wear detection. 

 
 

2 Discriminant diffusion maps analysis 
methodology 
 

DDMA is developed based on the diffusion maps 
(DM) analysis originally proposed by Coifman and 
Lafon (2006). The main difference between DDMA 
and DM is that DDMA uses a pre-classification step 
to obtain the discriminant information before the 
calculation of dimensionality reduction, while DM 
neglects such information and proceeds directly to 
dimensionality reduction. DDMA shares a similar 
framework for density invariant embedding with DM. 
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The original idea is to define a graph of the data set. 
Each data point can be regarded as a vertex on the 
graph, and all the vertices are connected to other ver-
tices by weighted edges.  

Let the triple (X, ℒ, μ) be a measure space, where 
X is the data set (X∈D, where D is the original di-
mensionality), ℒ is a σ-algebra of its subsets, and μ: 
ℒ→[0, +∞] is a measure, representing the distribution 
of the data points on the graph. The edge weight is 
quantified by calculating the kernel function k(x, y), 
∀x, y∈X, which satisfies:  

(1) symmetry condition: k(x, y)=k(y, x);  
(2) positivity preservation: k(x, y)≥0. 
In the standard DM analysis, the weight function 

k(∙, ∙) usually adopts some isotropic kernel, such as 
the Gaussian kernel. To better use the discriminant 
information for dimensionality reduction, DDMA 
uses a discriminant Gaussian kernel instead. The 
mathematical expression is defined as  
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where ρ is the discriminant kernel width:  
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where x and y are the data points, l(x) and l(y) are the 
labels of x and y, respectively, ω is a constant which 
may enhance the discriminant result, ρW is the kernel 
width for data points within the same cluster, that is, 
of the same label L, Ω is the whole label set of the data, 
and ρB is the kernel width for data points of different 
labels. 
 
 

2
W( ) ( ) ( )

A δ

1( , ) min , ,L l x l y L
y x

x y x y x X
N

ρ
= =

∈

= − ∈∑ (3) 

2
B ( ) ( )

δ

1( , ) min , ,
l x l y

y x
x y x y x X

A
ρ

≠
∈

= − ∈∑      (4) 

A ( ) ( )min{ ,  ,  },L l x L l yA N N N= ==                (5) 
 

where y is within the neighborhood of x based on the 
affinity matrix of the data set, NA is the pre-set size of 
the neighborhood, NL is the number of points with the 

same cluster label L, and A is a number taking the 
minimum value from NA, NL=l(x), and NL=l(y). 

As mentioned previously, any data point x can be 
regarded as a vertex on a weighted graph, and the 
construction of a Markov chain on the graph of the 
data can be used to find relevant structures in complex 
geometrics, such as clusters. If the degree of any 
vertex is described as  
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and the one-step transition probability from x to y is  
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then the Markov chain can be presented by the tran-
sition matrix Q that contains all the entries of q(x, y), 
∀x, y∈X. The diffusion distance 𝔇𝔇 between vertices is 
defined as 
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where υ(z) is the stationary distribution of the Markov 
chain, given by 
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Note that if X is a finite set and assuming that the 

graph is all connected, the stationary distribution υ(z) 
is unique. As mentioned in Coifman and Lafon (2006), 
the diffusion distance may capture some local geo-
metric features from the data set by the kernel. The 
spectral properties of the Markov chain can be related 
to the geometry of the vertex, such as the local density 
distribution of the data points. Thus, the Markov 
chain defines fast and slow directions of propagation 
based on the values taken by the kernel. Based on 
Lafon’s theory of diffusion map analysis, the discri-
minant kernel in DDMA further enhances the utiliza-
tion of data connectivity by assigning the discrimi-
nant kernel weights along the propagation paths. 
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According to the proof in Nadler et al. (2006), the 
diffusion distance in Eq. (8) can also be written as  
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where ϕ and φ are the right and left eigenvectors of 
transition matrix Q respectively, and λ is the eigen-
value. Eq. (10) indicates that the diffusion distance 𝔇𝔇 
can also be computed by the right eigenvectors. Here, 
the order of the eigenvalues is 1=λ0>λ1≥⋯≥λD−1≥0. 
Then the discriminant map can be defined as 

 
T
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As mentioned earlier, the main purpose of man-
ifold learning methods is to reduce the dimensionality 
of the feature space. In a traditional dimensionality 
reduction process, the number of reduced dimen-
sionality can be determined arbitrarily. For example, 
one can select a three-dimensional space to conven-
iently visualize the data points in the feature space. 
Another popular method is to use the number of 
dominant eigenvalues to minimize the error function 
with a pre-set threshold (Coifman and Lafon, 2006). 
However, the disadvantage of this method is that the 
target reduced dimensionality is often overestimated 
(Hein and Audibert, 2005), and thus may not be 
qualified as the intrinsic dimensionality. Therefore, 
for manifold learning methods, researchers have tried 
to use fractal-based methods to estimate the intrinsic 
dimensionality of the data set, where the underlying 
dynamics within the data set can be better described 
by estimating the dimension based on fractals in many 
cases (Camastra and Vinciarelli, 2002; Kunze et al., 
2012). Thus, in this study, a fractal-based dimension 
is adopted as the target dimensionality. Specifically, 
the correlation dimensionality estimation is applied 
because of its relatively easy calculation of active 
degrees of freedom, thereby providing a good meas-
ure of the complexity of the data set (Borovkova et al., 
1999). A formal definition of the correlation dimen-
sion is expressed as (Camastra, 2003) 
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where e (e>0) is a pre-set threshold of the distances 
between pairs of data points, f(∙) is the correlation 
integral function, and g(Δ) is a step function. 

 
 

3  Experiment with the milling process 

3.1  Experiment setup and signal acquisition 

To validate DDMA in an application for tool 
wear detection, the method has been applied to the 
data set collected from a face milling experiment 
(Goebel and Yan, 2000), courtesy of the NASA data 
repository, for prognostics validation (Agogino and 
Goebel, 2007). In this experiment, the tools consist of 
six inserts of type KC710 on a 70-mm face mill, 
mounted on a Matsuura MC-510V CNC vertical 
machining center (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 

 
The processing parameters used in the experi-

ments were set to the settings recommended by the 
manufacturer. There are 16 run-to-failure cases in 
total for the tools, with a different number of runs in 
each case. The depth of cut was either 1.5 mm or 0.75 
mm. The cutting speed was 200 m/min. The feed was 
taken at either 0.5 mm/rev or 0.25 mm/rev. The 
adopted criterion to determine the failure status was 
the flank wear, which was measured after each run. 
The worn area could usually be divided into three 
zones, and zones C, B, and N are for nose wear, flank 
wear, and notch wear, respectively (Fig. 2). The flank 

Fig. 1  Test stand for the face milling tool experiment 

1. Current sensor (CTA 213) 
2. Spindle
3. Inserts (KC710)
4. Table of the Matsuura   
    machining center MC-510V

1

2

3
4
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wear VB is defined as the mean width of zone B, that 
is, the average distance from the cutting edge to the 
end of the abrasive wear on the flank face of the tool 
(ISO, 1989). Although the criterion for a worn tool as 
recommended in the ISO standard is that the VB 
value exceeds the threshold of 0.35 mm, to better 
understand the degradation status of the tools, the 
milling process was continued for several runs even 
after the VB threshold had been reached. In the ex-
periment, the VB values were manually measured 
after each run. 

Different signals were collected during the 
milling procedure, including current signals, vibra-
tion signals, and acoustic emission signals. We fo-
cused on the current signals, as noted earlier, which 
can provide relatively good accessibility than other 
types of signals in most practical manufacturing 
production lines. Discussions on vibrations or acous-
tic emission signals are not within the scope of this 
study. Details can be found in Agogino and Goebel 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2007). The current sensors were installed on the wire 
of the spindle motor. The types of Hall-effect current 
sensor were Omron K3TB-A1015 and CTA 213 for 
AC and DC signals, respectively. The data were col-
lected at a sampling rate of 250 Hz. 

The application of DDMA to the tool wear data 
consists of the following steps (Fig. 3): (1) data 
cleansing; (2) feature extraction; (3) intrinsic dimen-
sionality estimation; (4) discriminant analysis; (5) 
diffusion distance calculation; (6) construction of 
low-dimensional embedding; (7) tool wear evaluation 
using the intrinsic features. Steps (4)–(7) are the main 
DDMA. 

3.2  Data cleansing and preprocessing 

To validate the DDMA methodology, all 16 
cases were used with 167 milling runs in total. Due to 
corrupt or missing records in some cases, it is neces-
sary to clean and preprocess the data first. The 
cleansing and preprocessing procedures for the data 
are listed as follows:  

1. Removing the abnormal data 
The current signals were almost zeros during the 

95th run. For the 18th run, the current signals were 
corrupted by incorrect signals; that is, the values of 
which are much larger or smaller than the range of the 
sensor. Thus, the data from these two runs were re-
moved before analysis, and the rest of the milling runs 
were re-indexed from 1 to 165, as well as their case 
numbers. 

2. Handling the missing data 
There are several missing VB values, such as in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Illustration of the worn area of a tool 
Zones C, B, and N are for nose wear, flank wear, and notch 
wear, respectively 

C N

B

VB

Fig. 3  Flowchart of the discriminant diffusion maps analysis (DDMA) for tool wear evaluation 



Huang et al. / Front Inform Technol Electron Eng   2018 19(11):1352-1361 1357 

the 2nd and 3rd runs. The linear interpolation technique 
was used to fill the unknown gaps. Fig. 4 shows the 
VB curves for these 16 cases after interpolation. Note 
that there is only one zero-value VB sample in 
case 13. 

3. Obtaining the discriminant information 
The measured VB values were divided into five 

discrete levels of tool wear (Table 1). 
4. Aligning the starting points of the milling 

processes 
The 1.1-fold maximum value of the first 100 DC 

current signal samples was used as the threshold to 
determine the starting point of each run, and the sig-
nals were discarded before the starting point. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.3  Feature extraction 

The typical waveforms of the current signals are 
shown in Fig. 5, corresponding to different levels of 
measured VB values. The signals were processed by 
lifting wavelet packet analysis, and several statistics 

were extracted from the wavelet packet coefficients. 
The wavelet lifting scheme, proposed by Sweldens 
(1998), improves the computational efficiency 
through three steps: splitting, predicting, and updating. 
The splitting step divides the signals into even or odd 
series. The predicting and updating steps can be 
written in a factorization form. A biorthogonal 
wavelet with orders of vanishing moments, three for  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Table 1  Tool wear levels 
Wear level VB range (mm) 

1 VB≤0.15 
2 0.15 <VB≤0.30 
3 0.30 <VB≤0.45 
4 0.45 <VB≤0.60 
5 0.60 <VB 

 

Fig. 4  VB curves of the milling processing cases 1–16 

Fig. 5  Typical current signal waveforms for the spin-
dle drive 
(a) AC signals when VB≤0.15 mm; (b) DC signals when 
VB≤0.15 mm; (c) AC signals when 0.15 mm<VB≤ 
0.30 mm; (d) DC signals when 0.15 mm<VB≤0.30 mm; 
(e) AC signals when 0.30 mm<VB≤0.45 mm; (f) DC 
signals when 0.30 mm<VB≤0.45 mm; (g) AC signals 
when 0.45 mm<VB≤0.60 mm; (h) DC signals when  
0.45 mm<VB ≤0.60 mm; (i) AC signals when 0.60 mm 
<VB; (j) DC signals when 0.60 mm<VB 
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reconstruction and one for decomposition, was cho-
sen for the wavelet packet analysis. Its filters for de-
composition were [−0.3536, 1.0607, 1.0607, −0.3536] 
and [−0.1768, 0.5303, −0.5303, 0.1768]. The corre-
sponding lifting scheme can be represented by its 
factorization form as follows:  

 

1
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The decomposition level was five, which can 

serve a general purpose. We selected the values of the 
mean F1, variation F2, skewness F3, the kurtosis F4 of 
the wavelet coefficients from each node of the 
wavelet packet tree as the feature vectors 
(Eqs. (17)–(20)), and applied a z-score method to 
normalize the features (Eq. (21)). Thus, the dimension 
of the original feature space extracted from the DC 
and AC current signals was 25×4×2=256 (Fig. 6). 
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3.4  Intrinsic dimensionality estimation 

As shown in Fig. 6, it is not easy to evaluate and 
differentiate the worn tool status given the original 
features. Therefore, the proposed DDMA method was 
used to enhance the useful information within the 
feature space. As described above, we first estimated 
the intrinsic dimensionality of the original feature 
space using its correlation dimension. To estimate the 

dimension and obtain the discriminant information, 
we divided the whole data set into a training set of 
25% and a testing set of 75% of the data set. The 
selection process was random. The average result was 
2.4336, rounded to the nearest smaller integer 2. 
 
 

 
 
 
 
 
 
 
 
 
 

3.5  Main discriminant diffusion maps analysis 

Next, the DDMA method described in Section 2 
was applied to the original feature vectors, and their 
corresponding intrinsic features were calculated in the 
dimensionality-reduced space. Denote the original 
feature vectors as X:  

 

, , 1,2, 1,2,3,4, , [1,32]( ) ,i j k i j k Z ky = = ∈ ∈=X             (22) 
 

where the normalized feature columns y are defined in 
Section 3.3, i indicates that the feature is from the AC 
(i=1) or DC (i=2) signals, j indicates that the value is 
of mean (j=1), variation (j=2), skewness (j=3), or 
kurtosis (j=4) calculated from Eqs. (17)–(21), and k 
indicates the features from the kth node of the wavelet 
packet tree after the five-level decomposition. Then 
discriminant analysis was applied on the feature set 
by training the multi-class support vector machine 
model to generate the discriminant labels, with which 
the parameter ρ in Eq. (1) can be selected according to 
Eqs. (2)–(5). Then the Markov matrix with all entries 
of the diffusion distances can be calculated from 
Eqs. (6)–(9). Thus, the right eigenvectors of the 
Markov matrix can be obtained and multiplied by the 
eigenvalues to generate the diffusion coordinates 
(Eqs. (11) and (12)). Because the intrinsic dimen-
sionality was estimated to be two, we retained the first 
two coordinates as the intrinsic feature vectors.  

Fig. 7a clearly shows that the two-dimensional 
intrinsic feature vectors are gathered to form several 

Fig. 6  Original features extracted from 165 runs with 
AC and DC signals 
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clusters where most of them are consistent with their 
true tool wear levels. The results from PCA, which is 
a popular dimensionality reduction technique, are 
given in Fig. 7b. It can be observed that the feature 
vectors of different tool wear levels are tangled and 
difficult to differentiate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

3.6  Tool wear evaluation using intrinsic features 

Furthermore, to precisely evaluate the tool wear 
status, the VB values were divided into five discrete 
levels as mentioned. Then a simple nearest neighbor 
classifier was used to classify the levels of tool wear 
and evaluate the tool status. Of all 16 cases, 25% were 
randomly selected as the training set, and the rest of 
the cases were the test set. The results are shown in 
Fig. 8. Cases 1, 2, 6, and 11 were the training set, 
including 55 runs. The accuracy of the tool wear 
evaluation by DDMA was 100% for the training set, 
and 99.09% for the test set, which validates that the 
DDMA gave the preferable property with very little 
loss of useful information during dimension reduction 
and intrinsic feature transformation processes. On the 
other hand, the accuracy of the PCA method was 
27.27% for the training set, and 26.36% for the test set, 
which indicates a poor ability to preserve information 
within the original features of the current signals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Conclusions 
 
The DDMA technique has been studied for in-

trinsic feature extraction in evaluating tool wear. In 
principle, the method applies the Markov random 
walks theory to a graph and uses a discriminant kernel 
scheme to refine the high-dimensional feature space. 
The performance of the proposed DDMA method has 
been evaluated on AC and DC current signals col-
lected from a milling process experiment, which can 

Fig. 8  Results of the tool wear evaluation based on in-
trinsic features transformed by DDMA (a) and PCA (b)  
 

Fig. 7  Two-dimensional intrinsic features marked with 
true tool wear levels extracted by DDMA (a) and PCA (b) 
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be accessed easily in industrial machine centers. The 
results of the experiment showed that DDMA can 
transform the original high-dimensional features to an 
intrinsic feature space with a significantly lower di-
mension for the machining processes. 
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