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Abstract: Correlation analysis is an effective mechanism for studying patterns in data and making predictions.
Many interesting discoveries have been made by formulating correlations in seemingly unrelated data. We propose
an algorithm to quantify the theory of correlations and to give an intuitive, more accurate correlation coefficient.
We propose a predictive metric to calculate correlations between paired values, known as the general rank-based
correlation coefficient. It fulfills the five basic criteria of a predictive metric: independence from sample size,
value between −1 and 1, measuring the degree of monotonicity, insensitivity to outliers, and intuitive demonstration.
Furthermore, the metric has been validated by performing experiments using a real-time dataset and random number
simulations. Mathematical derivations of the proposed equations have also been provided. We have compared it to
Spearman’s rank correlation coefficient. The comparison results show that the proposed metric fares better than the
existing metric on all the predictive metric criteria.

Key words: General rank-based correlation coefficient; Multivariate analysis; Predictive metric; Spearman’s rank
correlation coefficient
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1 Introduction

The practice of finding correlations between
data points has been prevalent for a very long time.
This concept was introduced by Sir Francis Galton,
who noticed a relationship between the height of a
man and the length of his forearm (Hauke and Kos-
sowski, 2011). The only thing that has changed is
the volume of data and the availability of better tools
for analysis and data storage. As a result, correla-
tions in data emerge more rapidly, without incurring
much cost. Today, the focus of methods for finding
correlations in data is centered on the ‘what’ part of
the data but not the ‘why’ part. This means that to
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successfully find correlations in a given dataset, it is
not important to understand all the underlying vari-
ables of the system and their relationships (the ‘why’
part of data). We just need to find the variables that
help in making predictions (the ‘what’ part of data).
The correlations in these variables help us find pat-
terns in data. The ‘why’ aspect of data might be
interesting and appealing to the human mind, but it
does not generate valuable insights into relationships
between data points. Instead of focusing on finding
the cause-and-effect relationships in a particular data
collection, we try to find patterns and correlations.
This helps us visualize links in data that have not
been seen before. The premise of this approach is
that causality can rarely be proven (Didelez and Pi-
geot, 2001). Though correlations play an important
part in analyzing small datasets, they truly shine
when dealing with large data. Nowadays, experts are

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601549&domain=pdf


700 Pandove et al. / Front Inform Technol Electron Eng 2018 19(6):699-711

developing necessary tools to identify and compare
nonlinear correlations. The techniques of analysis
are being aided and enhanced by fast-growing novel
approaches and software that can extract non-causal
relationships in data (Reshef et al., 2011).

The value of a correlation coefficient implies a
dependency relationship between two data values. If
the value of correlation is high, it means that when
one datum value changes, the likelihood of the other
one changing is also very high. A weak correlation
implies that there might be little or no effect of one
variable on the other; i.e., there is little or no de-
pendency between the two variables. A correlation
coefficient is used to express the degree of depen-
dence between the two variables. Fig. 1 shows the
interpretation of various values of a correlation coef-
ficient. These values lie between −1 and 1.

With poor correlations, there is low probability
of similarity between objects. However, if the cor-
relation is strong, then the probability of similarity
is quite high. To fully use the power of correlations,
there is a need to understand the relationship be-
tween the two variables under consideration. This
can be explained with the help of an example. Say,
in a dataset there are two variables: x and y. Here,
x represents students’ marks and y gives the num-
ber of hours studied by them. To understand the
relationship between x and y, we need to find a cor-
relation between them. The degree of dependency
between the two variables will help us make various
predictions. Even if we are not able to predict the
course of one variable, studying the other can help
us predict the future (Liao et al., 2015b).

In this study, we propose a predictive metric, de-
scribing a general rank-based correlation coefficient
(GRCC) that is based on calculating rank distances

between all the observations. It quantifies the con-
cept of correlations as discussed above, and we pro-
vide a mathematical proof for the proposed scheme,
along with simulations to verify the proposed metric.

The focus of the paper is on introducing and
validating a novel way of looking at correlations, and
showing improvement in an existing metric of corre-
lation calculation. The increasing role of correlation
analysis in data science is the basic motivation of this
study. We have studied in detail various case studies
and research papers that have successfully used cor-
relation analysis to discover hidden patterns in data.
In all of the literature, we could not find any general
correlation metric that is intuitive in nature. Most
of the work is done in a particular domain, dealing
with a particular type of data. Our work deals with
this research gap. We propose a rank-based met-
ric, which is more intuitive and compatible with the
way the human brain perceives correlations. GRCC
is a novel metric that fulfills the five basic criteria
of a predictive metric: independence from sample
size, value between −1 and 1, measuring the degree
of monotonicity, insensitivity to outliers, and intu-
itive demonstration. This metric is an algorithm
instead of a stand-alone formula, making it one of
the few metrics defined by an algorithm. The hier-
archy of need and motivation for GRCC is given in
Fig. 2. The diagram shows that the need for GRCC
comes from the shortcomings of traditional metrics
like Spearman’s rank correlation coefficient. These
metrics, combined with the domains and datasets
in which work has been done, bring to light the re-
search gap in this field. The motivation for GRCC
comes from a need to develop a general metric for
correlation analysis that meets all the criteria for a
predictive metric and can be used in varied domains.

Fig. 1 Interpretation of a value of a correlation coefficient
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Fig. 2 Hierarchy of need and motivation for GRCC

2 Related work

When working with huge amounts of data, es-
tablishing correlations among data points brings out
a clearer picture of the nature of data at hand. The
weak and strong correlations in data values help us
capture the present and the future. There have been
many successful instances where correlations in data
points have been used for understanding available
but seemingly irrelevant data, and carving out re-
sults that have been amazingly accurate.

Amazon has been a pioneer in the field of big
data analysis. Initially, it collected information re-
garding the books sold on its website and used it to
make recommendations to specific customers. This
was done by finding similarities in the customer
database, known as user-to-user collaborative fil-
tering (Ritala et al., 2014). Later, it started find-
ing correlations among products themselves. This
association technique came to be known as item-
to-item collaborative filtering (Linden et al., 2003).
The mathematical determination of the data (find-
ing correlations) in advance increased the efficiency
of the system many-fold and cut across product cat-
egories (Chen et al., 2012). Walmart, one of the
largest retailers in the world, had analyzed the data
that it had collected over the years, and discovered
interesting correlations that helped them develop

important business strategies (Sen et al., 2006). In
2011, Fair Isaac Corporation (FICO) developed the
medical adherence score to determine how often peo-
ple consume their prescribed medication. Correla-
tions were found in variables that may sound irrel-
evant, such as marital status, how long they have
stayed at an address, and if they own a car. These re-
lationships helped them predict which patients were
most likely to forget to take their medication, and
can send them reminders (Volpone et al., 2015). If
properly analyzed, data can reveal extraordinary in-
sights into the medical condition of a patient. The
predictive analytics algorithms when applied on the
data on premature babies in intensive care units have
been able to predict onset of infections. The data
show correlation instead of causality for detection
and prevention of many deadly diseases (McGregor,
2013). Google used its enormous amount of data to
predict the spread of H1N1 virus and the winter flu,
by looking for a correlation between the frequency
of a certain query and the spread of flu over a given
time and space. It used frequently searched terms
as a proxy for flu and ran 450 million varied models,
and found that 45 search queries had strong cor-
relation between their predictions and official figures
when used in a mathematical model (Ginsberg et al.,
2009). In the year 2000, the Sloan Digital Sky Sur-
vey began collecting astronomical data. A telescope
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was located in New Mexico. In the initial weeks, it
gathered more astronomical data than ever before.
By 2010, the data in the archives of the survey were
huge, reaching almost 140 terabytes. However, its
successor, installed in 2016, acquires this quantity of
data every five days. Such huge amounts of data can
only make sense by using correlational non-causal
analysis (Davenport et al., 2013). In the big-data
age, where the datasets are too big and the area
under consideration is too complex, the hypotheses
are no longer driven by trial and error. Earlier they
were based on developing abstract ideas concerning a
phenomenon and collecting data to verify those the-
ories. This was usually done by selecting a proxy to
study the relationship between two variables and ver-
ifying how good the proxy was by using correlation
analysis. Now, sophisticated computational analysis
helps identify the most optimum proxy for a given
problem (Kitano, 2002). This means that instead of
a hypothesis-driven approach, we use a data driven
approach.

Correlation measures have been used by many
researchers to analyze data, taken from different
kinds of datasets. A lot of work in this area has been
done on fuzzy datasets and their variants. Murthy
et al. (1985) expressed a need for a measure of cor-
relation between two fuzzy membership functions.
They focused on studying properties possessed by a
correlation measure. Then they defined the measure
of correlation based on these properties. Chaudhuri
and Bhattacharya (2001) used Spearman’s rank cor-
relation coefficient to find correlation between two
fuzzy sets. The members of the sets have to be
ranked according to fuzzy membership values. They
proposed a membership value-based fuzzy correla-
tion measure. Liu and Kao (2002) worked on a
correlation coefficient of random numbers. They
developed a methodology for calculating a correla-
tion coefficient whose value is a fuzzy number. Hong
(2006) strictly focused on giving an exact solution
to the fuzzy correlation coefficient, without the aid
of programming. Hung (2001) focused on develop-
ing a method for calculating a correlation coefficient
of intuitionistic fuzzy sets by deploying mathemati-
cal statistics. He proposed a formula that gave not
only strength but also polarity of the relationship be-
tween the datasets. He also extended the research to
interval-valued intuitionistic fuzzy sets, i.e., the val-
ues of these sets lying in the interval [−1, 1]. Mitchell

(2004) defined a correlation coefficient between two
intuitionistic fuzzy sets, and assumed that an en-
semble of ordinary fuzzy sets could be interpreted
as an intuitionistic fuzzy set. Chen et al. (2013)
have worked on correlation coefficients of hesitant
fuzzy sets and their applications to clustering analy-
sis. The hesitant fuzzy sets allocate degree of mem-
bership to an element in a set. This means that an
element can be represented as a member of a set with
several possible values. An element can be a mem-
ber of more than one set. More recently, Liao et al.
(2015a) worked on hesitant fuzzy linguistic term sets
(HFLTSs). These sets represent hesitant qualitative
information in decision making. The authors pro-
posed HTFLSs based on traditional correlation co-
efficients of fuzzy sets, intuitionistic fuzzy sets, and
hesitant fuzzy sets. Given that HFLTSs have dif-
ferent weights, weighted correlation coefficients and
ordered weighted correlation coefficients have also
been investigated.

Distance correlation has also been applied to
random variables by Huo and Székely (2016). They
proved that distance correlation can be implemented
by an O(n logn) algorithm that is comparable to
other computationally efficient algorithms. Kong
et al. (2012) examined mortality and lifestyle factors
that run in families. They used distance correlation
to measure pairwise differences between related and
random people. Li et al. (2012) have also worked on
life sciences using distance correlation. They dealt
with very high dimensional data, and developed an
independent screening procedure based on distance
correlation. Székely and Rizzo (2012) emphasized
the uniqueness of distance correlation. Their work
was extended by Lyons (2013) to a general metric
space. A comparative analysis of the correlation
measures used by researchers on different datasets
is given in Table 1.

This section briefly discusses the diverse data
domains that employ correlation analysis to make
sense of the existing data. It should be highlighted
that data points are to be understood in terms of
correlations among them rather than causal relation-
ships. The approach followed is either the detection
of a proxy to perform correlation analysis, or the use
of correlations, sensor data, and previous results to
perform predictive analysis. All of these case studies
and research findings have laid the foundation for an
approach that can quantify the process of correlation
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Table 1 Comparative analysis of correlation measures used on different datasets

Reference Type of dataset Correlation measure Application domain Application examples

Chaudhuri and
Bhattacharya
(2001)

Fuzzy Membership value-
based fuzzy corre-
lation measure

Random variables Image processing

Hung (2001) Intuitionistic and interval-
valued intuitionistic fuzzy

Correlation coefficient
of intuitionistic fuzzy
sets

Mathematical statistics –

Liu and Kao
(2002)

Fuzzy Fuzzy correlation
coefficient

Statistical analysis,
fuzzy environment

Correlation between tech-
nology and management
in 15 machinery firms in
Taiwan, China

Mitchell (2004) Intuitionistic fuzzy and
normal fuzzy

Intuitively satisfying
correlation coefficient

Fuzzy environment –

Hong (2006) L-R fuzzy numbers Fuzzy correlation
coefficient

TW-based fuzzy arith-
metic operations

–

Kong et al.
(2012)

Real data from subpopula-
tion of the Beaver Dam
Eye Study

Distance correlation Mortality and lifestyle
factors in families and
random people

Relationships between
multiple clusters of
variables with real-
valued attributes

Li et al. (2012) Very high dimensional
data

Distance correlation Diverse scientific fields Screening features in very
high dimensional data

Chen et al.
(2013)

Hesitant fuzzy sets,
interval-valued
hesitant fuzzy sets

Correlation coefficient
of hesitant fuzzy sets

Clustering analysis of
correlation coefficients
of hesitant fuzzy sets

Software evaluation, classi-
fication, and assessment
of business risk failure

Liao et al.
(2015a)

Hesitant fuzzy
linguistic term

Correlation coefficient,
weighted correlation
coefficients, ordered
weighted correlation
coefficients

Qualitative decision
making

Traditional Chinese medical
diagnosis

Huo and Székely
(2016)

Synthetic datasets,
random variables

Distance correlation Applications where sta-
tistical dependence
needs to be calculated

Feature screening in ultra
high dimensional data
analysis

determination in a given dataset. This approach is
proposed and verified in the following sections.

3 Problem formulation

In today’s information-centric world, the focus
is on analyzing huge amounts of data and bringing
out meaningful patterns in them. This involves com-
putation of correlations among thousands of data
points. These computations are performed on paired
observations that could be in the form of data buck-
ets or time series. Such an analysis follows a non-
causal approach. Causality can be defined as one
factor contributing to the development of a variable,
and its removal affects the frequency of that variable.
For example, cigarette smoke has been known to be
a contaminated substance that leads to increased
rates of different types of cancers and heart and

respiratory diseases. It is not necessary to precisely
identify which component in the smoke is the pri-
mary culprit before introducing preventive measures
(Deufemia et al., 2014). There is a need to refine the
existing correlation determining factors and to come
up with an approach that would factor in the various
problems encountered in large datasets. These are
the problems of dimensionality, outliers, coefficients
showing fake correlations that do not exist, etc. In
this study, the focus is on subsets of observations that
have the same multivariate features. There is a need
to perform multivariate feature selection and iden-
tification of predictive set of metrics that best suits
our purpose. The predictive metric should fulfill five
main criteria (Granville, 2014):

1. It should be independent of the sample size to
enable comparison across datasets of various sizes.

2. It must lie between −1 and 1, with 0
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meaning no correlation. This is similar to existing
correlation measures to obtain back compatibility.

3. It should be general such that it can
measure the degree of monotonicity (X grows with
Y ), rather than linearity (X = aY ). This means that
it should be more general than the traditional corre-
lation measures, but must not be as general as the
distance correlation which is equal to 0 if and only if
X and Y are independent.

4. It should have no sensitivity to outliers so
that it is robust.

5. It should be intuitive so that it translates how
the human brain perceives correlations.

The criteria for a predictive metric are repre-
sented in Fig. 3.

Criteria

Sample size

Value

Complexity

Sensitivity

Intuitiveness

Independent 
of sample size

Lies between 
−1 and 1

Measures degree of 
monotonicity rather 
than linearity

No sensitivity 
to outliers

Translates how 
human brain 
perceives correlations

Fig. 3 Criteria for a predictive metric

4 Proposed approach: GRCC

We propose a more general measure. We start
by considering Spearman’s rank correlation coeffi-
cient, which is given by Xiao et al. (2015):

ρ = 1− 6
∑

d2i
n(n2 − 1)

, (1)

where di = xi − yi is the difference between ranks of
observations. This coefficient lies between −1 and 1,
which satisfies the second criterion of the five main
criteria mentioned previously.

Now, we develop a new general rank-based cor-
relation coefficient that is defined by an algorithm.
Our aim is to develop a correlation coefficient that
satisfies all the conditions of a predictive metric.
Like all the existing metrics, the proposed approach
will also work on finding correlations between a pair
of observations. We assume that out of the two

observations x and y, x is ordered. The metric is
then defined by a series of steps. The algorithm for
GRCC is given in Algorithm 1. The metric com-
bines basic principles of correlation analysis and al-
gorithm design to address the research gap in the
existing literature. Most of the fundamentals in this
metric are the same as Spearman’s rank correlation
coefficient, but we have introduced elements to make
GRCC more general and intuitive. GRCC is de-
noted by g and is governed by a parameter c, which
is the prior distribution. We consider this algorithm
only at c = 1 and c = 2. This metric is symmetric,
meaning that it will not change even if x and y are
swapped. Like Spearman’s rank correlation, if the
order of y is reversed, then only the sign of correla-
tion will change. Also, for every value of c > 0, the
value of g will always lie between −1 and 1. When
the value of c is equal to 2, it becomes very sensi-
tive to outliers. The value of g at c = 1 is the most
well-rounded solution. In the algorithm, the rank
distance between x and y is calculated in a, and be-
tween x and reverse order of y in b. The smallest
value between a and b helps determine the sign of the
correlation. The value of the denominator d is most
crucial to determine the exact value of g. Three ways
are mentioned in the algorithm, and any one of them
can be used to determine the value of d, depending
on factors such as the number of data points and
type of data. Diagrammatically, the ways to select
the denominator d have been described in Fig. 4.

Value of 
denominator d

d=6q2+4qr+r(r−1)/2 
if the value of the 
expression is even 
d=6q2+4qr+r(r−1)/2−1 
if the value of the 
expression is odd

d=[(n−6)+n2]/3 using 
approximation formula 
when n is a multiple of 3

Sample permutations of 
n to obtain approximation of d

Expression 
6q2+4qr+r(r−1) is 
used by Euclidean 
division of n by 4

Fig. 4 Ways to select the value of denominator d

The value of the denominator d can be selected
in any of the following ways:

1. An approximation formula that is most accu-
rate when n is a multiple of 3 is given by

d =
(n− 6) + n2

3
.

2. Sample permutations of n to obtain an ap-
proximation of d.
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Algorithm 1 General rank-based correlation coefficient (GRCC)
Input: a parameter c, which is a constant governing the value of the correlation coefficient; number of terms n
Output: The data in one of the two variables of the paired observations are sorted
1: while i ≤ n do
2: a =

∑n
i=1 [x(i)− y(i)]c // Rank distance between all the values of variables x(i) and y(i)

3: end while
4: while i ≤ n do
5: b =

∑n
i=1[x(i)− (n− 1− y(i))]c // Rank distance between all the values of variables x(i) and n− 1− y(i)

6: end while
7: Compute the minimum of a and b, i.e., min(a, b)
8: Determine sign(s) of the coefficient based on the following conditions:
9: if a > b then

10: s = 1
11: else if a < b then
12: s = −1
13: else if a = b then
14: s = 0
15: end if
16: The general rank-based coefficient g = s[1−min(a, b)/d]

3. A specific formula of d can be used by per-
forming Euclidian division of n by 4, and forming
an equation: n = 4q + r, 0 ≤ r < 4, where q is the
quotient and r is the remainder. Now the expression
can be given as 6q2+4qr+r(r−1). If the value of this
expression is even, then d = 6q2+4qr+r(r − 1)/2; if
this value is odd, then d = 6q2+4qr+r(r − 1)/2−1.
This equation is more suited for even numbers.

The traditional correlations are very robust
when it comes to small datasets. However, as the
number of observations keeps increasing, they slowly
converge to 0. If the positioning of the observations
under X or Y is disturbed, the correlation tends to
reverse its sign. Hence, a general correlation coeffi-
cient is needed which is free from these defects and
fulfills the five criteria mentioned previously.

The cases of the denominator are discussed as
follows:

1. d = [(n− 6) + n2]/3 is the equation that is
most appropriate when n is a multiple of 3. This
is shown by the denominator of this equation. The
complexity of d when using this equation is O(n2).
However, this equation is restricted by the factor 3,
and thus a more general equation is needed.

2. There is a brute force method to compute the
value of d, i.e., to generate all random permutations
from 0 to n−1 for n terms. This method can produce
the most accurate value for d, but its computational
complexity is as high as O(n!). We give a general
algorithm for generating random numbers using per-
mutations in Algorithm 2. The best way to use this

method is to sample enough random permutations
to obtain an approximation of d.

Algorithm 2 Generating random numbers using
permutations
Input: number of data points, n; an initialized array

Xn!×n = 0
Output: d
1: while i ≤ n! do
2: Generate the ith permutation using perm(i, n)
3: Generate perm(i) as a random number on

(0, 1, · · · , n− 1)
4: Repeat the above step until perm(i) is different

from perm(0), perm(1), · · · , perm(n− 1)
5: Append perm(i) at location 3× (i− 1) in X
6: end while
7: Use this array for calculation of d by using sampling

and approximation

3. d = 6q2 + 4qr + r(r − 1)/2 can be derived by
considering the following two functions:

u = sum|x(j)− yc(j)|, (2)

v = sum|y(j)− zc(j)|, (3)

where z(j) = n− 1− y(j). Now function t(x) can be
defined as

t(x) = min(|u|, |v|), (4)

where |x| is the absolute value of x. Now we compute
d(n), which is defined as the maximum of t(x) com-
puted for all the permutations of x from 0 to n− 1.
If q is the quotient and r is the remainder for the
Euclidean division (Gratton and Kolotilin, 2015) of
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n by 4, then we have

n = 4q + r. (5)

Adding Eqs. (2) and (3), we have

c(x) = sumif(x(i), y(i)), (6)

where f(a, b) = |b−a|+ |b−(n−1−a)|. Considering
the function f , its value can be given as

f(a, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2a− (n− 1), b ≥ a, b ≥ n− 1− a,

2b− (n− 1), b ≤ a, b ≥ n− 1− a,

−2a+ (n− 1), b ≥ a, b ≤ n− 1− a,

−2b+ (n− 1), b ≤ a, b ≤ n− 1− a.

Now we compute the values of f(a, b) for various
conditions for a particular value of p ∈ [0, n − 1].
The values of a and b are varied from p to n− 1− p

such that one of the following conditions is true:
(1) p ≤ a ≤ n− 1− p and b = p;
(2) p ≤ a ≤ n− 1− p and b = n− 1− p;
(3) p ≤ b ≤ n− 1− p and a = p;
(4) p ≤ b ≤ n− 1− p and a = n− 1− p.
These conditions are based on threshold values

for the computation. Next, we compute the maxi-
mum value of c(x) over all the permutations xi ∈
[0, n− 1]. Because q is the quotient of n divided by
4 and r is the remainder, the corresponding value of
cn is

cn =

q∑

p=0

(n− 1− 2p) + r(n− 1− q)

= q(n− 1)− 2

q∑

p=0

(p) + r(n − 1− q)

= q(n− 1)− 2
q(q − 1)

2
+ r(n− 1− q)

= qn− q − q2 + q + r(n− 1− q) (7)

= q(4q + r)− q2 + r(4q + r − 1− q)

= 4q2 + qr − q2 + 4rq + r2 − r − rq

= 3q2 + 4qr + r(r − 1).

Because we are considering the divisibility factor of 4,
let us consider the cases when n is even. Therefore,
the value of q is substituted as q = 2k. Then the
equation is reduced to

cn = 12k2 + 8kr + r(r − 1). (8)

Now, d(n) = cn/2; therefore, d(n) is

d(n) = 6k2 + 4kr + r(r − 1)/2. (9)

5 Simulation results and discussion

To test the proposed approach, a dataset was
selected from http://data.worldbank.org/indicator.
This dataset contains the World Bank indicators of
human development. It contains about 20 indica-
tors for 235 countries in the world. It is a clean
dataset with 2355 data values. A mind map con-
taining attributes of the World Bank development
indicators is given in Fig. 5. This dataset is a
compilation of relevant and high-quality informa-
tion about the quality of people’s lives. The data
are internationally comparable statistics about de-
velopment. The dataset has been used by many re-
searchers (World Bank, 2012; Devarajan, 2013; Su-
santitaphong et al., 2013). For the purpose of this
simulation, we selected random pairs of attributes to
test GRCC and ρ on the predictive metric criteria. A
data model was created using the GRCC algorithm.
This model used the traditional and GRCC algo-
rithms on defined data values. The aim of this simu-
lation was to compare the existing and the proposed
correlation metrics to see the difference between
them. The comparative analysis is given in Table 2.
The symbols used are given in Table 3.

The value g lies between −1 and 1; hence, it is

World Bank H. D. I. 

Subregion
Country

Mobile phone subscribers
Internet users

Total
Urban
Birth rate

Classification based on 
age group 

GDP
GDP per capita

Railways
Passenger cars

Under-5 mortality
Health expenditure per capita
Health expenditure total 
Life expectancy at birth, male
Life expectancy at birth, female
Life expectancy at birth, total

Aged 0−14
Aged 15−64
Aged 65+

Region 

Transit

Finance

Health

Population

Business

Fig. 5 A mind map representing attributes of World
Bank human development indicator dataset
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Fig. 6 Scatterplots depicting correlations between variables A and B by applying the two correlation coeffi-
cients. References to color refer to the online version of this figure
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bounded. It has a bimodal distribution with a small
dip near 0. This means that near 0, no patterns
would be found. It can be used for the detection
of outliers because it uses rank distances instead
of squared distances. The squared distances have
outliers heavily weighing on them. These results
prove that the general correlation coefficient fulfills
all the conditions of an effective predictive metric.
The comparison of ρ and GRCC based on predictive
metric criteria is given in Table 4.

Fig. 6 shows scatterplots depicting correlations
between variables A and B by applying the two
correlation coefficients. If we study the values of
the correlations obtained, it becomes clear that
the general correlation coefficient is more intuitive
than the traditional Spearman’s rank correla-
tion coefficient. The proposed metric has higher
correlations between the variables that should
have a high correlation, according to the human
understanding of the world. For instance, there
is a very high correlation between ‘car ownership
and the GDP per capita’, which makes sense,

and the relatively low value of Spearman’s rank
correlation is not indicative of that. Similarly, the
high correlation values among attributes such as ‘life
expectancy at birth (year) and health expenditure
per capita’, ‘passenger cars and urban population’,
and ‘GDP per capita and Internet users’ indicate
the same. Also, certain attributes demonstrate low
values of correlation as compared with Spearman’s
rank correlation coefficient, like ‘under-5 mortality
and birth rate’ and ‘total population and urban
population’. Intuitively, the correlation between
these parameters should be low. In some cases,
the two coefficients have almost equal values, like

Table 3 Symbol table

Symbol Description

A, B Attributes in which correlations are to be found
p value Statistical significance parameter
S value Statistical significance parameter
ρ Spearman’s rank correlation
g General rank-based correlation coefficient

Table 2 Comparison of Spearman’s rank correlation coefficient and GRCC

Data attribute Number
of data
points

Spearman’s rank correlation GRCC gcoefficient

A B p value S value ρ
d = d1 d = d2

c = 1 c = 2 c = 1 c = 2

GDP per capita GDP 2327 < 2.2× 10−16 900 579 181 0.4600 0.4302 0.3216 0.4130 0.3092
GDP per capita Passenger cars 2354 < 2.2× 10−16 1 451 827 312 0.3321 1.0000 1.0000 1.0000 1.0000
Life expectancy Health expenditure

per capita
2327 < 2.2× 10−16 858 399 753 0.5380 0.9999 0.9984 0.9997 0.9842

Passenger cars Urban population 2354 < 2.2× 10−16 1 365 948 542 0.3717 0.7480 0.9890 0.7030 0.9420
GDP per capita Internet users 2354 < 2.2× 10−16 1 101 037 602 0.4935 0.7551 0.8821 0.8155 0.8122
Mobile subscribers Internet users 2354 < 2.2× 10−16 224 906 329 0.8965 0.7551 0.6128 0.4130 0.8551
Under-5 mortality Birth rate 2354 < 2.2× 10−16 120 426 906 0.9440 0.5110 0.4626 0.4780 0.4400
Total population Urban population 2354 < 2.2× 10−16 104 317 436 0.9520 0.4303 0.3416 0.3193 0.3253

d1 = 6q2 + 4qr + r(r − 1)/2, d2 = [(n − 6) + n2]/3

Table 4 Comparison of ρ and GRCC based on predictive metric criteria

Data attribute Fulfills rank correlation ρ? Fulfills GRCC g?

A B SS V C S I SS V C S I

GDP per capita GDP × √ × √ √ √ √ √ √ √
GDP per capita Passenger cars × √ × × × √ √ √ √ √
Life expectancy Health expenditure per capita × √ × × × √ √ √ √ √
Passenger cars Urban population × √ × × × √ √ √ √ √
GDP per capita Internet users × √ × × × √ √ √ √ √
Mobile subscribers Internet users × √ × √ √ √ √ √ √ √
Under-5 mortality Birth rate × √ × × × √ √ √ √ √
Total population Urban population × √ × √ × √ √ √ √ √

SS: sample size; V: value; C: complexity; S: sensitivity; I: intuitiveness
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‘GDP per capita and GDP’ and ‘mobile phone sub-
scribers and Internet users’, showing that the two
values do tend to converge for some cases. These
cases are no exception to the rule. They just show
that there might be some instances when these re-
sults are possible, and the results of the proposed
and the existing metric would coincide.

Another simulation was performed using syn-
thetic datasets. We generated data using random
number distributions to test GRCC at n=15 000,
45 000, 75 000, and 100 000 data points. The aim
of this simulation was to test the behavior of GRCC
at different values of n and compare it to ρ. The
random number distributions are binomial distribu-
tion, exponential distribution, normal distribution,
Poisson distribution, and uniform distribution. The
results of the simulation are given in Table 5 and
the corresponding graphs are represented in Figs. 7–
11. It can also be observed in all the distributions
that GRCC is independent of sample size because it
continues to give consistent results irrespective of the
sample size. As the sample size increases, GRCC for
c = 1 performs better than ρ, making it more accu-
rate for large datasets.
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Fig. 7 Comparison of GRCC with ρ for the binomial
distribution
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Fig. 8 Comparison of GRCC with ρ for the exponen-
tial distribution

Table 5 Comparison of ρ and GRCC at c=1 and c=2

Simulation
method

Data generation

ρ

GRCC g

Parameter Number of
data points

d = d1 d = d2

c = 1 c = 2 c = 1 c = 2

Uniform
random
variables

15 000 −0.0059 −0.0061 −0.0059 −0.0060 −0.0059
45 000 −0.0020 −0.0025 −0.0020 −0.0015 −0.0020
75 000 −0.0030 0 −0.0030 0 −0.0030

100 000 0.0030 0 0.0010 0 0.0010

Exponential
random
variables

Mean: 0.2 15 000 0.0088 0.0099 0.0089 0.0099 0.0088
45 000 0.0027 0.0035 0.0027 0.0040 0.0028
75 000 −0.0033 −0.0568 −0.0454 −0.0580 −0.0358

100 000 −0.0042 0 0.0200 0 0.0500

Normal
random
variables

Mean: 15;
standard de-

viation: 2

15 000 −0.0047 −0.0050 −0.0035 −0.0054 −0.0047
45 000 −0.0053 −0.0070 −0.0060 −0.0080 −0.0055
75 000 0.0025 0 0.0030 0 0.0050

100 000 0.0011 0 0 0 0

Poisson
random
variables

Mean: 10 15 000 0.0017 0.0020 0.0015 0.0030 0.0019
45 000 0.0074 0.0090 0.0070 0.0090 0.0060
75 000 0.0048 0 0.0040 0 0.0050

100 000 −0.0058 0 0.0050 0 0.0030

Binomial
random
variables

Mean: 10;
probability of
success: 0.3

15 000 0.0015 0.0020 0.0020 0.0020 0.0020
45 000 −0.0039 −0.0050 −0.0040 −0.0050 −0.0030
75 000 −0.0019 0.0010 0.0020 0.0010 0.0030

100 000 −0.0015 0 0.0010 0 0.0010

d1 = 6q2 + 4qr + r(r − 1)/2, d2 = [(n − 6) + n2]/3
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Fig. 9 Comparison of GRCC with ρ for the normal
distribution
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Fig. 10 Comparison of GRCC with ρ for the Poisson
distribution
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Fig. 11 Comparison of GRCC with ρ for the uniform
distribution

6 Conclusions and future scope

We have discussed an algorithm to improve a
traditional correlation metric. It defines a new gen-
eral rank-based correlation coefficient that gives a
more intuitive correlation between two variables. It
is more accurate when the number of observations is
large. The purpose of this metric is to quantify the
meaning of correlation analysis in the world of big

data. This metric is an improvement over the ex-
isting Spearman’s rank correlation in terms of pre-
dictive powers. It is also independent of the size
of the sample, not sensitive to outliers, works on
measurement of the degree of monotonicity instead
of linearity, and is more intuitive than the existing
metric.

The mathematical proofs for the required equa-
tions and simulations performed on the proposed
scheme validated it. A lot of work can be done to
refine this metric and make it more concrete, like
finding its statistical significance. The most impor-
tant application of this technique will be in the field
of prediction analysis. It can be used in many ap-
plications, such as online predictive systems, health
care information systems, political prediction sys-
tems, and financial market recommendation systems.
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