
Xie et al. / Front Inform Technol Electron Eng   2018 19(4):536-543 536

 

 

 

 

A multistandard and resource-efficient Viterbi decoder for a  

multimode communication system* 
 

Yi-qi XIE1,2, Zhi-guo YU†‡1,2, Yang FENG1,2, Lin-na ZHAO1,2, Xiao-feng GU1,2 
1MOE Engineering Research Center of IoT Technology Applications, Wuxi 214122, China 

2Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China 
†E-mail: yuzhiguo@jiangnan.edu.cn 

Received Oct. 2, 2016; Revision accepted Mar. 5, 2017; Crosschecked Apr. 12, 2018 

 

Abstract: We present a novel standard convolutional symbols generator (SCSG) block for a multi-parameter reconfigurable 
Viterbi decoder to optimize resource consumption and adaption of multiple parameters. The SCSG block generates all the states 
and calculates all the possible standard convolutional symbols corresponding to the states using an iterative approach. The ar-
chitecture of the Viterbi decoder based on the SCSG reduces resource consumption for recalculating the branch metrics and 
rearranging the correspondence between branch metrics and transition paths. The proposed architecture supports constraint lengths 
from 3 to 9, code rates of 1/2, 1/3, and 1/4, and fully optional polynomials. The proposed Viterbi decoder has been implemented on 
the Xilinx XC7VX485T device with a high throughput of about 200 Mbps and a low resource consumption of 162k logic gates. 
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1  Introduction 
 

In today’s wireless communication systems, 
convolutional encoding coupled with the Viterbi al-
gorithm has been widely used for forward error cor-
rection (FEC) (Chang et al., 2010; Kim et al., 2012; 
Yoo et al., 2012). With the diversification of the ap-
plication scenarios, terminal devices are required to 
operate on multiple communication standards, and 
the Viterbi algorithm must support multiple standards. 
A number of studies have been devoted to  

reconfigurable Viterbi algorithm in recent years 
(Swaminathan et al., 2002; Benaissa and Zhu, 2003; 
Niktash et al., 2006; Bissi et al., 2008; Vennila et al., 
2013), mainly concentrating on dynamic reconfigu-
rability, high throughput, and multiple parameters. 
Cavallaro and Vaya (2003) presented a reconfigurable 
Viterbi decoder with a flexible configuration, a con-
straint length of 3–9, a code rate of 1/2–1/3, and a 
throughput of 60 Mbps. Batcha and Sha’ameri (2007) 
implemented a reconfigurable Viterbi decoder with a 
high throughput of 150 Mbps. Campos and Cumplido 
(2006) suggested a dynamic partial reconfigurable 
Viterbi decoder. These reconfigurable Viterbi decod-
ers can adapt to different applications. However, little 
research has been devoted to fulfilling all of the con-
ditions for a reconfigurable Viterbi decoder, such as 
reconfigurable properties, speed, and resource  
consumption. 

Resource consumption of a reconfigurable 
Viterbi algorithm lies mainly in the computation of 
standard convolutional symbols and the arrangement 
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of correspondence between branch metrics and tran-
sition paths. The speed and reconfigurable properties 
of the Viterbi decoder are determined by how many 
parallel schemes are implemented. To achieve the 
goals of multiple parameters and high speed with low 
resource consumption, we present a new block, the 
standard convolutional symbols generator (SCSG), in 
the reconfigurable Viterbi decoder. The SCSG block 
uses an iterative approach to generate all the states 
and the corresponding standard convolutional sym-
bols, and then distributes all the standard convolu-
tional symbols to the branch metric (BM) block to 
compute the branch metrics. The SCSG-based tech-
nique will form a kind of self-alignment between the 
branch metrics and the transition paths. The proposed 
reconfigurable Viterbi decoder based on SCSG has 
been verified, and the results show that it can support 
a constraint length of 3–9, code rates of 1/2, 1/3, 1/4, 
and a throughput of 200 Mbps with a low logic gate 
utilization of 162k. 

 
 

2  The proposed reconfigurable Viterbi de-
coder architecture 
 

Generally, a fixed Viterbi decoder consists of 
four major functional blocks: branch metric, add- 
compare-select (ACS), survivor path memory (SPM), 
and traceback. The BM block takes the input symbols 
and generates the branch metrics by computing the 
Hamming or Euclidean distance between the input 
symbols and standard convolutional symbols. The  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ACS block computes the state metrics and survivor 
paths, and then sends the survivor paths to the SPM 
block. Finally, the traceback block rebuilds the de-
coded sequences according to survivor paths. 

To accommodate multiple communication stan- 
dards and low resource consumption, we suggest a 
new block, the SCSG. Fig. 1 shows the architecture of 
the proposed reconfigurable Viterbi decoder. The 
principle of the proposed decoder is described as 
follows: 

1. The polynomials and the input symbols are 
normalized in the configuration unit (CU) block. 
Then the normalized polynomials are fed into the 
SCSG block to calculate the standard convolutional 
symbols.  

2. The hard-to-soft unit in the hard-soft branch 
metric (HBM) block quantifies the standard convo-
lutional symbols from two-level symbols to eight- 
level symbols, and each branch metric unit (BMU) in 
the HBM block computes the Euclidean distance 
between the normalized symbols and quantified 
standard convolutional symbols.  

3. The ACS block computes the state metric by 
accumulating the branch metrics, and sends the most 
significant bit (MSB) of the previous states to the 
SPM block as the survivor paths. After that, the 
pipeline comparator in the ACS block compares all 
the state metrics of the current states and chooses the 
minimum one as the shortest path.  

4. The traceback block traces back through the 
trellis according to the shortest path and survivor 
paths, and outputs the decoded sequences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1  Block diagram of the reconfigurable Viterbi decoder 
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2.1  Configuration unit 

For the reconfigurable Viterbi decoder, the vari-
ation of the code rate with the constraint length can 
cause changes in the polynomials and input symbols. 
When the code rate is 1/R (2≤R≤4), the number of 
encoded symbols and polynomials from the encoder 
is R, and the Viterbi decoder is supposed to deal with 
the same number of input symbols and polynomials. 
When the constraint length is K (2≤K≤4), the bit 
widths of the polynomials in the encoder and the 
decoder are supposed to be K. The valid maximum 
number of input symbols and polynomials in our 
design is 4, the maximum width of each polynomial  
is 9, and each bit of the polynomials can be set  
optionally. 

Fig. 2 illustrates the normalization of the poly-
nomials and input symbols in the CU block. When the 
code rate and constraint length change, Factor0, 
Factor1, and Factor2 are updated by the two mapping 
units, and then perform the AND operation with input 
symbols and original polynomials. Table 1 shows the 
mapping relationships between the normalized Fac-
tor0, Factor1, and the code rate, where each vector in 
Factor1 corresponds to one polynomial. Table 2 
shows the mapping relationship between the nor-
malized Factor2 and the constraint length. 

To clearly describe the normalization procedure, 
let S and s be the input symbols and the normalized 
symbols, respectively, Pd, Pc, Pb, and Pa the 4×9 bit 
sequences of four original polynomials, and pd, pc, pb, 
and pa the four normalized polynomials. S performs a 
bitwise-AND operation with Factor0. Pd, Pc, Pb, and 
Pa first perform bitwise-AND operations with the 
sequences in Factor1, and then perform bitwise-AND 
operations with Factor2. The normalization formulae 
can be deduced as 

 

0& ,s S Factor                          (1) 

d d 2 1

c c 2 1

b b 2 1

a a 2 1

( & ) & < >,

( & ) & < >,

( & ) & < >,

( & ) & < >,





 
  
   
  

p P

p P

p P

p P

Factor Factor

Factor Factor

Factor Factor

Factor Factor

        (2) 

 
where ‘&’ is the bitwise-AND operation, Factor1<1> 
indicates the first vector sequence in Factor1, Fac-
tor1<2> indicates the second vector sequence in 
Factor1, and so on.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.2  Standard convolutional symbols generator 

To create a reconfigurable Viterbi decoder 
supporting flexible polynomials, it is necessary to 
generate every possible standard convolutional 
symbol and recalculate the branch metrics corre-
sponding to current states. In the SCSG block, we use 
an iterative method to generate the standard convolu-
tional symbols of all even states, which range from 
00000000 to 11111110. Because the only difference 
between even states and odd states is the last signifi-
cant bit (LSB), the calculation of all odd states is 

Table 1  Relationships between Factors and code rate

Code rate (1/R) Factor0 Factor1 

1/2 0011 

000000000

000000000

111111111

111111111

 
 
 
 
 
 

 

1/3 0111 

000000000

111111111

111111111

111111111

 
 
 
 
 
 

 

1/4 1111 

111111111

111111111

111111111

111111111

 
 
 
 
 
 

 

 
Table 2  Relationships between Factors and constraint 
length 

Constraint length (K) Factor2 

3 111000000 

4 111100000 

5 111110000 

6 111111000 

7 111111100 

8 111111110 

9 111111111 

Fig. 2  Fabric of the configuration unit 
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simple, and the computational process of odd states 
will be demonstrated in the final step. The SCSG first 
generates the starting standard convolutional symbols 
based on a series of 8-bit even states, 00000000, 
00000010, 00000100, and 00000110, which are de-
noted as α. After that, the SCSG flips the LSB+3, 
LSB+4, LSB+5, LSB+6, and LSB+7 (MSB) of α in 
sequence to obtain the other even states, where we use 
LSB+i (0≤i≤8) to indicate the ith bit to LSB’s left. The 
standard convolutional symbols of these even states 
can be formed by a few additional XOR operations 
with the starting standard convolutional symbols, 
which will greatly reduce resource consumption. 
After all the standard convolutional symbols of even 
states are generated, the standard convolutional 
symbols of all odd states can be formed by a few XOR 
operations with the LSB of the normalized polyno-
mials. The procedure is organized in the following 
three steps: 

1. SCSG calculating the standard convolutional 
symbols of α 

Here we use 00000C1C00 (C1C0 can be 00, 01, 10, 
or 11) to represent the state of α; the previous states 
corresponding to 00000C1C00 in the trellis are 

000000C1C0 and 100000C1C0. Let 0
NSS  and 1

NSS  be 

the starting standard convolutional symbol of the 
previous states 000000C1C0 and 100000C1C0, re-
spectively. The SCSG first performs a bitwise-AND 
operation between the four normalized polynomials 

and 00000C1C00, which results in 0
NSS  by a reduc-

tion XOR on the results of bitwise-AND operations. 
1
NSS  can be obtained by an additional XOR operation 

between 0
NSS  and the MSB of the normalized poly-

nomials. The computational procedure of 0
NSS  and 

1
NSS  is expressed as 
 

0
d2 d1 1 0 c2 c1 1 0

b2 b1 1 0 a2 a1 1 0

={( ( & )), ( ( & )), 

( ( & )), ( ( & ))},
N p p C C p p C C

p p C C p p C C

 

      

SS

(3) 
1 0

d8 c8 b8 a8= ,N Np p p p SS SS                    (4) 
 

where ‘’ indicates the reduction XOR operation, ‘^’ 
indicates the bitwise-XOR operation, ‘{}’ indicates 
the concatenation operation, ‘&’ indicates the  
bitwise-AND operation, pd2 indicates the LSB+2 of pd, 

pc1 indicates the LSB+1 of pc, and so on. 
2. SCSG calculating the standard convolutional 

symbols for all even states 
The SCSG flips the LSB+3 of α to obtain the 

even state codes ranging from 00001000 to 00001110, 
which are denoted as . The only difference between 
 and α is the LSB+3. Therefore, the standard con-
volutional symbols of  can be easily obtained from 
the starting standard convolutional symbols of α by an 
additional bitwise-XOR operation: 

 

d3 c3 b3 a3= ,p p p p β αSS SS                  (5) 

 
where SSα indicates the starting standard convolu-

tional symbols 0
NSS  and 1 ,NSS  and SSβ indicates the 

standard convolutional symbols of . 
By the same token, the standard convolutional 

symbols for the rest of the even states from 00010000 
to 11111110 can be deduced from Eqs. (6)–(9). 

The even state codes from 00010000 to 
00011110, which are denoted as δ, can be obtained by 
flipping the LSB+4 of α and β, and the standard 
convolutional symbols can be calculated by  

 

d4 c4 b4 a4 += ,p p p p δ α βSS SS                  (6) 

 
where SSα+ indicates the standard convolutional 
symbols of α and β, and SSδ indicates the standard 
convolutional symbols of δ. 

The even state codes from 00100000 to 
00111110, which are denoted as ε, can be obtained by 
flipping the LSB+5 of α, β, and δ, and the standard 
convolutional symbols can be calculated by 

 

d5 c5 b5 a5 + += ,p p p p ε α β δSS SS               (7) 

 
where SSα++δ indicates the standard convolutional 
symbols of α, β, and δ, and SSε indicates the standard 
convolutional symbols of ε. 

The even state codes from 01000000 to 
01111110, which are denoted as η, can be obtained by 
flipping the LSB+6 of α, β, δ, and ε, and the standard 
convolutional symbols can be calculated by 

 
d6 c6 b6 a6 + + += ,p p p p η α β δ εSS SS               (8) 
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where SSα++δ+ε indicates the standard convolutional 
symbols of α, β, δ, and ε, and SSη indicates the 
standard convolutional symbols of η. 

The even state codes from 10000000 to 
11111110, which are denoted as μ, can be obtained by 
flipping the LSB+7 of α, β, δ, ε, and η, and the 
standard convolutional symbols can be calculated by  

 

d7 c7 b7 a7 + + + += ,p p p p μ α β δ ε ηSS SS            (9) 

 
where SSα++δ+ε+η indicates the standard convolu-
tional symbols of α, β, δ, ε, and η, and SSμ indicates 
the standard convolutional symbols of μ. 

3. SCSG calculating the standard convolutional 
symbols for all odd states 

To obtain the standard convolutional symbols 
for all odd states, the only computation needed is an 
additional bitwise-XOR operation with the LSB of pd, 
pc, pb, and pa: 

 

d0 c0 b0 a0= ,p p p p τ α β+δ+ε+η+ μSS SS          (10) 

 
where SSα++δ+ε+η+μ indicates the standard convolu-
tional symbols of the even states, and SSτ indicates 
the standard convolutional symbols of the odd states. 

From Eqs. (3)–(10), we can see that, for all 
standard convolutional symbols except α, only a few 
XOR operations are needed to simplify the computa-
tions. Moreover, all the standard convolutional 
symbols correspond to their current states, which will 
help the HBM block match the branch metrics with 
the transition paths. 

2.3  Hard-soft branch metric 

The regular BM block in the fixed Viterbi de-
coder computes the branch metrics with fixed stand-
ard convolutional symbols, which cannot vary with 
the constraint length, code rate, or polynomials. 

The HBM block consists of a hard-to-soft unit 
and several BMUs. Compared with the regular BM 
block, the HBM block computes the branch metrics 
with standard convolutional symbols from the SCSG 
block. When the polynomials, constraint length, and 
code rate change, the HBM block can recalculate the 
branch metrics, and the new branch metrics can 
self-align to each transition path. 

The hard-to-soft unit converts the two-level 

standard convolutional symbols to the eight-level 
ones. For example, if the standard convolutional 
symbol is 0_1_0_1, the eight-level quantified symbol 
is 000_111_000_111, which in decimal is 0_7_0_7. 

Each BMU takes the normalized symbols and 
the quantified standard convolutional symbols, and 
computes the proximal Euclidean distance as the 
branch metrics (Xiong et al., 2004). 

2.4  Add, compare, and select 

The ACS block has the branch metrics as the 
inputs, and the survivor paths and the shortest path as 
the outputs. Every add-compare-select unit (ACSU) 
in the ACS block accumulates the branch metrics 
corresponding to current states, compares the sums, 
and saves the smaller sums as the state metrics of 
current states. The LSBs of previous states corre-
sponding to current states are sent to the SPM block 
as the survivor paths. After all the state metrics of the 
current states are calculated, the results are fed into a 
pipeline comparator to compute the shortest path. 

Because the standard convolutional symbols 
correspond one-to-one with the current states, the 
branch metrics self-align to the transition paths in the 
ACSU, simplifying the procedure of rearranging the 
routing between the branch metrics and current states. 
In Fig. 3, each group of BMUs takes the standard 
convolutional symbols from a group of current states, 
such as α and β, where ‘◎’ indicates the bitwise- 
XOR operation with the LSB of the normalized pol-
ynomials, pd0pc0pb0pa0. The BMUs calculate the 
branch metrics, and then distribute the branch metrics 
to each group of ACSUs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 3  Data flow of the BMUs and ACSUs 
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2.5  Survivor path memory 

The SPM block is responsible for saving the 
survivor paths generated by the ACS block. To meet 
the truncation length of the reconfigurable Viterbi 
decoder, the size of the memory is set according to the 
largest constraint length and code rate decoder. Gen-
erally speaking, for a fixed Viterbi decoder, the 
truncation length is double or triple the value of 
(K−1)×[1÷(1−1/R)]. Therefore, to meet the maximum 
constraint length 9 and the code rate 1/2, the optimum 
depth of the memory is 64, and the bit width is 
29−1=256. 

2.6  Traceback 

The traceback block consists of a traceback 
controller (TC) unit and a last-in-first-out (LIFO) unit. 
In Fig. 4, every time the read address of memory 
blocks in the SPM block rises to 63, the TC unit takes 
in the shortest path from the ACS block as the indexer, 
searches for the binary bits of the survivor paths ac-
cording to the indexer, and then the decoded bit can 
be obtained. If the read address is not equal to 63, the 
value of the indexer can be obtained by shifting the 
previous value of the indexer and covering the LSB of 
the shifted indexer with the previous decoded bit. 
Finally, the LIFO unit reverses the order of decoded 
bits to obtain the decoded sequence. 
 
 
 
 
 
 
 
 
 
 
 
3  Implementation and results 
 

To verify the bit error rate (BER) performance of 
the decoder, we implement the decoder for different 
parameters with the additive white Gaussian noise 
(AWGN) channel, and the BER curves are shown in 
Fig. 5. With the increasing constraint length and the 
decreasing code rate, BERs decline substantially, 
agreeing with the expected theoretical results (Moon, 
2005). Moreover, we test the decoder with the same 

constraint length 9 and code rate 1/4 but different 
polynomials, and the results show that the  
variation in the polynomials results in different BER  
performance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The proposed architecture has been implemented 

on a Xilinx Virtex-7 FPGA using Verilog hardware 
description language (HDL). The results show that 
the reconfigurable Viterbi decoder can support a 
constraint length of 3–9, code rates of 1/2, 1/3, 1/4, 
and fully optional polynomials. Moreover, the con-
sumption of logic gates is limited to 162k. Fig. 6 
shows the simulated waveforms for different code 
rates, constraint lengths, and polynomials. To facili-
tate the display of results, two 8-bit SerDes are added 
to the convolutional encoder and Viterbi decoder. 
One SerDes converts the 8-bit parallel sine wave to 
serial input symbols for the convolutional encoder, 
and the other one transforms the decoded sequences 
of the Viterbi decoder to an 8-bit parallel signal. 
When the communication standard changes, the sig-
nal ‘reset’ initializes the convolutional encoder and 
Viterbi decoder. After a period of time, the Viterbi 
decoder outputs the signals, which are the same as the 
input signals of the convolutional encoder. 
 
 
4  Discussion 
 

A comparison of the key features of our archi-
tecture with the works reported is shown in Table 3. 
Although some of the reported architectures were 

Fig. 4  Fabric of traceback 

Fig. 5  Bit error rate of the proposed architecture 
The numbers in parentheses indicate the polynomials in octal 
format 
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implemented on different FPGA platforms, the au-
thors gave the equivalent number of logic gates. 

Compared with the reported reconfigurable 
Viterbi architecture, the proposed architecture can 
support an additional code rate of 1/4, which is 
commonly used in DAB and CDMA2000, and the 
throughput is higher than the others. The logic gate 
consumption of the SCSG-based reconfigurable 
Viterbi decoder is limited to 162k, showing 15% 
resource savings when compared with the architec-
ture having the nearest performance (Cavallaro and 
Vaya, 2003). 

Overall, the proposed architecture achieves 
flexible configuration and high throughput with a 
compact size, but there is still room for improvement. 
In future work, we will focus on the radix-4 technique 
and more flexible code rates, such as 2/3 and 3/4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Conclusions 

 
In this paper, we have presented a fully flexible 

reconfigurable Viterbi decoder with higher speed and 
smaller area. This architecture is an efficient decoder 
for a constraint length of 3–9 with code rates of 1/2, 
1/3, and 1/4. The results showed that the SCSG-based 
architecture reduces resource consumption without 
reducing the flexibility or data rate. Such an archi-
tecture can support portable wireless devices in mul-
timode communication. 

 
References 
Batcha MFN, Sha’ameri AZ, 2007. Configurable adaptive 

Viterbi decoder for GPRS, EDGE and Wimax. IEEE Int 
Conf on Telecommunications and Malaysia Int Conf on 
Communications, p.237-241.  

 https://doi.org/10.1109/ICTMICC.2007.4448640 
Benaissa M, Zhu YQ, 2003. A novel high-speed configurable 

Viterbi decoder for broadband access. EURASIP J Adv 
Signal Process, 2003(13):1317-1327.  

 https://doi.org/10.1155/S1110865703310054 
Bissi L, Placidi P, Baruffa G, et al., 2008. A Viterbi decoder 

architecture for a standard-agile and reprogrammable 
transceiver. Integr VLSI J, 41(2):161-170.  

 https://doi.org/10.1016/j.vlsi.2007.04.001 
Campos JM, Cumplido R, 2006. A runtime reconfigurable 

architecture for Viterbi decoding. 3rd Int Conf on Elec-
trical and Electronics Engineering, p.1-4.  

 https://doi.org/10.1109/ICEEE.2006.251908 
Cavallaro JR, Vaya M, 2003. Viturbo: a reconfigurable archi-

tecture for Viterbi and Turbo decoding. IEEE Int Conf on 
Acoustics, Speech, and Signal Processing, p.497-500.  

 https://doi.org/10.1109/ICASSP.2003.1202412 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Comparison of key features of the architectures reported 

Reference Constraint length Code rate 
Maximum throughput 

(Mbps) 
Number of logic 

gates (k) 

This paper 3–9 1/2, 1/3, 1/4 200 162 

Cavallaro and Vaya (2003) 3–9 1/2, 1/3 60.6 190 

Batcha and Sha’ameri (2007) 5,7 1/2, 1/3 150 – 

Campos and Cumplido (2006) 3–7 1/2, 1/3 70 175 

Vennila et al. (2013) 3–7 1/2, 1/3 81 113 

Niktash et al. (2006) 7, 9 1/2, 1/3 27, 10 – 

Bissi et al. (2008) 4–9, 10–14 1/2, 1/3 0.337 1.314 

Swaminathan et al. (2002) 7, 9 1/2, 1/3 3.125, 12.5 95 

Benaissa and Zhu (2003) 7–10 1/2 101 172 

 

Fig. 6  Simulated waveforms 
poly0, poly1, poly2, and poly3 represent four polynomials; 
ad_p indicates the input of convolutional encoder; da_p 
indicates the output of the Viterbi decoder; constrlen indi-
cates the constraint length 

reset

da_p

ad_p

poly3

poly2

poly1

poly0

coderate

constrlen

1

43

64

001010101

101110110

010110110

110110101

0000

110 110

0000

001010101
101110110

010110110

110110101

010

0001

001011101

101110101

010110100

110100101

100

0010

110100101

010110100

101110101

001011101



Xie et al. / Front Inform Technol Electron Eng   2018 19(4):536-543 543

Chang F, Onohara K, Mizuochi T, 2010. Forward error cor-
rection for 100 G transport networks. IEEE Commun Mag, 
48(3):S48-S55.  
https://doi.org/10.1109/MCOM.2010.5434378 

Kim J, Yoshizawa S, Miyanaga Y, 2012. Variable wordlength 
soft-decision Viterbi decoder for power-efficient wireless 
LAN. Integr VLSI J, 45(2):132-140.  

 https://doi.org/10.1016/j.vlsi.2011.10.002 
Moon TK, 2005. Error Correction Coding: Mathematical 

Methods and Algorithms. John Wiley & Sons, Inc., New 
Jersey, USA, p.487-490.  

 https://doi.org/10.1002/0471739219 
Niktash A, Parizi HT, Bagherzadeh N, 2006. A multi-standard 

Viterbi decoder for mobile applications using a recon-
figurable architecture. IEEE 64th Vehicular Technology 
Conf, p.1-5. https://doi.org/10.1109/VTCF.2006.176 

Swaminathan S, Tessier R, Goeckel D, et al., 2002. A  

dynamically reconfigurable adaptive Viterbi decoder. 
Proc ACM/SIGDA 10th Int Symp on Field-Programmable 
Gate Arrays, p.227-236.  

 https://doi.org/10.1145/503048.503081 
Vennila C, Patel AK, Lakshminarayanan G, et al., 2013. Dy-

namic partial reconfigurable Viterbi decoder for wireless 
standards. Comput Electr Eng, 39(2):164-174.  

 https://doi.org/10.1016/j.compeleceng.2012.12.009 
Xiong L, Yao D, Tan Z, et al., 2004. Research on FPGA-based 

soft-decision Viterbi decoder for convolutional codes 
puncturation. J Beijing Jiaotong Univ, 28(5):36-39 (in 
Chinese).  

 https://doi.org/10.3969/j.issn.1673-0291.2004.05.009  
Yoo W, Jung Y, Kim MY, et al., 2012. A pipelined 8-bit soft 

decision Viterbi decoder for IEEE802.11ac WLAN sys-
tems. IEEE Trans Consum Electron, 58(4):1162-1168.  

 https://doi.org/10.1109/TCE.2012.6414981
 


