
Xie et al. / Front Inform Technol Electron Eng 2018 19(4):536-543 536

A multistandard and resource-efficient Viterbi decoder for a

multimode communication system*

Yi-qi XIE1,2, Zhi-guo YU†‡1,2, Yang FENG1,2, Lin-na ZHAO1,2, Xiao-feng GU1,2
1MOE Engineering Research Center of IoT Technology Applications, Wuxi 214122, China

2Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
†E-mail: yuzhiguo@jiangnan.edu.cn

Received Oct. 2, 2016; Revision accepted Mar. 5, 2017; Crosschecked Apr. 12, 2018

Abstract: We present a novel standard convolutional symbols generator (SCSG) block for a multi-parameter reconfigurable
Viterbi decoder to optimize resource consumption and adaption of multiple parameters. The SCSG block generates all the states
and calculates all the possible standard convolutional symbols corresponding to the states using an iterative approach. The ar-
chitecture of the Viterbi decoder based on the SCSG reduces resource consumption for recalculating the branch metrics and
rearranging the correspondence between branch metrics and transition paths. The proposed architecture supports constraint lengths
from 3 to 9, code rates of 1/2, 1/3, and 1/4, and fully optional polynomials. The proposed Viterbi decoder has been implemented on
the Xilinx XC7VX485T device with a high throughput of about 200 Mbps and a low resource consumption of 162k logic gates.

Key words: Reconfigurable Viterbi decoder; Multi-parameter; Low resource consumption; Standard convolutional symbols

generator (SCSG); Fully optional polynomials
https://doi.org/10.1631/FITEE.1601596 CLC number: TN764

1 Introduction

In today’s wireless communication systems,
convolutional encoding coupled with the Viterbi al-
gorithm has been widely used for forward error cor-
rection (FEC) (Chang et al., 2010; Kim et al., 2012;
Yoo et al., 2012). With the diversification of the ap-
plication scenarios, terminal devices are required to
operate on multiple communication standards, and
the Viterbi algorithm must support multiple standards.
A number of studies have been devoted to

reconfigurable Viterbi algorithm in recent years
(Swaminathan et al., 2002; Benaissa and Zhu, 2003;
Niktash et al., 2006; Bissi et al., 2008; Vennila et al.,
2013), mainly concentrating on dynamic reconfigu-
rability, high throughput, and multiple parameters.
Cavallaro and Vaya (2003) presented a reconfigurable
Viterbi decoder with a flexible configuration, a con-
straint length of 3–9, a code rate of 1/2–1/3, and a
throughput of 60 Mbps. Batcha and Sha’ameri (2007)
implemented a reconfigurable Viterbi decoder with a
high throughput of 150 Mbps. Campos and Cumplido
(2006) suggested a dynamic partial reconfigurable
Viterbi decoder. These reconfigurable Viterbi decod-
ers can adapt to different applications. However, little
research has been devoted to fulfilling all of the con-
ditions for a reconfigurable Viterbi decoder, such as
reconfigurable properties, speed, and resource
consumption.

Resource consumption of a reconfigurable
Viterbi algorithm lies mainly in the computation of
standard convolutional symbols and the arrangement

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the Natural Science Foundation of Jiangsu
Province, China (No. BK20130156), the Summit of the Six Top
Talents Program of Jiangsu Province, China (No. 2013-DZXX-027),
the Fundamental Research Funds for the Central Universities, China
(No. JUSRP51510), and the Graduate Student Innovation Program for
Universities of Jiangsu Province, China (Nos. KYLX15_1192,
KYLX16_0776, and SJLX16_0500)

 ORCID: Yi-qi XIE, http://orcid.org/0000-0002-6224-4217
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2018

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601596&domain=pdf

Xie et al. / Front Inform Technol Electron Eng 2018 19(4):536-543 537

of correspondence between branch metrics and tran-
sition paths. The speed and reconfigurable properties
of the Viterbi decoder are determined by how many
parallel schemes are implemented. To achieve the
goals of multiple parameters and high speed with low
resource consumption, we present a new block, the
standard convolutional symbols generator (SCSG), in
the reconfigurable Viterbi decoder. The SCSG block
uses an iterative approach to generate all the states
and the corresponding standard convolutional sym-
bols, and then distributes all the standard convolu-
tional symbols to the branch metric (BM) block to
compute the branch metrics. The SCSG-based tech-
nique will form a kind of self-alignment between the
branch metrics and the transition paths. The proposed
reconfigurable Viterbi decoder based on SCSG has
been verified, and the results show that it can support
a constraint length of 3–9, code rates of 1/2, 1/3, 1/4,
and a throughput of 200 Mbps with a low logic gate
utilization of 162k.

2 The proposed reconfigurable Viterbi de-
coder architecture

Generally, a fixed Viterbi decoder consists of
four major functional blocks: branch metric, add-
compare-select (ACS), survivor path memory (SPM),
and traceback. The BM block takes the input symbols
and generates the branch metrics by computing the
Hamming or Euclidean distance between the input
symbols and standard convolutional symbols. The

ACS block computes the state metrics and survivor
paths, and then sends the survivor paths to the SPM
block. Finally, the traceback block rebuilds the de-
coded sequences according to survivor paths.

To accommodate multiple communication stan-
dards and low resource consumption, we suggest a
new block, the SCSG. Fig. 1 shows the architecture of
the proposed reconfigurable Viterbi decoder. The
principle of the proposed decoder is described as
follows:

1. The polynomials and the input symbols are
normalized in the configuration unit (CU) block.
Then the normalized polynomials are fed into the
SCSG block to calculate the standard convolutional
symbols.

2. The hard-to-soft unit in the hard-soft branch
metric (HBM) block quantifies the standard convo-
lutional symbols from two-level symbols to eight-
level symbols, and each branch metric unit (BMU) in
the HBM block computes the Euclidean distance
between the normalized symbols and quantified
standard convolutional symbols.

3. The ACS block computes the state metric by
accumulating the branch metrics, and sends the most
significant bit (MSB) of the previous states to the
SPM block as the survivor paths. After that, the
pipeline comparator in the ACS block compares all
the state metrics of the current states and chooses the
minimum one as the shortest path.

4. The traceback block traces back through the
trellis according to the shortest path and survivor
paths, and outputs the decoded sequences.

Fig. 1 Block diagram of the reconfigurable Viterbi decoder

Xie et al. / Front Inform Technol Electron Eng 2018 19(4):536-543 538

2.1 Configuration unit

For the reconfigurable Viterbi decoder, the vari-
ation of the code rate with the constraint length can
cause changes in the polynomials and input symbols.
When the code rate is 1/R (2≤R≤4), the number of
encoded symbols and polynomials from the encoder
is R, and the Viterbi decoder is supposed to deal with
the same number of input symbols and polynomials.
When the constraint length is K (2≤K≤4), the bit
widths of the polynomials in the encoder and the
decoder are supposed to be K. The valid maximum
number of input symbols and polynomials in our
design is 4, the maximum width of each polynomial
is 9, and each bit of the polynomials can be set
optionally.

Fig. 2 illustrates the normalization of the poly-
nomials and input symbols in the CU block. When the
code rate and constraint length change, Factor0,
Factor1, and Factor2 are updated by the two mapping
units, and then perform the AND operation with input
symbols and original polynomials. Table 1 shows the
mapping relationships between the normalized Fac-
tor0, Factor1, and the code rate, where each vector in
Factor1 corresponds to one polynomial. Table 2
shows the mapping relationship between the nor-
malized Factor2 and the constraint length.

To clearly describe the normalization procedure,
let S and s be the input symbols and the normalized
symbols, respectively, Pd, Pc, Pb, and Pa the 4×9 bit
sequences of four original polynomials, and pd, pc, pb,
and pa the four normalized polynomials. S performs a
bitwise-AND operation with Factor0. Pd, Pc, Pb, and
Pa first perform bitwise-AND operations with the
sequences in Factor1, and then perform bitwise-AND
operations with Factor2. The normalization formulae
can be deduced as

0& ,s S Factor (1)

d d 2 1

c c 2 1

b b 2 1

a a 2 1

(&) & < >,

(&) & < >,

(&) & < >,

(&) & < >,

p P

p P

p P

p P

Factor Factor

Factor Factor

Factor Factor

Factor Factor

 (2)

where ‘&’ is the bitwise-AND operation, Factor1<1>
indicates the first vector sequence in Factor1, Fac-
tor1<2> indicates the second vector sequence in
Factor1, and so on.

2.2 Standard convolutional symbols generator

To create a reconfigurable Viterbi decoder
supporting flexible polynomials, it is necessary to
generate every possible standard convolutional
symbol and recalculate the branch metrics corre-
sponding to current states. In the SCSG block, we use
an iterative method to generate the standard convolu-
tional symbols of all even states, which range from
00000000 to 11111110. Because the only difference
between even states and odd states is the last signifi-
cant bit (LSB), the calculation of all odd states is

Table 1 Relationships between Factors and code rate

Code rate (1/R) Factor0 Factor1

1/2 0011

000000000

000000000

111111111

111111111

1/3 0111

000000000

111111111

111111111

111111111

1/4 1111

111111111

111111111

111111111

111111111

Table 2 Relationships between Factors and constraint
length

Constraint length (K) Factor2

3 111000000

4 111100000

5 111110000

6 111111000

7 111111100

8 111111110

9 111111111

Fig. 2 Fabric of the configuration unit

Mapping

Mapping

&Code rate

Constraint
length

Input symbols

& &Polynomials

Factor0

Factor1

Factor2

Normalized
symbols

Normalized
polynomials

Xie et al. / Front Inform Technol Electron Eng 2018 19(4):536-543 539

simple, and the computational process of odd states
will be demonstrated in the final step. The SCSG first
generates the starting standard convolutional symbols
based on a series of 8-bit even states, 00000000,
00000010, 00000100, and 00000110, which are de-
noted as α. After that, the SCSG flips the LSB+3,
LSB+4, LSB+5, LSB+6, and LSB+7 (MSB) of α in
sequence to obtain the other even states, where we use
LSB+i (0≤i≤8) to indicate the ith bit to LSB’s left. The
standard convolutional symbols of these even states
can be formed by a few additional XOR operations
with the starting standard convolutional symbols,
which will greatly reduce resource consumption.
After all the standard convolutional symbols of even
states are generated, the standard convolutional
symbols of all odd states can be formed by a few XOR
operations with the LSB of the normalized polyno-
mials. The procedure is organized in the following
three steps:

1. SCSG calculating the standard convolutional
symbols of α

Here we use 00000C1C00 (C1C0 can be 00, 01, 10,
or 11) to represent the state of α; the previous states
corresponding to 00000C1C00 in the trellis are

000000C1C0 and 100000C1C0. Let 0
NSS and 1

NSS be

the starting standard convolutional symbol of the
previous states 000000C1C0 and 100000C1C0, re-
spectively. The SCSG first performs a bitwise-AND
operation between the four normalized polynomials

and 00000C1C00, which results in 0
NSS by a reduc-

tion XOR on the results of bitwise-AND operations.
1
NSS can be obtained by an additional XOR operation

between 0
NSS and the MSB of the normalized poly-

nomials. The computational procedure of 0
NSS and

1
NSS is expressed as

0
d2 d1 1 0 c2 c1 1 0

b2 b1 1 0 a2 a1 1 0

={((&)), ((&)),

((&)), ((&))},
N p p C C p p C C

p p C C p p C C

SS

(3)
1 0

d8 c8 b8 a8= ,N Np p p p SS SS (4)

where ‘’ indicates the reduction XOR operation, ‘^’
indicates the bitwise-XOR operation, ‘{}’ indicates
the concatenation operation, ‘&’ indicates the
bitwise-AND operation, pd2 indicates the LSB+2 of pd,

pc1 indicates the LSB+1 of pc, and so on.
2. SCSG calculating the standard convolutional

symbols for all even states
The SCSG flips the LSB+3 of α to obtain the

even state codes ranging from 00001000 to 00001110,
which are denoted as . The only difference between
 and α is the LSB+3. Therefore, the standard con-
volutional symbols of can be easily obtained from
the starting standard convolutional symbols of α by an
additional bitwise-XOR operation:

d3 c3 b3 a3= ,p p p p β αSS SS (5)

where SSα indicates the starting standard convolu-

tional symbols 0
NSS and 1 ,NSS and SSβ indicates the

standard convolutional symbols of .
By the same token, the standard convolutional

symbols for the rest of the even states from 00010000
to 11111110 can be deduced from Eqs. (6)–(9).

The even state codes from 00010000 to
00011110, which are denoted as δ, can be obtained by
flipping the LSB+4 of α and β, and the standard
convolutional symbols can be calculated by

d4 c4 b4 a4 += ,p p p p δ α βSS SS (6)

where SSα+ indicates the standard convolutional
symbols of α and β, and SSδ indicates the standard
convolutional symbols of δ.

The even state codes from 00100000 to
00111110, which are denoted as ε, can be obtained by
flipping the LSB+5 of α, β, and δ, and the standard
convolutional symbols can be calculated by

d5 c5 b5 a5 + += ,p p p p ε α β δSS SS (7)

where SSα++δ indicates the standard convolutional
symbols of α, β, and δ, and SSε indicates the standard
convolutional symbols of ε.

The even state codes from 01000000 to
01111110, which are denoted as η, can be obtained by
flipping the LSB+6 of α, β, δ, and ε, and the standard
convolutional symbols can be calculated by

d6 c6 b6 a6 + + += ,p p p p η α β δ εSS SS (8)

Xie et al. / Front Inform Technol Electron Eng 2018 19(4):536-543 540

where SSα++δ+ε indicates the standard convolutional
symbols of α, β, δ, and ε, and SSη indicates the
standard convolutional symbols of η.

The even state codes from 10000000 to
11111110, which are denoted as μ, can be obtained by
flipping the LSB+7 of α, β, δ, ε, and η, and the
standard convolutional symbols can be calculated by

d7 c7 b7 a7 + + + += ,p p p p μ α β δ ε ηSS SS (9)

where SSα++δ+ε+η indicates the standard convolu-
tional symbols of α, β, δ, ε, and η, and SSμ indicates
the standard convolutional symbols of μ.

3. SCSG calculating the standard convolutional
symbols for all odd states

To obtain the standard convolutional symbols
for all odd states, the only computation needed is an
additional bitwise-XOR operation with the LSB of pd,
pc, pb, and pa:

d0 c0 b0 a0= ,p p p p τ α β+δ+ε+η+ μSS SS (10)

where SSα++δ+ε+η+μ indicates the standard convolu-
tional symbols of the even states, and SSτ indicates
the standard convolutional symbols of the odd states.

From Eqs. (3)–(10), we can see that, for all
standard convolutional symbols except α, only a few
XOR operations are needed to simplify the computa-
tions. Moreover, all the standard convolutional
symbols correspond to their current states, which will
help the HBM block match the branch metrics with
the transition paths.

2.3 Hard-soft branch metric

The regular BM block in the fixed Viterbi de-
coder computes the branch metrics with fixed stand-
ard convolutional symbols, which cannot vary with
the constraint length, code rate, or polynomials.

The HBM block consists of a hard-to-soft unit
and several BMUs. Compared with the regular BM
block, the HBM block computes the branch metrics
with standard convolutional symbols from the SCSG
block. When the polynomials, constraint length, and
code rate change, the HBM block can recalculate the
branch metrics, and the new branch metrics can
self-align to each transition path.

The hard-to-soft unit converts the two-level

standard convolutional symbols to the eight-level
ones. For example, if the standard convolutional
symbol is 0_1_0_1, the eight-level quantified symbol
is 000_111_000_111, which in decimal is 0_7_0_7.

Each BMU takes the normalized symbols and
the quantified standard convolutional symbols, and
computes the proximal Euclidean distance as the
branch metrics (Xiong et al., 2004).

2.4 Add, compare, and select

The ACS block has the branch metrics as the
inputs, and the survivor paths and the shortest path as
the outputs. Every add-compare-select unit (ACSU)
in the ACS block accumulates the branch metrics
corresponding to current states, compares the sums,
and saves the smaller sums as the state metrics of
current states. The LSBs of previous states corre-
sponding to current states are sent to the SPM block
as the survivor paths. After all the state metrics of the
current states are calculated, the results are fed into a
pipeline comparator to compute the shortest path.

Because the standard convolutional symbols
correspond one-to-one with the current states, the
branch metrics self-align to the transition paths in the
ACSU, simplifying the procedure of rearranging the
routing between the branch metrics and current states.
In Fig. 3, each group of BMUs takes the standard
convolutional symbols from a group of current states,
such as α and β, where ‘◎’ indicates the bitwise-
XOR operation with the LSB of the normalized pol-
ynomials, pd0pc0pb0pa0. The BMUs calculate the
branch metrics, and then distribute the branch metrics
to each group of ACSUs.

 Fig. 3 Data flow of the BMUs and ACSUs

α

BMU 3

βδεη

BMU 0

BMU 1

BMU 2

μ

BMU 7

BMU 4

BMU 5

BMU 6

BMU 15

BMU 8

BMU 9

BMU 31

BMU 16

BMU 17

BMU 63

BMU 32

BMU 33

BMU 127

BMU 64

BMU 65

ACSU 7

ACSU 0

ACSU 1

ACSU 15

ACSU 8

ACSU 9

ACSU 31

ACSU 16

ACSU 17

ACSU 63

ACSU 32

ACSU 33

ACSU 127

ACSU 64

ACSU 65

ACSU 255

ACSU 128

ACSU 129

Hard-to-soft

Xie et al. / Front Inform Technol Electron Eng 2018 19(4):536-543 541

2.5 Survivor path memory

The SPM block is responsible for saving the
survivor paths generated by the ACS block. To meet
the truncation length of the reconfigurable Viterbi
decoder, the size of the memory is set according to the
largest constraint length and code rate decoder. Gen-
erally speaking, for a fixed Viterbi decoder, the
truncation length is double or triple the value of
(K−1)×[1÷(1−1/R)]. Therefore, to meet the maximum
constraint length 9 and the code rate 1/2, the optimum
depth of the memory is 64, and the bit width is
29−1=256.

2.6 Traceback

The traceback block consists of a traceback
controller (TC) unit and a last-in-first-out (LIFO) unit.
In Fig. 4, every time the read address of memory
blocks in the SPM block rises to 63, the TC unit takes
in the shortest path from the ACS block as the indexer,
searches for the binary bits of the survivor paths ac-
cording to the indexer, and then the decoded bit can
be obtained. If the read address is not equal to 63, the
value of the indexer can be obtained by shifting the
previous value of the indexer and covering the LSB of
the shifted indexer with the previous decoded bit.
Finally, the LIFO unit reverses the order of decoded
bits to obtain the decoded sequence.

3 Implementation and results

To verify the bit error rate (BER) performance of
the decoder, we implement the decoder for different
parameters with the additive white Gaussian noise
(AWGN) channel, and the BER curves are shown in
Fig. 5. With the increasing constraint length and the
decreasing code rate, BERs decline substantially,
agreeing with the expected theoretical results (Moon,
2005). Moreover, we test the decoder with the same

constraint length 9 and code rate 1/4 but different
polynomials, and the results show that the
variation in the polynomials results in different BER
performance.

The proposed architecture has been implemented

on a Xilinx Virtex-7 FPGA using Verilog hardware
description language (HDL). The results show that
the reconfigurable Viterbi decoder can support a
constraint length of 3–9, code rates of 1/2, 1/3, 1/4,
and fully optional polynomials. Moreover, the con-
sumption of logic gates is limited to 162k. Fig. 6
shows the simulated waveforms for different code
rates, constraint lengths, and polynomials. To facili-
tate the display of results, two 8-bit SerDes are added
to the convolutional encoder and Viterbi decoder.
One SerDes converts the 8-bit parallel sine wave to
serial input symbols for the convolutional encoder,
and the other one transforms the decoded sequences
of the Viterbi decoder to an 8-bit parallel signal.
When the communication standard changes, the sig-
nal ‘reset’ initializes the convolutional encoder and
Viterbi decoder. After a period of time, the Viterbi
decoder outputs the signals, which are the same as the
input signals of the convolutional encoder.

4 Discussion

A comparison of the key features of our archi-
tecture with the works reported is shown in Table 3.
Although some of the reported architectures were

Fig. 4 Fabric of traceback

Fig. 5 Bit error rate of the proposed architecture
The numbers in parentheses indicate the polynomials in octal
format

0 1 2 3 4 5 610-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

E
b
/N

0
(dB)

 K=3, R=2, (3, 7)
 K=5, R=2, (27, 13)
 K=5, R=3, (27, 31, 15)
 K=7, R=3, (171, 133, 113)
 K=9, R=3, (537, 613, 713)
 K=9, R=4, (171, 621, 573, 317)
 K=9, R=4, (161, 671, 513, 347)

Xie et al. / Front Inform Technol Electron Eng 2018 19(4):536-543 542

implemented on different FPGA platforms, the au-
thors gave the equivalent number of logic gates.

Compared with the reported reconfigurable
Viterbi architecture, the proposed architecture can
support an additional code rate of 1/4, which is
commonly used in DAB and CDMA2000, and the
throughput is higher than the others. The logic gate
consumption of the SCSG-based reconfigurable
Viterbi decoder is limited to 162k, showing 15%
resource savings when compared with the architec-
ture having the nearest performance (Cavallaro and
Vaya, 2003).

Overall, the proposed architecture achieves
flexible configuration and high throughput with a
compact size, but there is still room for improvement.
In future work, we will focus on the radix-4 technique
and more flexible code rates, such as 2/3 and 3/4.

5 Conclusions

In this paper, we have presented a fully flexible

reconfigurable Viterbi decoder with higher speed and
smaller area. This architecture is an efficient decoder
for a constraint length of 3–9 with code rates of 1/2,
1/3, and 1/4. The results showed that the SCSG-based
architecture reduces resource consumption without
reducing the flexibility or data rate. Such an archi-
tecture can support portable wireless devices in mul-
timode communication.

References
Batcha MFN, Sha’ameri AZ, 2007. Configurable adaptive

Viterbi decoder for GPRS, EDGE and Wimax. IEEE Int
Conf on Telecommunications and Malaysia Int Conf on
Communications, p.237-241.

 https://doi.org/10.1109/ICTMICC.2007.4448640
Benaissa M, Zhu YQ, 2003. A novel high-speed configurable

Viterbi decoder for broadband access. EURASIP J Adv
Signal Process, 2003(13):1317-1327.

 https://doi.org/10.1155/S1110865703310054
Bissi L, Placidi P, Baruffa G, et al., 2008. A Viterbi decoder

architecture for a standard-agile and reprogrammable
transceiver. Integr VLSI J, 41(2):161-170.

 https://doi.org/10.1016/j.vlsi.2007.04.001
Campos JM, Cumplido R, 2006. A runtime reconfigurable

architecture for Viterbi decoding. 3rd Int Conf on Elec-
trical and Electronics Engineering, p.1-4.

 https://doi.org/10.1109/ICEEE.2006.251908
Cavallaro JR, Vaya M, 2003. Viturbo: a reconfigurable archi-

tecture for Viterbi and Turbo decoding. IEEE Int Conf on
Acoustics, Speech, and Signal Processing, p.497-500.

 https://doi.org/10.1109/ICASSP.2003.1202412

Table 3 Comparison of key features of the architectures reported

Reference Constraint length Code rate
Maximum throughput

(Mbps)
Number of logic

gates (k)

This paper 3–9 1/2, 1/3, 1/4 200 162

Cavallaro and Vaya (2003) 3–9 1/2, 1/3 60.6 190

Batcha and Sha’ameri (2007) 5,7 1/2, 1/3 150 –

Campos and Cumplido (2006) 3–7 1/2, 1/3 70 175

Vennila et al. (2013) 3–7 1/2, 1/3 81 113

Niktash et al. (2006) 7, 9 1/2, 1/3 27, 10 –

Bissi et al. (2008) 4–9, 10–14 1/2, 1/3 0.337 1.314

Swaminathan et al. (2002) 7, 9 1/2, 1/3 3.125, 12.5 95

Benaissa and Zhu (2003) 7–10 1/2 101 172

Fig. 6 Simulated waveforms
poly0, poly1, poly2, and poly3 represent four polynomials;
ad_p indicates the input of convolutional encoder; da_p
indicates the output of the Viterbi decoder; constrlen indi-
cates the constraint length

reset

da_p

ad_p

poly3

poly2

poly1

poly0

coderate

constrlen

1

43

64

001010101

101110110

010110110

110110101

0000

110 110

0000

001010101
101110110

010110110

110110101

010

0001

001011101

101110101

010110100

110100101

100

0010

110100101

010110100

101110101

001011101

Xie et al. / Front Inform Technol Electron Eng 2018 19(4):536-543 543

Chang F, Onohara K, Mizuochi T, 2010. Forward error cor-
rection for 100 G transport networks. IEEE Commun Mag,
48(3):S48-S55.
https://doi.org/10.1109/MCOM.2010.5434378

Kim J, Yoshizawa S, Miyanaga Y, 2012. Variable wordlength
soft-decision Viterbi decoder for power-efficient wireless
LAN. Integr VLSI J, 45(2):132-140.

 https://doi.org/10.1016/j.vlsi.2011.10.002
Moon TK, 2005. Error Correction Coding: Mathematical

Methods and Algorithms. John Wiley & Sons, Inc., New
Jersey, USA, p.487-490.

 https://doi.org/10.1002/0471739219
Niktash A, Parizi HT, Bagherzadeh N, 2006. A multi-standard

Viterbi decoder for mobile applications using a recon-
figurable architecture. IEEE 64th Vehicular Technology
Conf, p.1-5. https://doi.org/10.1109/VTCF.2006.176

Swaminathan S, Tessier R, Goeckel D, et al., 2002. A

dynamically reconfigurable adaptive Viterbi decoder.
Proc ACM/SIGDA 10th Int Symp on Field-Programmable
Gate Arrays, p.227-236.

 https://doi.org/10.1145/503048.503081
Vennila C, Patel AK, Lakshminarayanan G, et al., 2013. Dy-

namic partial reconfigurable Viterbi decoder for wireless
standards. Comput Electr Eng, 39(2):164-174.

 https://doi.org/10.1016/j.compeleceng.2012.12.009
Xiong L, Yao D, Tan Z, et al., 2004. Research on FPGA-based

soft-decision Viterbi decoder for convolutional codes
puncturation. J Beijing Jiaotong Univ, 28(5):36-39 (in
Chinese).

 https://doi.org/10.3969/j.issn.1673-0291.2004.05.009
Yoo W, Jung Y, Kim MY, et al., 2012. A pipelined 8-bit soft

decision Viterbi decoder for IEEE802.11ac WLAN sys-
tems. IEEE Trans Consum Electron, 58(4):1162-1168.

 https://doi.org/10.1109/TCE.2012.6414981

