
Yang et al. / Front Inform Technol Electron Eng   2017 18(3):434-444 
 

434

 

 

 

 

Parameter estimation in exponential models by  

linear and nonlinear fitting methods* 
 

Ping YANG†1, Chao-peng WU2, Yi-lu GUO2, Hong-bo LIU2, Hui HUANG†‡2, Hang-zhou WANG2,  

Shu-yue ZHAN2, Bang-yi TAO3, Quan-quan MU4, Qiang WANG1, Hong SONG2 
(1School of Digital Media & Design, Hangzhou Dianzi University, Hangzhou 310018, China) 

(2Ocean College, Zhejiang University, Zhoushan 316021, China) 

(3State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, 

State Oceanic Administration, Hangzhou 310012, China) 

(4State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics,  

Chinese Academy of Sciences, Changchun 130033, China) 
†E-mail: yangping@hdu.edu.cn; huih@zju.edu.cn 

Received Nov. 3, 2016;  Revision accepted Feb. 16, 2017;  Crosschecked Feb. 28, 2017 
 

Abstract:    Estimation of unknown parameters in exponential models by linear and nonlinear fitting methods is discussed. Based 
on the extreme value theorem and Taylor series expansion, it is proved theoretically that the parameters estimated by the linear 
fitting method alone cannot minimize the sum of the squared residual errors in the measurement data when measurement noise is 
involved in the data. Numerical simulation is performed to compare the performance of the linear and nonlinear fitting methods. 
Simulation results show that the linear method can obtain only a suboptimal estimate of the unknown parameters and that the 
nonlinear method gives more accurate results. Application of the fitting methods is demonstrated where the water spectral at-
tenuation coefficient is estimated from underwater images and imaging distances, which supports the improvement in the accuracy 
of parameter estimation by the nonlinear fitting method. 
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1  Introduction 
 

There are many physical models based on the 
exponential function. For example, when light pene-
trates water, its intensity decreases exponentially with 
underwater distance (Wei and Lee, 2013; Adi, 2015); 
the transverse amplitude distribution of the funda-
mental-mode radiation field generated by a laser 
resonator generally reflects the Gaussian function 

(Liu et al., 2013); the central pressure difference of 
tropical cyclones after making landfall may decay 
exponentially with time (Vickery, 2005); and the 
activity of a radioactive sample in a quasi-stationary 
state obeys the exponential decay law (Novković et 
al., 2006; Semkow, 2007). 

To determine the unknown parameters of the 
exponential model (especially the unknown parame-
ter in the exponential term, e.g., the spectrum attenu-
ation coefficient of a water column), it is common to 
fit the parameterized model to the measurement data. 
In general, this involves taking the sum of squared 
errors between the measured and fitted values as an 
objective function, and applying numerical optimiza-
tion algorithms (Hartley, 1961; Peterson et al., 2010) 
to optimize the estimates of the unknown parameters, 
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such that the objective function is minimized and the 
estimates of the parameters are as close to the true 
values as possible.  

Alternatively, the exponential model can be 
transformed into a linear one by taking a logarithmic 
transformation on the exponential term (Lieb, 1997; 
Kaeli et al., 2011; He and Li, 2015; Bardaji et al., 
2016; Simon and Shanmugam, 2016). After lineari-
zation of the exponential model, the linear least 
squares (LLS) method is applied to estimate the un-
known parameters. This method is referred to as the 
linear fitting method in this paper; this method has 
obvious advantages, such as simplifying and reducing 
the amount of calculation, and has therefore been 
widely adopted. 

However, the estimates of parameters achieved 
by the linear fitting method are not optimal in the 
sense that there is excessive residual error between 
the measurement data and the model when noise ex-
ists in the measurement data. The discrepancy be-
tween the true values of the parameters and the esti-
mates can be further minimized. To verify this 
statement, we proceed from the expression of the sum 
of the squared residual errors and take the Taylor 
expansion and extreme value theorem as a theoretical 
basis. Numerical simulation further indicates that the 
nonlinear fitting method can better minimize the sum 
of squared errors and optimize the estimates of un-
known parameters.  

The contribution of this paper lies mainly in the 
theoretical analysis and numerical simulation, which 
shows that linearization of the exponential model 
followed by linear least squares fitting does not give 
optimal estimates of the unknown parameters when 
noise is involved in the measurement data. A combi-
nation of the linear method and the optimization al-
gorithm leads to more accurate results. 
 
 
2  Theoretical analysis 

2.1  Problem formulation 

A basic exponential model can be written as 
 

 0
0( ) e ,   b xy f x a p n  (1) 

 
where x is the independent variable, y is the dependent 
variable, and f represents the mapping from x to y. 

Both x and y are known or can be measured. The term 
p·n defines the measurement noise (Mascaro et al., 
2011; Lai et al., 2013), where n represents noise with 
a certain distribution (e.g., Gaussian distribution), and 
p is a coefficient characterizing the magnitude of the 
noise. Parameters a0 and b0 are both unknown in the 
model and are to be estimated by fitting a set of m 

measurement data points  
1

,
m

i i i
x y .


 

The estimates of parameters a0 and b0 are re-
ferred to as a and b, respectively. The output of the 

model is referred to as ˆiy , i.e., ˆ e ,i
i

bxy a  with i=1, 

2, …, m. The residual error  iy  is the difference 

between the measurement and its estimate, i.e., 
 

 ˆ .  i i iy y y  (2) 

 
During the fitting of data, an objective function 

(denoted by SN) is defined by the sum of the squared 
residual errors as 

 

    22

N
1 1

ˆ = e .
 

    i
m m

i i i
i i

bxS y y a y  (3) 

 
The goal of data fitting is to choose the optimal pa-
rameters a and b such that the objective function SN is 
minimized, i.e., 
 

  *

* *

i
2

*

, 1

, arg min e .


 
m

i
a b i

b xa b a y  (4) 

 

2.2  Linear fitting method 

Ignoring the measurement noise and performing 
logarithmic transformation (Xiao et al., 2011) on both 
sides of Eq. (1), we have 

 

 0 0ln ln . y b x a  (5) 

 
Denoting ln ,z y  we can obtain the data set 

 
1

,


m

i i i
x z  from the measurement data  

1
,



m

i i i
x y  with 

ln .i iz y  Denoting 0 0= ln ,a  Eq. (5) is changed to a 

linear equation: 
 

 0 0. z b x  (6) 
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Because Eq. (6) is linear, parameters θ0 and b0 can be 
estimated by the LLS method as follows. 

Denote θ as the estimate of θ0. The model esti-
mate can be expressed as ˆ ,i iz bx    where ˆiz  is the 

estimate of zi. The sum of squared errors (denoted as S) 
between estimate ˆiz  and measurement zi can be 

written as 
 

 2 2

1 1

ˆ( ) = ( ) .
 

    
m m

i i i i
i i

S z z bx z  (7) 

 
To minimize S, the estimated parameters θ and b 
should satisfy the following conditions: 
 

 1

1

2 ( )=0,

2 ( )=0.







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



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
   






m

i i i
i

m

i i
i

S
x bx z

b

S
bx z

 (8) 

 
Because the conditions in Eq. (8) are linear equations 
of unknowns θ and b, Eq. (8) can be expressed in 
matrix form as 
 

 

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1 1 1
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· = .
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x m z
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 (9) 

 

When the coefficient matrix 2 2A  has full col-

umn rank, we have the solution: 
 

 1= ,X A B  (10) 

 
which is the LLS solution to the problem of expo-
nential model fitting. The solution obtained by linear 
fitting is denoted as θL and bL, and thus we have 

L
L e .a   

2.3  Nonlinear fitting method 

The objective function SN is a continuous func-
tion that is dependent on parameters a and b. Ac-
cording to the extreme value theorem, the estimates a 
and b should satisfy the following conditions when SN 
reaches its minimum: 

 

N

1

N

1

2 ( e )e 0,

2 ( e )e 0.

i i

i i

m

i
i
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i i
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bx bx

S
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S
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b






   


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 




 (11) 

 
Because the parameters in Eq. (11) are not linear, 

it is difficult to obtain analytical expressions of a and 
b; however, numerical solutions can be obtained by 
numerical optimization algorithms. Proceeding from 
the initial parameter estimates, we search for better 
estimates of the parameter to minimize SN until the 
algorithm converges. Commonly used optimization 
algorithms include the steepest descent method,  
Levenberg-Marquardt (LM) algorithm, and Gauss- 
Newton algorithm (Levenberg, 1944; Marquardt, 
1963; Floudas and Pardalos, 2001).  

In the steepest descent method, the objective 
function is iteratively reduced by updating the esti-
mate of the parameter in the direction opposite to the 
gradient of the objective function. That is, 

 

1 ( ),   i i i it Sg g g                    (12) 

 
where i=0, 1, 2, …, gi is the parameter estimated in 
the ith iteration, ti>0 is the step factor, and S(gi) is 
the gradient of the objective function S. 

The Gauss-Newton algorithm is a modification 
of Newton’s method for minimizing the sum of 
squared function values. The advantage of the 
Gauss-Newton method is that the second derivatives 
of the objective function, which can be challenging to 
compute, are not required. The estimate of the un-
known parameters is updated as 

 
T 1 T

1 ( ) ( ),i i f f f iJ J J
   g g r g          (13) 

 
where Jf is the Jacobian of the function f (i.e., the 
exponential function in our case), and ‘T’ denotes the 
transpose of the matrix. Vector r=[∆y1, ∆y2, …, ∆ym]T 
is composed of the residual errors of each measure-
ment datum as in Eq. (2). 

The LM algorithm is a combination of the 
steepest descent method and the Gauss-Newton 
method. It is widely adopted in various nonlinear 
minimization problems. The LM algorithm behaves 
like a steepest descent method and increases the step 
factor when the current estimates are far from their 
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true values. When the objective function is reduced, 
the step factor is decreased and the algorithm is more 
like the Gauss-Newton method.  

Because the objective function may have multiple 
local minima, all these methods can converge to a local 
minimum, which is not necessarily the global mini-
mum of the objective function. Therefore, the choice 
of the initial estimate is important during the optimi-
zation. Usually the initial values can be chosen from 
physical insight, prior knowledge, etc. Because the 
linear method also provides an estimate of the un-
known parameter (i.e., aL and bL), aL and bL are then 
used as the initial guess in the optimization algorithm. 
The combination of the linear fitting method and the 
optimization algorithm is called the nonlinear fitting 
method in this paper. 

2.4  Influence of noise on fitting methods 

2.4.1  Optimality of estimates aL and bL 

Although θL and bL are LLS solutions of Eq. (8) 
in the sense that the sum of squared logarithmic errors 
(i.e., S) is minimized, θL and bL fail to minimize the 
sum of squared errors (i.e., SN) in Eq. (3) when noise 
is involved in the measurement data. To explain this 
explicitly, detailed analysis is presented as follows. 

In the linear fitting method, we have e i
i

zy  
and ˆˆ e ,i

i
zy   and thus the sum of squared errors can 

be written as 
 

 2 2
L

1 1

ˆˆ( ) (e e ) .
 

     i i
m m

i i
i i

z zS y y  (14) 

 
Eqs. (3) and (14) are both sums of squared errors 
between exponential model estimates ˆiy  and meas-

urements yi. The subscript ‘L’ is used to emphasize 
that SL is calculated from the results by the linear 
fitting method. 

According to the extreme value theorem, to 
minimize SL, the estimates θ and b should satisfy the 
following conditions (note that ˆ  i iz bx ): 
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2 (e e ) 0,

2 (e e ) 0.



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m
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m

i
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S
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b
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Taking Taylor expansions of ˆ2e iz  and ˆ+e ,i iz z  we 

have 
 

0
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e ,

!
i

n
i

n

z z
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!
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
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
      (16) 

 

By defining a new variable as 
 

 , ˆ ˆ(2 ) ( + ) ,n n
i n i i iq z z z   (17) 

 

Eq. (15) is changed to 
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Expanding Eq. (18) for n=0 and n=1, we have 
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,
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!

m m
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Because the LLS solutions θL and bL satisfy Eq. (8), 
the condition in Eq. (19) is simplified to 
 

 

,

1 2

,

1 2

2 0,
!

2 0.
!

m
i i n

i n

m
i n

i n

x q

n

q

n


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

 





 




 (20) 

 
Defining the residual error as ˆ ,i i ie z z   the term qi,n 

can be expressed as 
 

 , = (2 + 2 ) (2 + 2 + ) .n n
i n i i iq bx bx e   (21) 

 
If the residual error ei=0, then we have qi,n=0, so θL 
and bL satisfy Eq. (20) and in turn Eq. (15). In other 
words, aL and bL obtained by the linear fitting method 
are just the true values of the unknown parameters a0 
and b0, i.e., aL=a0 and bL=b0. The sum of squared 
errors SL in Eq. (14) is zero. 

However, in practice, noise always exists in the 
measurement data (i.e., the term p·n in Eq. (1) is 
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nonzero) and residual errors also exist in the fitting 
process, i.e., ei≠0 and qi,n≠0. Because the left side of 
Eq. (20) is a nonlinear infinite sum formula, it cannot 
be guaranteed that the condition in Eq. (20) or Eq. (15) 
is always satisfied. Hence, θL and bL minimize only 
the sum of squared logarithmic errors (i.e., S in  
Eq. (7)) but not the original errors (i.e., SL in Eq. (14)). 
Therefore, aL and bL are not optimal estimates of the 
unknown parameters a0 and b0. 

2.4.2  Estimation error 

Referring to Eq. (6), for a set of logarithmic data 

  1
, ,

m
i i i

x z


 we have an equation set in matrix form as 

 




1 1

2 2

1

1
,

1m m
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z x


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                
   
    X

Z C

  



                   (22) 

 
where θ and b are to be estimated. When matrix C has 
full column rank, the LLS solution is given by 
 

 T 1 T( ) .X C C C Z  (23) 

 
Considering that noise is involved in the meas-

urement, zi is disturbed as  
 

0 0 ,
ii zz b x                           (24) 

 

where 
iz  is the disturbance caused by the noise. For 

a set of logarithmic data   1
, ,

m
i i i

x z
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 Eq. (24) can be 

expressed as 
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X
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Substituting Eq. (25) into Eq. (23), we have 
 

T 1 T
0 ( ) ,



 Z

X

X X C C C δ               (26) 

where ΔX is the estimation error that originates from 
the noise. In general, the error ΔX increases with δZ, 
but is also influenced by projection matrix (CTC)−1CT. 

Concerning the nonlinear method, because the 
optimization is achieved iteratively and there is no 
analytical solution on the estimates, it is difficult to 
determine the optimality of the estimates or the esti-
mation error theoretically. Numerical simulation is 
performed in Section 3 to evaluate the accuracy of the 
estimates. 

 
 

3  Numerical simulation 
 

To verify the theoretical analysis in Section 2, 
numerical simulation has been performed for data 
fitting. The performance of two methods has been 
compared as well. 

3.1  Numerical model 

The numerical model for data generation is set as 
 

 0
0= e + .ib x

i iy a p n  (27) 
 

The distribution of the noise sequence ni conforms to 
the standard Gaussian distribution, with zero mean 
and variance of 1. The length of the sequence (i.e., m) 
is set to m=60 and xi is defined as xi=i/20 with i=1, 
2, …, 60. 

Parameters a0 and b0 are estimated from 

 
1

,
m

i i i
x y


 by the linear and nonlinear methods. Dur-

ing nonlinear optimization, the LM algorithm is 
chosen because it shows good robustness and has 
been used in many applications. The parameter esti-
mated from the linear method is used as the initial 
guess of nonlinear fitting, to further improve the ro-
bustness of nonlinear optimization. 

Because the estimation result depends on pa-
rameters a0, b0, and p, the values of a0, b0, and p are 
changed individually to see how the estimation errors 
are affected by the parameters. 

The relative error between the estimates and the 
true value is defined as 
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where εa and εb are the relative errors of estimated 
parameters a0 and b0, respectively. 

The relative sum of squared errors is defined as 
 

 2
L L

1

100%
m

i
i

S y


   (29) 

 
for linear fitting and 
 

 2
N

1

100%
m

N i
i

S y


   (30) 

 
for nonlinear fitting. In Section 3.2, εL and εN are 
collectively termed εS. 

For a set of selected values of a0, b0, p, and xi, 
1000 sets of Gaussian random sequences ni are gen-
erated and added to yi to perform 1000 repeated nu-
merical trials. After 1000 trials, the mean values of εa, 
εb, εL, and εN are evaluated and compared. 

3.2  Numerical results 

3.2.1  Effect of parameter a0 

To observe how the errors change with a0, pa-
rameters b0 and p are set as b0=−1 and p=0.01, and a0 
changes from −2 to 2. 

Fig. 1 shows the relative estimation error with 
respect to a0. For example, in the linear method, εa 
reaches its maximum when a0 is around zero, but εa 
declines from 25.7% to 0.1% and εb declines from 
33.0% to 0.1% as a0 increases from 0 to 2. Fitting 
accuracy is improved as a0 increases, because the 
influence of noise in the measurement is reduced; i.e., 
the signal-to-noise ratio (SNR) is improved. Com-
pared with the linear method, the nonlinear method 
provides higher accuracy, with the estimation error 
one order of magnitude smaller. Apart from that, the 
result of the nonlinear method is less influenced by 
the magnitude of a0, showing good robustness of the 
method. 

As shown in Fig. 2, both εL and εN decrease as 
the absolute value of a0 increases, but εL is always 
1.2–2 times greater than εN. 

3.2.2  Effect of parameter b0 

To observe how the errors vary with b0, param-
eter b0 is changed from −2 to 2 while a0 and p are set 
as a0=1 and p=0.05. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figs. 3 and 4 show the relative estimation errors 
εa and εb, and the relative sum of squared errors εL and 
εN, respectively. Because parameter b0 is in the ex-
ponential term, it has significant influence on the 
model. As b0 increases, the magnitude of the signal in 
the measurements increases rapidly and the noise 
interference is reduced. As a consequence, the fitting 
error is also reduced.  

Figs. 3 and 4 both demonstrate that the result of 
nonlinear fitting is superior to that of linear fitting. 

10−2

10−1

100

101

102

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
a0

εL by linear

εN by nonlinear

Fig. 2  Relative sum of squared errors with respect to 
parameter a0 

Fig. 1  Relative estimation errors between the estimated 
value a and its true value a0 (a) and relative estimation 
errors between the estimated value b and its true value b0 
(b), with respect to parameter a0 

(b)
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Because the difference between εL and εN is not 

obvious in Fig. 4 for b0(−0.6, 0.6), the ratio between 
εL and εN (defined as ε=εL/εN) is plotted in Fig. 5, 
showing that εL is always larger than εN. 

3.2.3  Effect of noise magnitude 

To see the influence of noise magnitude on fit-
ting, coefficient p is changed from 10−3 to 100, with 
a0=1 and b0=−1. 

As shown in Fig. 6, noise interference increases 
as p increases, and the relative estimation errors εa and 
εb in both methods tend to be higher. The deviation of 
the estimated parameter from the true value is higher 
for linear fitting than for nonlinear fitting. For exam-
ple, when p=0.1, the relative error between the esti-
mated value a and the true value a0 is about 23.93% 
for linear fitting, but only about 0.04% for nonlinear 
fitting. The relative error between the estimated value 
b and the true value b0 is about 32.03% for linear 
fitting, but only about 0.02% for nonlinear fitting. 
Therefore, the nonlinear fitting method leads to more 
accurate estimates of unknown parameters. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Relative estimation errors between the estimated 
value a and its true value a0 (a) and relative estimation 
errors between the estimated value b and its true value b0 
(b), with respect to parameter b0 
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Fig. 6  Relative estimation errors between the estimated 
value a and its true value a0 (a), and relative estimation 
errors between the estimated value b and its true value b0 
(b), with respect to parameter p 
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Fig. 5  Ratio between εL and εN (ε=εL/εN) with respect to b0 

Fig. 4  Relative sum of squared errors with respect to 
parameter b0 
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Fig. 7 shows the relative sum of squared errors εL 
and εN of two methods. Both tend to increase as p 
increases. Although Fig. 7 shows that the sums of 
squared errors of both methods are close to each other, 
the parameter estimation errors of two methods are 
notably different, as shown in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.4  Effect of noise distribution 

To see how the fitting is affected by noise dis-
tribution, the noise conforms to the uniform distribu-

tion in the interval of [ 3, 3],  with zero mean and 

variance of 1. Simulation is performed as in Section 
3.2.3, when parameter p is changed. 

As can be seen, Figs. 8 and 9 are quite similar to 
Figs. 6 and 7, respectively. The change of noise dis-
tribution does not have significant influence on the 
fitting accuracy. 

 
 

4  Application 
 

When light penetrates a water column, the 
spectral intensity of light is attenuated exponentially 
based on distance due to the absorption and scattering 
by water, following the Beer-Lambert law (Swinehart, 
1962). The degree of light attenuation is characterized 
by the spectral attenuation coefficient of the water 
column, which is important for underwater image 
processing, ocean environment monitoring (Schech-
ner and Karpel, 2004; Åhlén et al., 2006), etc. Be-
cause the spectral attenuation coefficient differs 
among water columns, it is necessary to calibrate the 
spectral attenuation coefficient of water in situ. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 10 shows the schematic of an experimental 
setup for imaging underwater objects with narrow-
band color filters. The spectral attenuation coefficient 
of the water needs to be calibrated to recover the light 
power attenuated by water. There are commercial 
instruments dedicated to measurement of the spectral 

Fig. 9  Relative sum of squared errors with respect to 
parameter p when noise is uniformly distributed 

Fig. 8  Relative estimation errors between the estimated 
value a and its true value a0 (a) and relative estimation 
errors between the estimated value b and its true value b0 
(b), with respect to parameter p when noise is uniformly 
distributed 

(a)

(b)

Fig. 7  Relative sum of squared errors with respect to 
parameter p 



Yang et al. / Front Inform Technol Electron Eng   2017 18(3):434-444 
 

442

attenuation coefficient of water. However, in our case, 
the coefficient is estimated directly based on under-
water images to simplify the complexity of hardware. 

 
 
 
 
 
 
 
 
 
The setup consists mainly of a mobile phone, 

water tank, and a spectral imaging system. The mo-
bile phone (Xiaomi 3, Xiaomi, China) is placed in a 
waterproof glass box, with 60 color blocks displayed 
on its LCD screen (Fig. 11), and acts as the under-
water object to be imaged. The waterproof box  
(35 cm×25 cm×50 cm) is made of 6-mm-thick quartz 
glass, placed in a water tank (300 cm×30 cm×30 cm) 
made of 10-mm-thick quartz glass. The water tank is 
filled with clean tap water. The spectral imaging 
system is placed outside the water tank, and consists 
mainly of an imaging lens, a set of narrowband color 
filters, and a monochrome charge-coupled device 
(CCD) camera. The filters (FB serious, Thorlabs, 
USA) are placed in a filter wheel, so that the filters 
can be changed by rotating the wheel. The central 
wavelength of the color filters is from 420 nm to 700 
nm with an interval of 20 nm. The camera (Lm-165M, 
Lumenera, USA) has a resolution of 1392×1040 pix-
els and a bit depth of eight bits. The room temperature 
is about 20 °C. 
 

 
 
 
 
 
 
 
 
 

 
The spectral transmittance of the water can be 

expressed as (Guo et al., 2016) 
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where λ is the wavelength of light. I0(λ) and I(λ, L) 
represent the brightness of a certain color batch in the 
image when the images are captured in air (i.e., 
without water in the light path) and captured under-
water with an underwater distance of L, respectively. 
β(λ) is the transmittance of the glass and α(λ) is the 
spectral attenuation coefficient of the water. The 
distance L, image brightness I0(λ) and I(λ, L), and 
spectral transmittance k(λ, L) can all be measured or 
calculated. β(λ) and α(λ) are the unknown parameters 
to be estimated. 

During the experiment, the underwater distance 
L is changed from 0.1 m to 2.6 m at an interval of 
0.1 m by moving the waterproof box along the water 
tank. At each distance, images are captured with 15 
color filters by rotating the filter wheel. 

Table 1 shows the spectral transmittance of wa-
ter with respect to L when the central wavelength of 
the color filters is 420 nm; i.e., only light in the 
wavelength range of 410–430 nm can pass the filter. 
Based on the exponential model in Eq. (31), the un-
known parameters β(λ) and α(λ) are estimated by the 
linear and nonlinear fitting methods as described in 
Section 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The parameter estimation results are summa-

rized in Table 2 and shown in Fig. 12. It can be seen 
that the sum of squared errors using nonlinear fitting 
is only half of the linear value, showing high accuracy 
of the nonlinear method. 

Table 1  Spectral transmittance of water 

L (m) k (a.u.) L (m) k (a.u.) 

0.1 0.750 1.4 0.309 

0.2 0.680 1.5 0.317 

0.3 0.648 1.6 0.299 

0.4 0.622 1.7 0.269 

0.5 0.597 1.8 0.265 

0.6 0.580 1.9 0.240 

0.7 0.523 2.0 0.223 

0.8 0.510 2.1 0.217 

0.9 0.448 2.2 0.182 

1.0 0.414 2.3 0.137 

1.1 0.391 2.4 0.138 

1.2 0.353 2.5 0.108 

1.3 0.326 2.6 0.093 

 

Fig. 10  Experimental setup for underwater imaging with 
narrowband color filters 

Fig. 11  Image on the mobile phone screen (References to 
color refer to the online version of this figure) 
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5  Conclusions 
 

In this paper, the problem of parameter estima-
tion in exponential models was discussed and two 
methods were considered, namely, linear and non-
linear fitting methods.  

In the linear fitting method, the logarithmic 
value of the measurement data was fitted instead of 
the original data; in contrast, in the nonlinear method, 
the original data was fitted directly by the optimiza-
tion algorithms. This discrepancy of the fitting data 
leads to a difference in the fitting goals and as a 
consequence, in the fitting results. 

Theoretical analysis indicates that the estimates 
achieved by the linear method are simply the true 
values of a0 and b0 in an ideal case when the meas-
urement data is not affected by noise. However, once 
noise exists in the measurement data, which is inevi-
table in practice, only suboptimal estimates can be 
obtained and the estimation error increases with the 
noise. 

Simulation results expand the theoretical analy-
sis and verify the superiority of nonlinear fitting in 
terms of fitting accuracy and robustness, especially 
for data with a low SNR. 

Application of the fitting methods was also 
demonstrated in estimating the water spectral attenu-
ation coefficient based on underwater images. Results 

show that the residual error by the nonlinear method 
is smaller than that by the linear method, indicating 
improvement in accuracy. 

The results of this study can be helpful in pa-
rameter fitting when an exponential function is in-
volved in the models. 
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