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Abstract: In this study, we propose and compare stochastic variants of the extra-gradient alternating direction
method, named the stochastic extra-gradient alternating direction method with Lagrangian function (SEGL) and the
stochastic extra-gradient alternating direction method with augmented Lagrangian function (SEGAL), to minimize
the graph-guided optimization problems, which are composited with two convex objective functions in large scale.
A number of important applications in machine learning follow the graph-guided optimization formulation, such
as linear regression, logistic regression, Lasso, structured extensions of Lasso, and structured regularized logistic
regression. We conduct experiments on fused logistic regression and graph-guided regularized regression. Experi-
mental results on several genres of datasets demonstrate that the proposed algorithm outperforms other competing
algorithms, and SEGAL has better performance than SEGL in practical use.
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1 Introduction

There are many problems arising from statistics,
machine learning, and genetic engineering. They can
be formulated as minimization problems. One exam-
ple is the logistic regression model. In the training
phase of logistic regression, it can be formulated as
the minimization of logistic loss function l(x):

min
x

1

n

n∑

i=1

log(1 + exp(−bi(a
T
i x+ c))), (1)

where c is a constant, n is the number of data sam-
ples, (ai, bi) is the ith pair of data samples, in which
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ai ∈ R
d is the feature and bi = {−1,+1} is the

corresponding label, and d is the dimension of the
features. In the testing phase of logistic regression,
we calculate the conditional probability P (b|a) of la-
bel b conditioned on sample a given x ∈ R

d, which
is the weight vector obtained in the training process,
where conditional probability P (b|a) is defined as

P (b|a) = 1

1 + exp(−b(aTx+ c))
. (2)

Given feature a, if b has the same sign as aTx + c,
then P (b|a) ≥ 0.5; otherwise, P (b|a) < 0.5.

Qiao et al. (2017) reported that minimizing an
objective function with a regularized term would im-
prove the efficacy of the original model. For ex-
ample, the sparse logistic regression is minx �(x) +

γ‖x‖1+λ
∑n

j=2 |xj−xj−1| and the graph-guided reg-
ularized logistic regression is minx �(x) + γ

2‖x‖22 +
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λ
∑n

i=1 |
∑m

j=1 wijxj |, where �(x) denotes the aver-
age logistic loss function and the �1 norm ‖x‖1 is
imposed to promote the sparsity of weight vector x.
Note that the last term of these models can be ex-
pressed as r(Fx), where r : R

l → R is a convex
regularization function, and F ∈ R

l×d is a penalty
matrix (not necessarily diagonal) specifying the de-
sired structured pattern in x.

The optimization problem can be solved by the
alternating direction method of multipliers (ADMM)
through introducing an auxiliary variable and refor-
mulating it as the following linearly constrained min-
imization problem:

min
x,y

f(x) + g(y)

s.t. Ax+By = b,
(3)

where x ∈ R
n, y ∈ R

m, A ∈ R
p×n, B ∈ R

p×m,
and b ∈ R

p. The above formulation covers quite
a few popular models arising from statistics and
machine learning under the framework of struc-
tural risk minimization (Hastie et al., 2001), such as
the linear regression obtained by setting f(x, ξi) =
1
2

∥∥aT
i x− bi

∥∥2 and g(y) = 0, the linear support
vector machine (SVM) (Cortes and Vapnik, 1995)
obtained by setting f(x, ξi) = max{0, 1 − bia

T
i x}

and g(y) = λ
2 ‖y‖22, the Lasso (Tibshirani, 1996)

obtained by setting f(x, ξi) = 1
2

∥∥aT
i x− bi

∥∥2 and
g(y) = λ ‖y‖1, and various structured sparse learn-
ing (Qiao et al., 2017), where λ > 0 is a parameter.

The classical ADMM (Boyd et al., 2011) can be
used to solve problem (3) with the assumption that
the proximal mappings for f and g, i.e., proxf and
proxg, are easy to obtain. However, in many practi-
cal applications, computing proxf is not easy, such
as the sparse logistic regression and fused logistic re-
gression. The closed-form solution may not exist due
to linear composition. Moreover, the computation of
full gradient makes these batch methods be used only
to moderate-scale problems.

To handle large-scale problems, researchers
have proposed several stochastic ADMM algorithms
(Ouyang et al., 2013; Suzuki, 2013; Azadi and Sra,
2014; Zhao et al., 2015) by combining the stochastic
optimization technique and ADMM type methods.
In these stochastic algorithms, a noisy sub-gradient
is computed instead of the full gradient, so that
these stochastic algorithms have the ability to han-
dle large-scale datasets. However, these studies made

the assumption that f(·) is differentiable and ∇f is
Lipschitz continuous, but this assumption cannot be
guaranteed in many real-world applications.

In this study, we propose two stochastic variants
of the extra-gradient alternating direction method,
named stochastic extra-gradient alternating direc-
tion method with Lagrangian function (SEGL) and
augmented Lagrangian function (SEGAL), which
combine the advantages of the extra-gradient type al-
ternating direction method (EGADM) and stochas-
tic optimization methods, to address the above dif-
ficulties. SEGL and SEGAL are efficient and robust
to solve linear constrained optimization problems in
large scale. We conduct experiments on the fused
logistic regression and graph-guided regularized re-
gression. Experimental results on several genres of
datasets demonstrate that the proposed algorithm
outperforms other competing methods and SEGAL
has better performance than SEGL in practical use.

2 Related work

The classical ADMM (Boyd et al., 2011) has
been known efficient to solve problem (3) with lin-
ear constraints in practice, assuming that the prox-
imal mappings for f and g, i.e., proxf and proxg,
are easy to obtain. However, in many practical ap-
plications, the closed-form solution of proxf is not
available, or computing proxf is not easy, such as the
sparse logistic regression (Tibshirani, 1996), fused lo-
gistic regression (Tibshirani et al., 2005), and graph-
guided regularized minimization (Hastie et al., 2001).
Several variants of the inexact version of ADMM
addressed the computational difficulty in proximal
mapping and experimental results showed that the
EGADM was very efficient and stable for moderate-
scale problems.

To be specific, Yang and Yuan (2013) approxi-
mated the subproblem of the ADMM by linearizing
the quadratic term of its objective function. Lin
et al. (2015) minimized the augmented Lagrangian
function plus a proximal term in the x-subproblem:

xk+1 = argmin
x∈X

f(x)− 〈λk,Ax+By − b〉

+
γ

2
‖Ax+By − b‖2F +

1

2
‖x− xk‖2H , (4)

where ‖·‖F is the Frobenius norm and H is a matrix,
while they minimized the Lagrangian function in
other subproblems. The full gradient was adopted to
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solve the subproblems. Moreover, computing the full
gradient made these batch methods suffer severely
from poor scalability.

To address the inability to solve large-scale op-
timization problems, several stochastic ADMM al-
gorithms (Ouyang et al., 2013; Suzuki, 2013; Azadi
and Sra, 2014; Zhao et al., 2015) have been proposed.
In these stochastic algorithms, a noisy sub-gradient
was computed instead of the full gradient. In com-
puting the noisy sub-gradient, only one sample or
a mini-batch of samples were involved, so that these
stochastic algorithms had the ability to handle large-
scale datasets. However, these stochastic algorithms
made the assumption that f(·) was differentiable and
∇f was Lipschitz continuous, but it was not true in
many real-world applications. Moreover, drawing a
noisy sub-gradient may lead to unstable numerical
performance, especially on large-scale problems.

Lin et al. (2018) proposed the stochastic
primal-dual proximal extra-gradient descent method
(SPDPEG), to solve a class of compositely regular-
ized minimization problems with special regulariza-
tions. Specifically, A is assumed to be diagonal in
problem (3). However, the assumption was quite
strong and did not hold for many compositely reg-
ularized problems. This motivates us to consider
problem (3) and to develop SEGL and SEGAL.

We propose the SEGL and SEGAL algorithms,
which combine the efficiency and robustness of
EGADM and the ability of stochastic optimization to
solve linearly constrained problem (3) in large scale.

3 Stochastic variants of extra-gradient
type alternating direction method

In this section, we introduce the details of
stochastic variants of extra-gradient based alternat-
ing direction method with Lagrangian function and
augmented Lagrangian function, with uniformly or
non-uniformly averaged iterations to solve linearly
constrained problem (3) in large scale.

3.1 Stochastic extra-gradient alternating di-
rection method with Lagrangian function
(SEGL)

Algorithm 1 presents the SEGL and we present
important issues as follows:

The first subproblem in Algorithm 1 minimizes
the augmented Lagrangian function Lγ(·) with a

proximal term 1
2‖y − yk‖2H with respect to y, i.e.,

yk+1 = argmin
y∈Y

Lγ(x
k,y;λk) +

1

2
‖y − yk‖2H , (5)

where the augmented Lagrangian function for prob-
lem (3) is defined as

Lγ(x,y,λ) = f(x)− 〈λ,Ax+By − b〉
+ g(y) +

γ

2
‖Ax+By − b‖2F,

(6)

where λ ∈ R
p is the dual variable corresponding to

the linear constraint.
The proximal term 1

2‖y − yk‖2H is imposed to
cancel the effect of matrix B in the quadratic penalty
term. One typical choice ofH isH = 0when B is an
identity, or H = τI−γBTB when B is not an iden-
tity, where τ > γ δmax(B

TB). Then Eq. (5) com-
putes the proximal mapping for f(·) and is known to
be efficiently computable.

The SEGL algorithm shares some common fea-
tures with the EGADM algorithm (Lin et al., 2015).
In fact, the SEGL algorithm takes a stochastic gra-
dient estimation, i.e.,

x̄k+1 = xk − ck+1(∇f(xk, ξk+1
1 )−ATλk), (7)

λ̄k+1 = λk − γ(Axk +Byk+1 − b), (8)

xk+1 = xk − ck+1(∇f(x̄k+1, ξk+1
2 )−ATλ̄k+1),

(9)

λk+1 = λk − γ(Ax̄k+1 +Byk+1 − b). (10)

3.2 Stochastic extra-gradient alternating di-
rection method with augmented Lagrangian
function (SEGAL)

Algorithm 2 presents the SEGAL and we
present important issues as follows:

Algorithm 1 Stochastic extra-gradient alternating
direction method with Lagrangian function (SEGL)
Input: x0, y0, and λ0.

Output: ỹt =
t∑

k=0

αk+1yk+1, x̃t =
t∑

k=0

αk+1x̄k+1, and

λ̃t =
t∑

k=0

αk+1λ̄k+1.

1: for k = 0, 1, 2, . . . do
2: Choose two data samples ξk+1

1 and ξk+1
2 randomly

3: Update yk+1 according to Eq. (5)
4: Update x̄k+1 according to Eq. (7)
5: Update λ̄k+1 according to Eq. (8)
6: Update xk+1 according to Eq. (9)
7: Update λk+1 according to Eq. (10)
8: end for
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Algorithm 2 Stochastic extra-gradient alternating
direction method with augmented Lagrangian func-
tion (SEGAL)
Input: x0, y0, and λ0.

Output: ỹt =
t∑

k=0

αk+1yk+1, x̃t =
t∑

k=0

αk+1x̄k+1, and

λ̃t =
t∑

k=0

αk+1λ̄k+1.

1: for k = 0, 1, 2, . . . do
2: Choose two data samples ξk+1

1 and ξk+1
2 randomly

3: Update yk+1 according to Eq. (5)
4: Update x̄k+1 according to Eq. (11)
5: Update λ̄k+1 according to Eq. (8)
6: Update xk+1 according to Eq. (12)
7: Update λk+1 according to Eq. (10)
8: end for

The SEGAL algorithm shares some common
features with the EGADM algorithm (Lin et al.,
2015) and the SEGL (Algorithm 1). The first sub-
problem in Algorithm 2 is the same as that in Al-
gorithm 1. However, the SEGAL algorithm takes
a stochastic gradient estimation, which is different
from Algorithm 1, i.e.,

x̄k+1 = xk − ck+1(∇f(xk, ξk+1
1 )−ATλk

+ γAT(Axk +Byk+1 − b)),
(11)

xk+1 = xk − ck+1(∇f(x̄k+1, ξk+1
2 )−ATλ̄k+1

+ γAT(Ax̄k+1 +Byk+1 − b)). (12)

Note that compared to the SEGL (Algorithm 1), the
SEGAL takes a stochastic gradient estimation on the
augmented Lagrangian function in each subproblem,
while the SEGL takes only a stochastic gradient es-
timation on the augmented Lagrangian function on
the y-update subproblem, and performs stochastic
gradient estimation on Lagrangian function on the
other subproblems.

4 Experiments

In this section, we test the performance of
the proposed algorithms (SEGL and SEGAL) to
solve the fused logistic regression and problem (13)
with the general convex objective function and
graph-guided regularized logistic regression (14) with
a strongly convex objective function (Zhong and
Kwok, 2013), which are formulated as follows:

min
x

�(x) + γ‖x‖1 + λ

n∑

j=2

|xj − xj−1|, (13)

min
x

�(x) +
γ

2
‖x‖22 + λ

n∑

i=1

∣∣∣∣
m∑

j=1

wijxj

∣∣∣∣, (14)

where �(x) denotes the average logistic loss function,
which is defined as

�(x) =
1

m

m∑

i=1

log(1 + exp(−bi(a
T
i x))), (15)

and the �1 norm ‖x‖1 is imposed to promote the
sparsity of weight vector x.

Note that this problem is hard to solve by the
ADMM, because of the difficulty in computing the
proximal mapping of �(x). To handle the above
problems, we equivalently reformulate them as

min
x,y

f(x) + γ‖x‖1 + λ‖y‖1
s.t. Fx− y = 0,

(16)

min
x,y

f(x) +
γ

2
‖x‖22 + λ‖y‖1

s.t. Fx− y = 0.
(17)

Here f(x) = 1
N

N∑
i=1

l(x, ξi), where l(x, ξi) is the logis-

tic loss function on ξi and λ > 0 is a parameter. F

is the penalty matrix promoting the desired sparse
structure of x. Specifically, F ∈ R

(n−1)×n in prob-
lem (16) is specified as a matrix with all ones on the
diagonal, negative ones on the super-diagonal area,
and zeros elsewhere. F in problem (17) is generated
by sparse inverse covariance selection (Hsieh et al.,
2013).

4.1 SEGL and SEGAL for the fused logistic
regression

We first present the details to solve the fused
logistic regression using Algorithm 1 in this subsec-
tion. It is easy to check that the gradients of �(y, ξ)
with respect to y can be obtained by

∇y�(y, ξi) = −biai

m

(
1− 1

1 + exp(−biaT
i y)

)
,

(18)
where the division operation is element-wise.

Based on these discussions, we can summarize
the SEGL to solve problem (16) as Algorithm 3,
where the �1 shrinkage operator is defined as

shrink(z, τ) = sign(z) ◦max{|z| − τ, 0}, (19)

where ‘◦’ is the element-wise multiplication.
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Algorithm 3 SEGL for the fused logistic regression
Input: Weight parameter α0, step size c0, x0, y0, and

λ0.

Output: ỹt =
t∑

k=0

αk+1yk+1, x̃t =
t∑

k=0

αk+1x̄k+1, and

λ̃t =
t∑

k=0

αk+1λ̄k+1.

1: for k = 0, 1, 2, . . . do

2: yk+1 = argmin
y∈Y

Lγ(x
k,y;λk) +

1

2
‖y − yk‖2H

3: x̄k+1 = xk − ck+1(∇�(xk, ξk+1
1 )−ATλk)

4: λ̄k+1 = λk − γ(Axk +Byk+1 − b)

5: xk+1 = xk − ck+1(∇�(x̄k+1, ξk+1
2 )−ATλ̄k+1)

6: λk+1 = λk − γ(Ax̄k+1 +Byk+1 − b)

7: if the stop criterion is satisfied then
8: Break
9: end if

10: end for

We omit the details of the SEGAL algorithm
to solve fused logistic regression problem, since it is
easy to obtain in a similar procedure.

4.2 Numerical results

In this subsection, we present the experimen-
tal results of all these compared algorithms to solve
fused logistic regression problem (16) and graph-
guided minimization problem (17). All compared
algorithms were implemented in Matlab 2016a and
executed on a laptop with an Intel� CoreTM i7-4710-
MQ CPU @ 2.5 GHz and 16 GB memory.

In the experiments, we compared our SEGL
and SEGAL algorithms with six existing stochas-
tic ADMM-type algorithms: SGADM (Gao et al.,
2017), SADMM (Ouyang et al., 2013), OPG-ADMM
(Suzuki, 2013), RDA-ADMM (Suzuki, 2013), and
two adaptive SADMMs (SADMMdiag and SADMM-
full) (Zhao et al., 2015). We excluded the online
ADMM (Wang and Banerjee, 2013), since Suzuki
(2013) showed that RDA-ADMM performs better
than the online ADMM. FSADMM (Zhong and
Kwok, 2013) was also excluded, since it requires the
storage of all gradients, which results in impractical
performance in some complex applications (Johnson
and Zhang, 2013).

The experiments were conducted on five binary
classification datasets: Splice, Svmguide3, Mush-
rooms, A9a, and W8a. Table 1 shows the de-
tails of them. For each dataset, we calculated the
Lipschitz constant L as its classical upper bound
0.25max1≤i≤n ‖ai‖2. The regularization parameters

were λ = 5 × 10−3 and γ = 5 × 10−4 for prob-
lem (16), and λ = 10−5 and γ = 10−2 for prob-
lem (17). In the fused logistic regression, the step
size was ck+1 = 1/(

√
k + 1 + L̃) and the weight

of iterations was αk+1 = 1/(t+ 1). In the graph-
guided regularized regression, the step size was
ck+1 = 2/(μ (k + 1) + 2L̃), the weights of itera-
tions were αk+1 = 1/(t+ 1) for SEGL1 and SE-
GAL1 (uniformly averaged) and αk+1 = 2(k+3)

(t+1)(t+6)

for SEGL2 and SEGAL2 (non-uniformly averaged).
In the settings above, L̃ = max{8γσmax(A

TA) +

μ,
√
8L2 + γσmax(ATA) + μ}, where σmax(A

TA)

denotes the largest eigenvalue of ATA, and μ = 0

when f(·) is a general convex objective function.

Table 1 Statistics of datasets

Dataset Number of samples Dimensionality

Splice 1000 60
Svmguide3 1243 21
Mushrooms 8124 112

A9a 32 561 123
W8a 64 700 300

We used cross validation to select the parame-
ters of other algorithms. Additionally, we used the
metrics including objective value, test loss, and pre-
diction accuracy to compare our method with other
methods. The ‘objective value’ means the sum of
the loss function and regularized terms evaluated on
a training data sample, while the ‘test loss’ means
the value of the loss function evaluated on a test
data sample. Specifically, we used objective function
values on training datasets, test losses (i.e., l(x)) on
test datasets, and computational time costs on train-
ing datasets.

Fig. 1 shows the objective value, test loss, and
prediction accuracy as the functions of time costs on
the fused logistic regression task, where the objective
function is convex but not necessarily strongly con-
vex. We observe that our method mostly achieves the
best performance, followed by six stochastic ADMM-
type algorithms. We find that the prediction ac-
curacy of the SEGL algorithm is competitive with
other algorithms, which supports the usage of extra-
gradient in the SEGL algorithm. The performance
of our SEGL and SEGAL algorithms on five datasets
is the most stable and effective among all meth-
ods. Furthermore, SEGAL obtains better accuracy
on large-scale datasets, which recommends using SE-
GAL in general convex problems.
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Fig. 1 Comparison of SEGL and SEGAL with EGADM, SGADM, SADMM, RDA-ADMM, OPG-ADMM,
SADMMdiag, and SADMMfull on fused logistic regression tasks under five binary classification datasets: (a),
(b), and (c) on Splice; (d), (e), and (f) on Svmguide3; (g), (h), and (i) on Mushrooms; (j), (k), and (l) on A9a;
(m), (n), and (o) on W8a

We further compared our algorithm with other
algorithms on the graph-guided regularized logis-
tic regression task, where the objective function is
strongly convex. We used both uniformly and non-
uniformly averaged iterations, denoted as SEGL1,
SEGAL1, SEGL2, and SEGAL2, respectively. The
experimental results, as shown in Fig. 2, show that

our algorithms consistently outperform other algo-
rithms and exhibit the advantage with non-uniformly
averaged iterations over the other algorithms with
uniformly averaged iterations. Furthermore, SEGL
achieves better accuracy on large-scale datasets,
which recommends using SEGL in strongly convex
problems.
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Fig. 2 Comparison of SEGL1, SEGAL1, SEGL2, and SEGAL2 with EGADM, SGADM, SADMM, RDA-
ADMM, OPG-ADMM, SADMMdiag, and SADMMfull on graph-guided regularized logistic regression tasks
under five binary classification datasets: (a), (b), and (c) on Splice; (d), (e), and (f) on Svmguide3; (g), (h),
and (i) on Mushrooms; (j), (k), and (l) on A9a; (m), (n), and (o) on W8a

5 Conclusions

In this paper, we have proposed stochastic
variants of the extra-gradient alternating direction
method, named stochastic extra-gradient alternating
direction method with Lagrangian function (SEGL)

and augmented Lagrangian function (SEGAL) to
solve linearly constrained optimization problem (3)
in large scale. The proposed algorithm inherits the
stability and efficiency of the extra-gradient alternat-
ing method and the ability of stochastic optimiza-
tion algorithms to handle large-scale problems. In
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the numerical experiments conducted on fused logis-
tic regression and graph-guided regularized logistic
regression problems, we have compared our SEGL
and SEGAL algorithms with six existing stochastic
ADMM-type algorithms and two adaptive stochastic
ADMM-type algorithms. The experiments results
demonstrated the efficacy of the proposed SEGL and
SEGAL beyond other competing algorithms.
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