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Abstract: A novel adaptive output feedback control approach is presented for formation tracking of a multiagent system with 
uncertainties and quantized input signals. The agents are described by nonlinear dynamics models with unknown parameters and 
immeasurable states. A high-gain dynamic state observer is established to estimate the immeasurable states. With a proper design 
parameter choice, an adaptive output feedback control method is developed employing a hysteretic quantizer and the designed 
dynamic state observer. Stability analysis shows that the control strategy can guarantee that the agents can maintain the formation 
shape while tracking the reference trajectory. In addition, all the signals in the closed-loop system are bounded. The effectiveness 
of the control strategy is validated by simulation. 
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1  Introduction 
 

Recently, multiagent system research has raised 
significant concerns for its huge development poten-
tial. It is believed that the multiagent system con-
taining a team of low-cost agents is more effective 
than a single high-tech system in executing complex 
missions (Lu et al., 2014; Wan et al., 2016; Zhao et al., 
2016b). With a flexible structure, multiagent systems 
can easily adjust to different tasks such as surveil-
lance, exploration, and firefighting. In addition, mul-
tiagent systems are more robust if there is a single 
agent failure (Mahmood and Kim, 2015; Liu et al., 
2016). 

Formation control is a significant aspect in mul-
tiagent system control problems. Multiagent system 
control involves the agents forming and maintaining a 
geometric shape while tracking a desired trajectory 

(Wen et al., 2015). In formation tracking strategies, 
the states of agents are commonly controlled through 
agent dynamics models. A lot of existing works de-
scribe the agent dynamics by first- or second-order 
linear models (Fu and Wang, 2014; Zhao et al., 2017). 
To improve model precision, many control solutions 
focus on high-order linear dynamics (Zhao et al., 
2016a). 

In real applications, complicated nonlinear dy-
namics always exist in multiagent systems, and are 
managed in some existing research by establishing 
nonlinear dynamic models (He WL et al., 2017). A 
cooperative control design was proposed for multia-
gent system formation tracking while agents were 
described by a non-holonomic constrained nonlinear 
model (Briñón-Arranz et al., 2014). Furthermore, 
considering that the agents inevitably have a lot of 
uncertainties in reality, some adaptive control theories 
have been applied to overcome the uncertainties. 
While considering that unknown parameters exist in a 
multiagent system, Liu and Jia (2012) proposed a 
model reference adaptive control theory to control the 
formation. Sliding mode theory was introduced for 
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spacecraft formation control with uncertainty and 
disturbance parameters (Bae and Kim, 2012). An 
adaptive backstepping technique was introduced to 
multiagent system formation control for the unknown 
parameters and unknown nonlinear dynamics in sys-
tems (He L et al., 2017). 

Control problems with quantized signals have 
been intensively investigated in the research of net-
worked control systems (Jiang and Liu, 2013; Wan 
et al., 2017). The problems of multiagent systems 
with quantized signals have not received enough 
notice in typical networked systems, whereas quan-
tized signals widely exist in multiagent systems. 
Among the agents, the signals need to be quantized 
before being emitted through network communication 
channels under a limited bandwidth. However, strong 
nonlinear characteristics introduced by quantization 
can cause the system to have a worse control per-
formance or even instability (Li et al., 2017). Quan-
tization can be classified into static or dynamic (Jiang 
and Liu, 2013). Static quantizers have fixed quanti-
zation levels, so static quantization resolution should 
be increased close to the origin to improve the control 
performance and decrease quantization errors. During 
the control process, the dynamic quantizers can adjust 
the quantization levels to improve the control per-
formance. A hysteretic quantizer was used by Zhou et 
al. (2014) for its ability to avoid chattering, but the 
application of the proposed strategy is limited by too 
many rigorous assumptions (Zhou et al., 2014).  

Some important achievements have been made 
in quantized controllers for linear and nonlinear sys-
tems (Liu et al., 2012; Fu and Wang, 2014). Nonlinear 
systems with a quantized input were investigated by 
Liu and Elia (2004), who proposed a quantized con-
troller based on the Lyapunov stability theory. How-
ever, studies involving adaptive quantized control 
theories are seldom reported for nonlinear systems 
with uncertainties. Hayakawa et al. (2009) designed 
an adaptive control framework to control nonlinear 
systems with uncertainties and quantized signals, but 
the framework stability is heavily related to the 
characteristics of the control signals. Thus, it cannot 
be used in a real control application. Zhou et al. (2014) 
used the adaptive control theory and backstepping 
technique to control a nonlinear system with a strict 
feedback and quantized input signals. However, too  

many assumptions limit the choice of the quantization 
density parameter. Combined with the derivative 
explosion of the backstepping technique, it will be 
very difficult to realize the controller for higher-order 
systems. Note that the current adaptive theories are 
commonly based on the state feedback, which re-
quires that multiagent systems be equipped with more 
sensors for state measurement and a larger bandwidth 
for communication. Compared with that, adaptive 
output feedback control can lead to a simpler con-
troller design, but the relevant approaches for non-
linear uncertain systems with quantized signals are 
rarely seen, to the best of our knowledge. 

Based on the previous methods and analysis, our 
research concerns adaptive output feedback formation 
tracking for a class of multiagent systems with quan-
tized input signals. The agents are described by a 
nonlinear dynamics model with unknown parameters 
and immeasurable states. The main contributions are 
listed as follows: 

1. An exact dynamic model is not required. 
Unknown parameters and immeasurable states in the 
agents are well solved through an adaptive output 
feedback control technique and a dynamic high-gain 
observer. 

2. Taking into account quantized input signals, 
the hysteretic quantizer is introduced to the systems to 
avoid chattering. In addition, the controller complex-
ity is significantly reduced by the design of less dy-
namic gains.  

3. With the proposed strategy, the multiagent 
system formation shape is achieved and maintained 
when agents asymptotically track the reference tra-
jectory. In addition, tracking errors can be limited to 
an arbitrarily small neighborhood around the origin 
and all the closed-loop states can be bounded with a 
proper parameter choice. 

 
 

2  Problem statement 

2.1  Problem description 

The networked multiagent systems in this study 
consist of N fully actuated agents. The agents can be 
described by a nonlinear system model with unknown 
parameters and nonidentical, nonlinear dynamics as 
follows (Rezaee and Abdollahi, 2014): 
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where pi=(pix, piy) is the position of the ith agent, Mi is 
the agent mass, Bi is the unknown damper parameter, 
ki,d is an unknown coefficient considered to control 
the transient response of the agent, and (q(uix), q(uiy)) 
is the quantized control input. 

Fig. 1 shows the multiagent formation where the 
three points denote three agents. With a proper design 
of the quantized controller and the desired formation 
shape and reference trajectory, the agents can form 
the formation shape and track the reference trajectory 
from their appropriate initial positions. In the figure, 
(ωix, ωiy) represents the relative position of the ith 
agent in the formation, and (pix,0, piy,0) and (pix, piy) 
represent the initial and final positions of the ith agent, 
respectively. To avoid leader failure weakness in the 
leader-follower structure, a virtual structure is used 
for the formation of the topology structure. In this 
structure, a virtual leader is used to track the reference 
trajectory and all the agents can obtain information 
from the virtual leader. By keeping appropriate rela-
tive positions with respect to the virtual leader, all the 
agents can form the desired formation shape. In this 
study, the control objective is to design an adaptive 
controller (uix, uiy) such that: (1) all the closed-loop 
signals maintain boundedness; (2) all the agents can 
follow the reference trajectory (prx, pry) while estab-
lishing and maintaining the desired formation shape. 
 

 
 
 
 
 
 
 
 

 
 

Assumption 1    The reference trajectory signal (prx, 
pry) and its time derivative are continuous and 
bounded. 

Considering the bounded disturbance that exists 
in an agent, Eq. (1) can be rewritten as follows when 
described with state-space techniques: 
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where xix=[xix,1, xix,2]T and xiy=[xiy,1, xiy,2]T are system 
states in the direction of the x- and y-axis, respectively, 

ixp  and iyp  are the system outputs in the direction of 

the two axes, θi=(Bi+ki,d)/Mi is an unknown parameter, 
and dix=[dix,1, dix,2]T and diy=[diy,1, diy,2]T are bounded 
disturbances. 

Based on the former analysis, it can be con-
cluded that the agent dynamic models in the direction 
of the two axes are equipped with the form of the 
following nonlinear systems with uncertainties and 
quantized inputs: 
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        (3) 

 
where x=[x1, x2, …, xn]Tn is the system state vector, 

y denotes the output, and θ*(t): →m is a con-
tinuous and bounded time-varying parameter. With-
out any information, φi(x, θ*(t)): n×m→ (i=1, 2, 

…, n) are continuous and locally Lipschitz in the 
variable state x. The bounded disturbances di(t) (i=1, 
2, …, n) satisfy the inequality ( ) ,id t d≤  where d  is 
a positive constant. q(v(t)) denotes the hysteretic 
quantizer of the input signals. The controller is de-
signed for the output y to track the reference signal yr 
and maintain the closed-loop states bounded with any 
initial condition of state x(0). yr is assumed to be 
continuous and bounded. 

There is an assumption for system (3). 
Assumption 2 
 

( )( )1 2( , ( )) 1 ,p
i it y x x xφ q q∗ ≤ + + + +x   (4) 

Fig. 1  Multiagent formation illustration 
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where positive constant θ is unknown, positive inte-
ger p is known, and i=1, 2, …, n. 

2.2  Hysteretic quantizer 

To reduce chattering, the hysteretic quantizer 
q(v(t)) is defined by Eq. (5) on the bottom of this page, 
where ui=ρ1−iumin (i=1, 2, …, n), 0<ρ<1, δ= 
(1−ρ)/(1+ρ), and umin represents the dead zone for 
q(v(t)). 

In the controller design, the values of some ma-
trices and parameters are decided according to the 
following lemmas: 
Lemma 1    For proper analysis, in Eq. (5), q(v(t)) can 
be regarded as q(v(t))=v(t)+ζv, where ζv is a nonlinear 
part and satisfies the following inequality (Zhou et al., 
2014): 
 

min .v v uζ δ≤ +                          (6) 

 
Lemma 2    For any positive number μ, there exist σ1, 
σ2, symmetric matrices P1 and P2, and observer 

gain vector a=[a1, a2, …, an]T and controller gain 
vector k=[k1, k2, …, kn]T, satisfying the following 
inequalities (Praly and Jiang, 2004; Li et al., 2017): 
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where matrices A, Dn×n and vectors b, cn

 are 

defined as  
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Remark 1    The constant ρ(0, 1), which is called 
the density constant, is the quantization measurement. 
When the value of ρ is set smaller, the quantizer is 
coarser. In consideration of δ=(1−ρ)/(1+ρ), it is clear 
that the quantizer has fewer quantization degrees 
when δ is chosen close to 1. 
Remark 2    The positive constant μ should be de-
termined to satisfy the inequality 0<2μp<1. Then the 
parameter set {σ1, σ2, P1, P2, a, k} is chosen to guar-
antee inequality (7). 
 
 
3  Controller design and stability analysis 
 

With uncertainties and hysteretic input quantizer 
(5), the nonlinear system (3) is controlled by an 
adaptive output feedback control strategy. Then the 
closed-loop system stability is analyzed. 

3.1  Control strategy design 

The designed control strategy contains a high- 
gain controller and a correlative dynamic observer: 
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where [ ]T1 2ˆ ˆ ˆ ˆ, , , n
nx x x= ∈x    is the state vector of 

the observer. Gain vectors a and k are determined 
based on Lemma 2. The dynamic gain l is updated by 
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where parameters ς, α1, and α2 are designed as posi-
tive constants. The initial condition of l is l(0)=1. 
Note that in region 1̂( , , ),l y x  1 rˆ( , , , )g l y x y  is locally 
Lipschitz. In addition, 1 rˆ( , , , )g l y x y  is a continuous 
function in yr. Therefore, dynamic gain l has the fol-
lowing characteristics: 
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Remark 3    The update law of l is proposed for the 
adaptive controller to adjust to the system nonlinear-
ity, parameter uncertainty, and disturbance influence. 
In addition, the design parameter ς is introduced to 
realize the system’s adaptive tracking. Our controller 
design needs only one dynamic gain, which greatly 
reduces the controller complexity. 

With a hysteretic quantizer introduced in the 
system, the main theory in this study can be summed 
up as follows: 
Theorem 1    Under the condition that Assumptions 1 
and 2 hold and the parameter μ in Lemma 2 is set to 
satisfy 0<2μp<1, a closed-loop system is considered 
that consists of plant (3), hysteretic quantizer (5), 
output feedback controller (9), and update law (10). If 
the quantizer coefficient δ satisfies  
 

12 ,δ σ≤2P b k                       (12) 
 
then all the states in the closed-loop system remain 
bounded, and the tracking error yyr can be steered to 
within a small neighborhood of the origin. 

According to the controller design of Eqs. (7)– 
(10), for the ith agent in multiagent formation, the 
high-gain observer, high-gain controller, and update 

law of dynamic gain are designed as follows: 
1. In the x-axis direction, we have 
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In Eq. (13), 
T

,1 ,2ˆ ˆ ˆ,ix ix ixx x =  x  is the observer 

state, r r ,x i xp M p=  ,ix i ixMω ω=  and lix(0)=1. 
2. In the y-axis direction, we have 
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In Eq. (14), 
T

,1 ,2ˆ ˆ ˆ,iy iy iyx x =  x  is the observer 

state, r r ,y i yp M p=  ,iy i iyMω ω=  and liy(0)=1. 

3.2  Stability analysis 

Define the estimation errors of system (3) as  
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Based on Eqs. (3) and (9), the estimation error 

dynamics can be established as  
 

1 2 1 1 1 1 r
2

2 3 2 1 2 2

1

( , ( )) ( ) ,

( , ( )) ( ),

( , ( )) ( ).n
n n n n

e e la e t d t y
e e l a e t d t

e l a e t d t

φ q

φ q

φ q

∗

∗

∗

 = − + + −


= − + +


 = − + +

x
x

x

 







     (16) 



Hu et al. / Front Inform Technol Electron Eng   2018 19(9):1086-1097 1091 

With the help of the following transformations:  
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Eqs. (9) and (16) can be rewritten as 
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where Φ=[φ1, φ2, …, φn]T, d=[d1, d2, …, dn]T, and 
L=lμdiag{1, l, l2, …, ln−1}. 

Under Lemma 2, when μ is chosen to satisfy 
0<2μp<1, {σ1, σ2, P1, P2, a, k} can be calculated to 
satisfy inequality (7). With the matrices P1 and P2 
designed, the Lyapunov function is constructed as 
follows: 
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From inequality (11), it is clear that l1 for t[0, tf). 
Thus, with the notation of η, the following inequali-
ties hold: 
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Therefore, with the conclusion from Lemma 2, ine-
quality (20) can be further expressed as 
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where λ1 and λ2 are the minimum eigenvalues of ma-
trices P1 and P2, respectively. 

Using Assumption 2, inequality (11), and 
( ) ,id t d≤  we have 
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Thus, with the completion of the square, we obtain 
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is bounded. Substituting inequality (25) into inequal-
ity (23) results in 
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Taking the hysteretic quantizer (5) into consideration, 
the following inequality holds by Lemma 1: 
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With the quantization parameter design condition (12), 
the following inequality can be obtained: 
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n

q v v
l

ul
l

ul
l

µ

µ

µ

δ

σ

− +

− +

− +

−

≤ + +

≤ + +

x P b

P b k x P b x

x P b x

  (28) 

 
Substituting inequality (28) into inequality (26) yields 

 

( )

( )( )
( )( )

( )

2
2 min

1 1 2 1 22 1

2 2
2 1

22 2
2 2 2

2 2 22 4 2
1 1 1 2 2

3 1
4

2 1

1 1

2 .

n

p

p

uV l d
ll

y

y

n l

µµ
σ ηa σ

ηa µl

a µl

η q σ a σ

− +

 ≤ − − + + 
 

− − +

− − − +

+ − −

P e

e

P b x

P e P x




 (29) 

 
Design α1 and α2 as follows: 

 

1 1
1

2 2 2 1

2
2

2
1 2

min ,  ,
2 2

12max ,  .

σ σ
a

σ ησ

a
ηµl µl

   ≤  
   

  +  ≥  
   

P P

P b
           (30) 

 
Now it can be summarized as  

 

( )

2
2 2 min

1 1 22 1

2 22 4 2
1

1 1 1
4 2

2 .

n

uV l l d
ll

n

µµ
σ σ

η q

− +
≤ − − + +

+

e x

P e




 (31) 

 
To prove the boundedness of closed-loop system 

states when t[0, tf), we propose that l(t) and states 
( )tx  and ( )te  remain bounded with t[0, tf). It will 

be proved in the next section.  

Based on this proposition and Eq. (15), the 
closed-loop system states ˆ( , , )lx x  remain bounded 

on [0, tf) and tf=+∞. Thus, x(t), ˆ ( ),tx  and l(t) are 
bounded with t[0, +∞). 

In what follows, we show that the tracking error 
can be steered to be within a small neighborhood of 
the origin asymptotically. Because l(t) is bounded by 

t[0, +∞), we see that 
0

( )d .l t t
+∞

< +∞∫   Note that 

1 rˆ( , , , )g l y x y  is locally Lipschitz in its independent 

variables. With the boundedness of 1 rˆ( , , , )l y x y , there 
exists a positive constant C that makes the following 
formula hold for any t1, t2[0, +∞): 

 

1 2 1 2

1 2 1 2

1 1 1 2 r 1 r 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) .

l t l t g t g t

C l t l t y t y t

x t x t y t y t

− = −

≤  − + −
+ − + − 

 

 (32) 

 
For any positive constant ε, there always exists a 
δ(ε)>0 that makes the following inequality hold: 

 
1 2 1 2

1 1 1 2 r 1 r 2

( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ,

l t l t y t y t

x t x t y t y t
C
ε

− + −

+ − + − <
   (33) 

 
where t1 and t2 satisfy |t1−t2|≤δ(ε). 

Based on the former condition and inequalities 

(32) and (33), we can obtain 1 2( ) ( )l t l t ε− ≤   with  

|t1− t2|≤δ(ε). It is concluded that ( )l t  is uniformly 
continuous on [0, +∞). 

Barbalat’s lemma suggests lim ( ) 0.
x

l t
→+∞

=  With 

r r 1 1ˆ ˆ( )y y y y x x− = − + −  and inequality (11), we 
have 

 

2 2
r 1 1ˆ ˆ0 ( ) .y y x x l ς≤ − + + ≤ +             (34) 

 
Thus, 2

r0 ( ) 2( ).y y l ς≤ − ≤ +  In conclusion, the 
tracking error (yyr) can be steered to within a small 
neighborhood of the origin by choosing a sufficiently 
small ς. 
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4  Proposition proof 

4.1  Boundedness proof of l(t) 
Because 0l ≥ with t[0, tf), l(t) is monotonically 

nondecreasing in the same time interval. Suppose 
lim ( )
x

l t
→+∞

= +∞ , and a finite time t1[0, tf) exists sat-

isfying 22 4 2
1 1( ) 16l t nη q σ≥ P  on [t1, tf). Consid-

ering inequality (31), we have  
 

2
2 2 min

1 1 1 f2 2

1 1 1 , [ , ).
8 2

uV l l d t t t
l lµ µσ σ≤ − − + + ∀ ∈e x 

        

(35) 
 

Thus, e  and x  remain bounded when t1[t1, tf). 
With 0<2μp<1, we have 

 

( )
( )
( )

( )

2
2

1 2

2
2

1 2 1 r 1

2
2

1 2 1 r 1

2
2 1 2

1 2 1 r 1

1

ˆ1

1

1 .

p

p

pp p

pp p p

l l y

l l e y x

l l l e l y x

l l l e l y x

µ µ

µ µ µ

a a

a a

a a

a a

−

+ −

− + +

= − + + + +

= − + + + +

≤ − + + + +

  (36) 

 
Therefore, a finite time t2 (t1<t2<tf) exists, in which 

inequality ( )2
2

1 2 1 0pl l ya a− + + <  holds in t[t2, tf), 

and the following inequality holds: 
 

{ }2 2
1 1

2 2 2 2 2 2
1 1 1 1 2 f

ˆmax ,0

, [ , ).

l e x

l e l x le lx t t tµ µ

ς= + −

≤ + ≤ + ∀ ∈



   (37) 

 
Then two cases of tf are considered as follows: 

1. tf <+∞ 
By integrating the two sides of inequality (35), 

we have 
 

2 2

2 2
1 1

2
2 2 min 2 f

1 1( ) ( ) ( ) d ( ) ( ) d
8 2

( ) ( )( ) , [ , ).

t t

T T
V t l l

V T t T u d t t t

σ t t t σ t t t+ +

≤ + − + < +∞ ∀ ∈

∫ ∫e x



 

(38) 
 

Based on inequality (38) and 2 2
1 1l le lx≤ +  on  

[t2, tf), we have 

2

2 2

2 2

2

2 2
2 1 1

2 2
2

2
2 2 2 min

1

2 f

( ) ( ) ( )d

( ) ( ) ( )d ( ) ( )d

( ) ( ) ( ) d ( ) ( ) d

10( ) ( ) ( )( )

, [ , ).

t

T

t t

T T

t t

T T

l t l T l

l T l e l x

l T l l

l T V T t T u d

t t t

t t

t t t t t t

t t t t t t

σ

= +

≤ + +

≤ + +

 ≤ + + − + 

≤ +∞ ∀ ∈

∫

∫ ∫

∫ ∫e x





 

(39) 
 

This contradicts the assumption lim ( ) .
x

l t
→+∞

= +∞  

2. tf=+∞ 
Let V1=l2μV. With Eq. (10) and inequalities (35) 

and (37), the derivative of V1 can yield 
 

2 21 2 1 2 2
1 1 1 min

2 2 2
1 1

2 2 2
1 1 1 1 1 min

1 1 ( )
8 2
( )

2 ( ) ( ),

V l l u d

e x l V

C lV e x V u d

µ µ

µ

σ σ+ +≤ − − + +

+ +

≤ − + + + +

e x 




(40) 

 
where C1 is a positive constant. Because 2 2

1 1e x+  is 
bounded on [t2, tf) and lim ( ) ,

x
l t

→+∞
= +∞  there exists a 

finite time t3 (t2<t3<tf) that makes the following ine-
quality hold: 
 

2
1 1 1 min 3 f2 ( ), [ , ).V C lV u d t t t≤ + + ∀ ∈
        (41) 

 
Thus, for any time t4[t3, tf), it is suggested that  

 
2

1 1 4 1 min 4 f2 ( ) ( ), [ , ).V C l t V u d t t t≤ + + ∀ ∈
    (42) 

 
Then we have 

 
1 4 4

1 4 4

( )( )
1 1 4

2
( )( )min

4 f
1 4

( ) e ( )

1 e , [ , ).
( )

C l t t t

C l t t t

V t V t

u d t t t
C l t

− −

− −

≤

+  + − ∀ ∈ 
  (43) 

 
Furthermore,  

 

1 4( )
1 1 4

1 4

2
min

1 4 4 f2 2
1 4 1 4

( ) e ( )
( )

2 ( ) , [ 1, ).
( ) ( )

C l t dV t V t
C l t

u dV t t t t
C l t C l t

−≤ +

+
≤ + ∀ ∈ +





(44) 
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Because 2 T
1 1l ≤e e Pe  and 2 T

2 2 ,l ≤x x P x  we 
find that on [t4+1, tf), 

 

2 2 2 2
1 1 1

1 2

2
1 4 min

2 2
1 2 1 4 1 4

1 1

2 ( ) ( )1 1 .
( ) ( )

l e l x V

V t u d
C l t C l t

µ µ

ηl l

ηl l

 
+ ≤ + 

 
   +

≤ + +  
  



  

(45) 
 

This means that a sufficiently large t4 exists, making 
2 2 2 2

1 1l e l xµ µ ς+ ≤  hold on [t4+1, tf). Therefore, 

{ }2 2 2 2
1 1max ,0 0l l e l xµ µ ς= + − =  on [t4+1, tf). This is 

not consistent with the assumption lim ( ) .
x

l t
→+∞

= +∞  

Based on the above analysis, l(t) can remain 
bounded with t[0, tf). 

4.2  Boundedness proof of x t( )  

For the state ( ),tx  we set the Lyapunov function 
as  

T
2 .V =x x P x                            (46) 

 
According to Eq. (18) and inequalities (7), (11), and 
(30), we have  

 

2 T T
1 2 1 2 1
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2 2 2

2
2 2 1 2 2

1 min
1

2 3 4

( )3 2 2

( 2 )
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2
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x

x

x x P a x P b

x DP P D P x

P a
x







 (47) 

 

where 2 1 2(2 ) ,C σ= P  2 1 2
3 2 f 1( ) ,C l tµ σ−= P a  

and 2
4 min .C u=  It suggests that  
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2 2 2

2 2

2 2 2

3 40
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3 2 0

3 4
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∫

∫

x x

x

x



(48) 

With the boundedness of l(t), we can find that 
( )tx  remains bounded with t[0, tf). 

4.3  Boundedness proof of e t( )  

State e’s dynamics can be rewritten as 
 

* T *
1 1 1 1 1

1 1 r

( )

,

ll ll e
l e

∗ ∗= − +

− + + −

e A L L ac e L L a
L a Φ d Y





             (49) 

 

where 24 2
1 132 1η q σ∗ ≥ +l n P , 

 

*
*
1 1

* 1 1

1 1

, .

( )n n

l l

l l− −

   
   
   = =
   
   
   

L L
 

    

(50) 
 

Set 1( ) .l µ∗=∗ ∗L L  Based on the transformation 
1( )−=∗ ∗e LL e  and Eq. (49), ∗e can be calculated. 

Now a quadratic Lyapunov function is defined 
by  

T
1( ) .V =∗

∗ ∗
e

e Pe                        (51) 
 

Then the time derivative of 
e

V ∗  can be calculated as 
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    (52) 

 

According to 2 2
1 1( )e e∗ <  and completion of the square, 

we have 
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(53) 
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Similar to inequality (25), we have  
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1 r

22 224 2
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  (54) 

 
Substituting inequalities (53) and (54) into inequality 
(52), we have 
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Because 24 2

1 132 1η q σ∗ ≥ +l n P  and 2 2
1

µ ≤l e  

,ς+l  we have  
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 (56) 

 
Similar to inequalities (47) and (48), the boundedness 
of ∗e  can be proved by inequality (56). Furthermore, 
with 1 1( ) ( ) ,− −= =∗ ∗ ∗e LL e L e  we conclude that state 
e  remains bounded on [0, tf). 

 
 

5  Simulation 
 

Simulations were performed to validate the 
performance of the established method. The multi- 
agent system consisted of four agents that can be 
described by Eq. (1) and the mass Mi was set to be 
1 kg. q(uix) and q(uiy), the hysteretic quantizers, are 
described by Eq. (5) and umin=0.02. The reference 
trajectory was designed as a circle with prx=cos(0.3t) 

and pry=sin(0.3t). The system was a wedge-shaped 
formation that consisted of four agents. The starting 
positions of the four agents were chosen as (0.5, 0.5), 
(0.4, 0.4), (0.6, 0.2), and (0.6, 0.1). 

For each agent, Assumption 2 holds for p=1. To 
satisfy the inequality 0<2μp<1, the design parameter 
μ was chosen as 0.22. With the limitation of Lemma 2 
and inequality (30), the relevant parameters were set 
as ς=0.15, [ai1, ai2]T=[2.0, 1.0]T, α1=0.25, α2=12.0, 
and [ki1, ki2]T=[1.0, 2.0]T. 

In the simulation, we set the unknown parameter 
θi=10. The quantization parameter was given by 
δ=0.3. The trajectories of the four agents are shown in 
Fig. 2. Fig. 3 shows the dynamic gains l2x and l2y of 
the 2nd agent. 

It can be seen that all the agents can track the 
reference trajectory and build the formation shape at 
the same time. Fig. 3 suggests that the dynamic gains 
are bounded.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The tracking errors of all the agents in the di-
rection of the x axis are shown in Fig. 4, and the 
agents’ tracking errors in the direction of the y axis are 
shown in Fig. 5. 
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We can figure out that the tracking errors con-
verge to a small neighborhood of the origin asymp-
totically. It proves that unmanned aerial vehicle (UAV) 
formation can maintain the formation shape and track 
the reference trajectory. 

Fig. 6 shows the quantized inputs of one typical 
agent, i.e., the 3rd agent. Fig. 7 shows an example of 
the analysis of the observer state.  

From Fig. 6, we can see that the quantized inputs 
highly reduce the input signal. Fig. 7 suggests that the 
state estimates are bounded. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
6  Conclusions 
 

An adaptive output feedback controller has been 
presented for formation tracking of multiagent sys-
tems with uncertainties and quantized input signals 
based on a hysteretic quantizer and a high-gain dy-
namic observer. The system consists of multiple 
nonlinear agents that are established with immeas-
urable states and unknown parameters. It has been 
proved that all the system signals are bounded and 
that all the agents can maintain the prescribed for-
mation shape while tracking the reference trajectory 
with tracking errors within a small neighborhood of 
the origin. The effectiveness of the system has been 
validated by simulations. 
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