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Abstract: We propose a novel channel model for massive multiple-input multiple-out (MIMO) communication
systems that incorporate the spherical wave-front assumption and non-stationary properties of clusters on both
the array and time axes. Because of the large dimension of the antenna array in massive MIMO systems, the
spherical wave-front is assumed to characterize near-field effects resulting in angle of arrival (AoA) shifts and
Doppler frequency variations on the antenna array. Additionally, a novel visibility region method is proposed to
capture the non-stationary properties of clusters at the receiver side. Combined with the birth-death process, a novel
cluster evolution algorithm is proposed. The impacts of cluster evolution and the spherical wave-front assumption on
the statistical properties of the channel model are investigated. Meanwhile, corresponding to the theoretical model,
a simulation model with a finite number of rays that capture channel characteristics as accurately as possible is
proposed. Finally, numerical analysis shows that our proposed non-stationary channel model is effective in capturing
the characteristics of a massive MIMO channel.

Key words: Massive MIMO; Spherical wave-front assumption; Non-stationary property; Birth-death process;
Visibility region method
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1 Introduction

Recently, massive multiple-input multiple-
output (MIMO) has been proposed as one of the
essential candidate technologies for the fifth genera-
tion (5G) wireless communication networks (Larsson
et al., 2014; Wang et al., 2014; Zheng et al., 2014).
Compared to the conventional MIMO system, it is
equipped with tens or even hundreds of antennas to
serve users in the same time-frequency slot. Many
excellent features make the massive MIMO attrac-
tive, such as very high spectral efficiency and capac-
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ity, significantly increased energy efficiency, and a
low-complexity processing interference (Rusek et al.,
2013; Lu et al., 2014). As a result, massive MIMO
technology has good prospects in future wireless
communication systems.

For MIMO system design and performance eval-
uation, an accurate small-scale fading MIMO chan-
nel model is indispensable. As to conventional
MIMO systems, channel models known as geometry-
based stochastic models (GBSMs) are widely stud-
ied. The GBSM is beneficial from its extensive ap-
plicability, because it models the locations of clus-
ters according to a certain probability distribution
rather than a specific channel environment. Many
analytical and standard GBSMs have been proposed
(Kyösti et al., 2007; ITU-R, 2008; Paetzold, 2011;
ETSI, 2014). However, according to the channel
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measurements in Gao et al. (2012) and Payami and
Tufvesson (2012), there are two characteristics that
make the conventional MIMO channel models not ef-
fective for application to model massive MIMO chan-
nels directly. First, the far-field propagation assump-
tion (always defined to be greater than the Rayleigh
distance (Yaghjian, 1986)) is no longer valid with a
large number of antennas. Therefore, the wave-front
should be assumed as spherical instead of plane. The
effect of the spherical wave-front assumption was an-
alyzed in Bohagen et al. (2006).

Second, non-stationary properties of clusters
can be observed on large antenna arrays. In other
words, different antenna elements may observe dif-
ferent sets of clusters. Thus, the wide-sense station-
ary (WSS) assumption of clusters for conventional
MIMO is not satisfied for massive MIMO channels.
The methods of describing non-stationary properties
of clusters can be divided mainly into two categories:
the birth-death process and visibility region method.
The birth-death process is introduced to describe
cluster evolution on the time axis (Babich and Lom-
bardi, 2000; Zwick et al., 2000, 2002; Chong et al.,
2005) at first, and then it is extended to the antenna
array (Wu SB et al., 2014, 2015; Wu HL et al., 2015).
In these channel models, the cluster evolves sepa-
rately on the transmit and receive antennas based
on the birth-death process, and then existing clusters
are randomly paired to determine to which transmit
and receive antennas each cluster is observable. A
brief description of the algorithm flow is shown in
Section 2. Although cluster evolution based on the
birth-death process has proved effective, it has disad-
vantages, such as its complexity and time-consuming
theoretical analysis, and its lack of intuitive geomet-
ric characteristics between clusters and the antenna
array. The visibility region method has been widely
investigated (Liu et al., 2012; Gao et al., 2013; Li
et al., 2015; Xie et al., 2015), and different definitions
of the visibility region determine different methods
of describing cluster evolution. The visibility region
is typically assigned to a geometric region in which
the antenna is visible to the corresponding cluster,
and the cluster is active (contributing to the impulse
response) upon entering the visibility region. From
this perspective, the visibility region method is more
naturally integrated into the channel model based on
stochastic geometry.

In this paper, a novel scheme is proposed to

capture the spherical wave-front effect and non-
stationary properties of clusters on both the array
and time axes for the massive MIMO channel model.
This paper is summarized as follows. First, assum-
ing a spherical wave-front, expressions for calculat-
ing AoA shifts, Doppler frequencies, and channel co-
efficients are derived in detail, including the line-
of-sight (LOS) and non-line-of-sight (NLOS) com-
ponents. Second, a novel visibility region method
is proposed to describe cluster evolution on the
receive antenna; then, combined with the birth-
death process, a novel cluster evolution algorithm
is given. Third, the impacts of the spherical wave-
front assumption and cluster evolution on the sta-
tistical properties of our proposed model are investi-
gated. A corresponding simulation model for the
theoretical model with a finite number of rays is
proposed.

2 Preliminaries of the birth-death pro-
cess

The birth-death process can effectively repro-
duce the non-stationary properties of clusters in mas-
sive MIMO channels on both the array and time axes.
Assume the initial number of clusters N and the ini-
tial cluster set of the first transmit (receive) antenna
C1 = {cx | x = 1, 2, . . . , N} at the initial time in-
stant t are given, where cx represents Clusterx, and
the subscript x represents the xth cluster in the clus-
ter set. The clusters in cluster set C1 evolve accord-
ing to the birth-death process to recursively gener-
ate cluster sets of the rest of the antennas at the
transmitter (receiver) side at the initial time t, i.e.,
Cn−1(t)

E−→ Cn(t), (n = 2, 3, . . .), where the operator
E−→ denotes cluster evolution on either the array or
time axis. Cluster evolution on both the array and
time axes is determined by the cluster generation
rate and the recombination rate. As the cluster evo-
lution occurs, the disappearing cluster members are
eliminated from all cluster sets, and the newly gen-
erated cluster members are added to corresponding
cluster sets. Because each cluster evolves gradually
on both the array and time axes, it will not appear
again after its disappearance. Therefore, antenna
correlations are naturally embedded in the genera-
tion process.
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3 Theoretical non-stationary massive
MIMO channel model

3.1 Channel impulse response

Our proposed channel model for massive MIMO
is illustrated in Fig. 1. When calculating the chan-
nel impulse response, two important characteris-
tics should be considered in massive MIMO chan-
nels. First, the far-field assumption for conventional
MIMO channel models is not fulfilled as the dimen-
sion of the antenna array becomes large. As a result,
the wave-front should be assumed to be spherical.
An example of the nth cluster of the receive antenna
array is shown in Fig. 1. The spherical wave-front
of each wireless link results in AoA shifts and the
Doppler frequencies on the antenna array are no
longer the same for each antenna element. There-
fore, they should be determined by geometrical re-
lationships. Second, the non-stationary properties
of clusters on the antenna array mean that a clus-
ter may be observed only by a partial set of anten-
nas on the antenna array in massive MIMO channel
models. Let AntTl represent the lth antenna of the
transmit array and AntRk represent the kth antenna
of the receive array. Examples are given in Fig. 1.
On one hand, Clustern+1 is observed by AntTl but is
not observed by AntRk . Conversely, Clustern+2 is ob-
served by AntRk but is not observed by AntTl . On the
other hand, Clustern is observed by both AntTl and
AntRk . These situations imply that different antenna
elements may observe different sets of clusters.

Clustern+2

Clustern

Clustern+1

Antl
T

Antk

Dl
LOS

Dkl

Dn

DT
DR

βT
αT

θkl,n,i
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Fig. 1 A theoretical channel model for massive MIMO
systems

Assume that the transmitter and receiver are
equipped with uniform linear arrays (ULAs) with
MT and MR omnidirectional antenna elements, re-
spectively. The coordinates of AntT1 and AntR1 are
(0, 0) and (D, 0), respectively, where D is the hori-
zontal distance between the transmitter and receiver.

The maximum Doppler frequency and carrier wave-
length are denoted as fmax and λ, respectively. The
counterclockwise direction is considered as the pos-
itive direction. Key parameter definitions are given
in Table 1. Assume that the mean power of the nth
cluster is Pn, the LOS Rician factor is K, and each
cluster consists of M rays. The channel coefficient
hkl,n(t) of the Clustern between AntTl and AntRk is
presented as

hkl,n(t) = δ(n− 1)

√
K

K + 1
exp

(
j(2πfLOS

kl t+ ϕLOS
kl )

)
︸ ︷︷ ︸

LOS

+

√
Pn

K + 1
lim

M→∞
1√
M

M∑
i=1

exp
(
j(2πfNLOS

kl,n,i + ϕNLOS
kl,n,i )

)
︸ ︷︷ ︸

NLOS

.

(1)
The calculation of channel coefficients can be

divided into the LOS component and NLOS compo-
nent. For the LOS component, the received phase of
AntRk from AntTl can be expressed as

ϕLOS
kl = ϕ0 +

2π

λ
(DLOS

kl −DLOS
l ), (2)

where

DLOS
kl =

{[(l − 1)δT cos(βT)− (k − 1)δR cos(βR)−D]2

+ [(l − 1)δT sin(βT)− (k − 1)δR sin(βR)]
2}1/2,

(3)
DLOS

l = {[(l − 1)δT cos(βT)−D]2

+ [(l − 1)δT sin(βT)]
2}1/2.

(4)

The AoA of the LOS component from AntTl to
AntRk can be computed as

θLOS
kl = arcsin

(
(k − 1)δR sin(βR)− (l − 1)δT sin(βT)

DLOS
kl

)
.

(5)
The Doppler frequency of the LOS component

between AntTl and AntRk can be computed as

fLOS
kl = fmax cos(θv − θLOS

kl ). (6)

For the NLOS component, the received phase
of AntRk from AntTl via the ith ray within the nth
cluster can be expressed as

ϕNLOS
kl,n,i = ϕ0 +

2π

λ
(DT

kl,n,i +DR
kl,n,i), (7)

where

DT
kl,n,i = {[DT

n cos(αT
n,i)− (l − 1)δT cos(βT)]

2

+[DT
n sin(αT

n,i)− (l − 1)δT sin(βT)]
2}1/2,

(8)
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Table 1 Definition of key geometry parameters

Symbol Description

δT(δR) Antenna spacing of the transmit (receive) antenna array
βT(βR) Tilt angles of the transmit (receive) antenna array
l(k),MT(MR) The index of the transmit (receive) antenna and total number of transmit (receive) antennas
DT

n Distance between the nth cluster and the first transmit antenna
DLOS

l LOS distance between the lth transmit antenna and the first receive antenna
DLOS

kl LOS distance between the lth transmit antenna and the kth receive antenna
DT

kl,n,i Distance between the nth cluster and the lth transmit antenna via the ith ray
DR

kl,n,i Distance between the nth cluster and the kth receive antenna via the ith ray
θLOS
kl AoA of the LOS component from the lth transmit to the kth receive antenna
θNLOS
kl,n,i AoA from the lth transmit and the kth receive antenna via the ith ray within the nth cluster
αT
n,i Angle of departure (AoD) from the first transmit antenna to the nth cluster via the ith ray

θv Direction of movement of the receive antenna

DR
kl,n,i = {[DT

n cos(αT
n,i)− (k − 1)δR cos(βR)−D]2

+ [DT
n sin(αT

n,i)− (k − 1)δR sin(βR)]
2}1/2. (9)

The AoA of the ith ray within the nth cluster
from AntTl to AntRk can be computed as

θNLOS
kl,n,i = arcsin

(
(k − 1)δR sin(βR)−DT

n sin(αT
n,i)

DR
kl,n,i

)
.

(10)
The Doppler frequency of the ith ray within the

nth cluster from AntTl to AntRk can be computed as

fNLOS
kl,n,i = fmax cos(θv − θNLOS

kl,n,i ). (11)

3.2 Clusters evolution on the array axis

So far, the impulse responses of the proposed
model have been derived in detail from Eqs. (1)–(11)
based on geometric relationships. However, Eq. (1)
holds if and only if Clustern ∈ {CT

l ∩ CR
k }, where

CT
l and CR

k represent the cluster set in which clusters
are observed by AntTl to AntRk , respectively. In this
section, we propose a novel visibility region method
to describe the cluster evolution at the receiver side.
Then, combined with the birth-death process at the
transmitter side, a novel cluster evolution algorithm
is proposed (Algorithm 1). The time index is tem-
porarily dropped because cluster evolution on the
time axis is not considered in this subsection. The
process of cluster evolution on the array axis includes
two parts.

1. Clusters evolve on the transmit antenna ar-
ray according to the birth-death process, which has
been widely investigated in articles (Wu SB et al.,
2014, 2015; Wu HL et al., 2015). First, assume the
initial number of clusters is N and the initial clus-
ter set of the first transmit antenna CT

1 = {cTx |

Algorithm 1 Evolution process of rays within
clusters
Input: set the initial parameters of CT

1 , and evolve on
the transmit antenna array to recursively generate
the cluster sets of the rest of the antennas according
to the birth-death process.

1: for number of transmit antennas l ∈ [1,MT] do
2: for number of clusters in the cluster set CT

l do
3: Set the total number of rays within the cluster,

and compute the offset angles of rays according
to the uniform power sub-path method;

4: for number of rays within the nth cluster i ∈
[1,M ] do

5: for number of receive antennas k ∈ [1,MR]
do

6: Compute distance between the lth trans-
mit antenna and the nth cluster via the
ith ray;

7: Compute distance between the kth receive
antenna and the nth cluster via the ith
ray;

8: Compute the power distribution against
emitted direction via the ith ray under the
given PAS;

9: Compute the visibility gain of the ith ray
corresponding to the kth receive antenna;

10: Set a threshold and if visibility gain ex-
ceeds the threshold, the ith ray will be
added to the ray sets visible to the kth
receive antenna;

11: end for
12: end for
13: end for
14: end for
Output: CT

l (l = 1, 2, . . . ,MT).

x = 1, 2, . . . , N} is given, where cTx is a representa-
tion of Clusterx corresponding to the first transmit
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antenna. The position of cTx can be determined by
the AoD of Clusterx and the distance between the
Clusterx and the origin of coordinates. These two
initial parameters can be generated according to sta-
tistical distribution. Herein, let us assume that the
distance satisfies the uniform distribution U(0, 25),
and AoD satisfies the wrapped Gaussian distribution
N(0.78, 0.112), which is based on the standard WIN-
NER II channel model (Kyösti et al., 2007). Then,
the clusters in cluster set CT

1 evolve on the array axis
to recursively generate the cluster sets of the rest of
the antennas according to the birth-death process,
namely CT

l−1(t)
E−→ CT

l (t) (l = 2, 3, . . . ,MT).
2. Herein, a novel visibility region method is

proposed to describe cluster evolution on the receive
antenna array after cluster sets CT

l have been ob-
tained. In general, a cluster is composed of some
rays, which are distinguished from each other by dif-
ferent angles. Thus, it is more reasonable to describe
a visibility region in terms of the ray rather than
the cluster. Specifically, clusters can be divided into
three categories according to the visibility of rays: a
wholly visible (WV) cluster means that all the rays
within the cluster are visible to the antenna array; a
partially visible (PV) cluster means that only part of
rays within the cluster are visible to the antenna ar-
ray; a wholly invisible (WIV) cluster means that all
the rays are invisible to the antenna array. An illus-
tration of the WV cluster and PV cluster is shown in
Fig. 2. As a result, non-stationary properties can be
modeled by incorporating the WV and PV clusters
and their corresponding parameters.

Antenna array

Wholly visible cluster

Partially visible cluster

Fig. 2 Illustration of the visible region from the ray
perspective

In our proposed scheme, the cluster visibility
region is described by gains in the visibility of rays
within the cluster, which depend on two aspects: the
emitting direction from the transmit antenna to the
receive antenna via the ray, and the distance between

the transmit antenna and the receive antenna via the
ray. Due to re-radiation of a scatterer, many rays
with different offset angles within a cluster are gen-
erated. Therefore, the number of rays and the offset
angles of rays should be determined first. Similar to
the 3GPP spatial channel model (ETSI, 2014), the
uniform power subpath method is used to calculate
offset angles of rays, which are based on the condi-
tion of the area of each section, when each ray is
equally divided under the power azimuth spectrum
(PAS). To ensure that the areas of sections divided
by two subsequent offset angles are equal, the area
of section under the given PAS can be expressed as

∫ θ2

θ1

PAS(θ, σ)dθ =
1

a(M + 1)
, (12)

where θ1 and θ2 denote the offset angles of adja-
cent rays, σ is the root mean square (RMS) angular
spread (AS), M is the total number of rays, and a

is the normalization factor. If M is odd, a = 1;
otherwise, a = 2.

After obtaining the offset angles of rays, the
emitting direction from the transmit antenna via the
ray can be determined. Due to the re-radiation of the
same scatterer, it can be considered that the emitting
direction of rays through the scatterer will satisfy the
same power distribution function. So, some kind of
PAS will be adopted to describe the power distribu-
tion against the emitting direction of rays, such as
a Laplacian distribution, Gaussian distribution, or
uniform distribution (Schumacher et al., 2002). Fi-
nally, together with logarithmic functions, which can
be used to describe the path-loss between the trans-
mit antenna and receive antenna via the ray, the
cluster visibility gain can be calculated. Let us take
the Laplacian PAS and free space path-loss function
as an example. The visibility gain of the ith ray
within the nth cluster can be expressed as

Gain = PL(DT
kl,n,i) + PL(DR

kl,n,i)

+ [Pinit − PL(DT
kl,n,i)] · PAS(θkl,n,i, σ),

(13)

PAS(θ, σ) =
Q√
2σ

exp

(
−
√
2|θ − θ0|

σ

)
,

with θ0 −Δθ ≤ θ ≤ θ0 +Δθ,

(14)

PL(d) = 20 lg

(
4πd

λ

)
, (15)

θkl,n,i = π − |θNLOS
kl,n,i |, (16)
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αT
n,i = αT

n +Δθi, i = 1, 2, . . . ,M, (17)

Δθi+1 = −1.29σ√
2

ln

(
exp

(
−
√
2Δθi
σ

)
− 2

a(M + 1)

)
,

i = 0, 1, 2, . . . , �M/2�, (18)

where calculations of DT
kl,n,i, D

R
kl,n,i, and θNLOS

kl,n,i are
related to αT

n,i, expressed in Eqs. (8)–(10), Pinit is
the initial power of the transmit antenna, Q is the
normalization constant, θ0 is the average angle, Δθ

is the maximum value range, Δθi is the offset angle
of the ith ray, and �·� indicates rounding down.

For each ray within the clusters in CT
l , its visi-

bility gain to the entire receive antenna array will be
calculated according to Eq. (13). After a threshold is
set, which can be determined through measurements
in specific scenarios, the visibility of rays within the
cluster can be judged. If the ray visibility gain to the
receive antenna exceeds the threshold, it becomes
visible and is added to the ray sets that are visible
to the corresponding receive antenna. The complete
algorithm for obtaining ray sets of the entire receive
antenna array is shown in Algorithm 1.

3.3 Cluster evolution on both the array and
time axes

By combining the birth-death process on the
time axis in Zwick et al. (2002), cluster evolution on
both the array and time axes can be established. In
our scheme, the time-variant property of the channel
is caused by the movement of both the receiver and
clusters. Therefore, parameters DT

n , αT
n,i, DT

kl,n,i,
DR

kl,n,i, and θNLOS
kl,n,i become time-variant as DT

n (t),
αT
n,i(t), DT

kl,n,i(t), DR
kl,n,i(t), and θNLOS

kl,n,i (t), respec-
tively. In this case, two aspects should be considered.
First, geometrical relationships among the transmit-
ter, the receiver, and clusters need to be updated as
time changes. Second, cluster sets of each antenna
evolve with time either. Clustern and the receive an-
tenna array move to new positions from t to t+Δt,
as shown in Fig. 3. Assume Clustern moves in an
arbitrary direction θc,n with a speed of vc, then at
t+Δt, the received phase of AntRk from AntTl via the
ith ray within the nth cluster can be expressed as

ϕNLOS
kl,n,i (t+Δt) = ϕ0

+
2π

λ
[DT

kl,n,i(t+Δt) +DR
kl,n,i(t+Δt)], (19)

Clustern(t)

Clustern+1(t+Δt)

Antl
T

Antk

Dl
LOS

Dkl

Dn

DT

DR

βT
αT

θkl,n,i

βR

θNLOS(t+Δt)

θLOS

θv(t)D

kl,n,i

kl
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n,i

T

DT
kl,n,i(t+Δt)
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kl,n,i(t+Δt)

θNLOS(t)kl,n,i

θc,n

R

Fig. 3 Geometrical relationship evolution from t to
t+Δt of the proposed model

where

DT
kl,n,i(t+Δt)

= {[DT
n (t) cos(α

T
n,i(t)) + vcΔt cos(θc,n)

− (l − 1)δT cos(βT)]
2 + [DT

n (t) sin(α
T
n,i(t))

+ vcΔt sin(θc,n)− (l − 1)δT sin(βT)]
2}1/2, (20)

DR
kl,n,i(t+Δt)

= {[(k − 1)δR cos(βR) + vΔt cos(θv) +D

−DT
n (t) cos(α

T
n,i(t))− vcΔt cos(θc,n)]

2

+ [(k − 1)δR sin(βR) + vΔt sin(θv)

−DT
n (t) sin(α

T
n,i(t)) − vcΔt sin(θc,n)]

2}1/2. (21)

The Doppler frequency of the ith ray within the
nth cluster from AntTl to AntRk at t + Δt can be
expressed as

fNLOS
kl,n,i (t+Δt) = fmax cos(θv−θNLOS

kl,n,i (t+Δt)), (22)

where

θNLOS
kl,n,i (t+Δt)

= arcsin

[
(k − 1)δR sin(βR) + vΔt sin(θv)

DR
kl,n,i(t+Δt)

− DT
n (t) sin(α

T
n,i(t)) + vcΔt sin(θc,n)

DR
kl,n,i(t+Δt)

]
. (23)

In addition to geometrical relationships, clus-
ter sets of each antenna evolve with time as well.
As time changes, cluster sets of the transmit an-
tenna evolve based on the birth-death process, which
causes clusters in cluster sets to be divided into two
categories: survived clusters and newly generated
clusters. The geometrical relationships of surviv-
ing clusters are updated according to Eqs. (19)–(23).
For newly generated clusters, the distributions of
the newly generated clusters are initialized accord-
ing to the method as mentioned in Section 3.2. Af-
ter CT

l (l = 1, 2, . . . ,MT) at time t + Δt have been
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obtained, the visibility region method proposed in
Section 3.2 is used to describe the cluster evolution
on the receive antenna array.

4 A corresponding simulation model
for the theoretical model

To analyze the spatial-temporal properties of
our proposed channel model with cluster evolu-
tion on both the array and time axes, the spatial-
temporal correlation function will be introduced in
this section. Meanwhile, a simulation model with a
finite number of rays, which captures channel spatial-
temporal properties as accurately as possible, is de-
veloped. The spatial-temporal correlation function
between the channel gains hkl,n(t) and hk′l′,n(t) is
defined as

ρkl,k′l′,n(δT, δR,Δt; t) = E

[
h∗
kl,n(t)hk′l′,n(t+Δt)

|h∗
kl,n(t)||hk′l′,n(t+Δt)|

]
.

(24)
Because the LOS component and NLOS compo-

nents are independent, Eq. (24) can be rewritten as
the sum of the spatial-temporal correlation functions
of the LOS component and NLOS component, i.e.,

ρkl,k′l′,n(δT, δR,Δt; t)

= ρLOS
kl,k′l′,n(δT, δR,Δt; t) + ρNLOS

kl,k′l′,n(δT, δR,Δt; t),

(25)

where

ρLOS
kl,k′l′,n(δT, δR,Δt; t) =

Kδ(n− 1)

K + 1
exp

(
jφLOS

)
, (26)

ρNLOS
kl,k′l′,n(δT, δR,Δt; t)

=
1

Kδ(n− 1) + 1
E

[
lim

M→∞
1√
M

M∑
i=1

exp
(
jφNLOS

)]
,

(27)

with

φLOS = 2πfLOS
k′l′ (t+Δt)(t+Δt)− 2πfLOS

kl (t)t

+ ϕLOS
k′l′ (t+Δt)− ϕLOS

kl (t), (28)

φNLOS = 2πfNLOS
k′l′,n,i(t+Δt)(t +Δt)− 2πfNLOS

kl,n,i (t)t

+ ϕNLOS
k′l′,n,i(t+Δt)− ϕNLOS

kl,n,i (t). (29)

As shown in Eq. (1), the number of rays is
infinite in the proposed theoretical channel model.
Therefore, the discrete AoDs αT

n,i can be represented

by a continuous random variable αT
n . Under the

given probability density function (PDF) of the AoD
pαT

n
(αT

n ), such as a Laplacian distribution, Gaussian
distribution, uniform distribution, and von Mises
distribution, ρNLOS

kl,k′l′,n(δT, δR,Δt; t) is computed as

ρNLOS
kl,k′l′,n(δT, δR,Δt; t) =

∫ −π

−π

exp(jφNLOS)pαT
n
(αT

n )dα
T
n .

(30)
However, a channel simulator with infinite rays

is not practical because of the high complexity of
implementation. Therefore, a simulation model that
aims at approximating ρNLOS

kl,k′l′,n(δT, δR,Δt; t) with fi-
nite and discrete AODs αT

n,i should be discussed.
Our proposed method is as follows. Given the PDF
that αT

n satisfies in the theoretical channel, the uni-
form power subpath method is used to calculate the
offset angles with the PAS satisfying the same PDF;
e.g., if αT

n satisfies the Laplacian distribution, off-
set angles are calculated under the Laplacian PAS.
Then, the αT

n,i will be obtained. As can be imagined,
the simulation model will be approximately equal to
the theoretical model with enormous rays. Thus, the
approximated value can be expressed as

ρNLOS
kl,k′l′,n(δT, δR,Δt; t) ≈ 1

M

M∑
i=1

exp(jφNLOS). (31)

5 Numerical results and analysis

In this section, numerical results are provided to
analyze and verify the proposed channel model. To
perform numerical analysis, corresponding parame-
ters are generated according to Section 3. Assume
that the parameters for the birth-death process are
the same as those in Wu HL et al. (2015). The Lapla-
cian PAS and free space path-loss function are used
when calculating the visibility region gain. For the
theoretical channel model, the offset angles of rays
within the cluster are assumed to obey the Lapla-
cian distribution. Therefore, the PDF of angles of
rays within the nth cluster can be expressed as

pαT
n
(αT

n ) =
1

2b
exp

(
−|αT

n − μ|
b

)
, αT

n ∈ (−π, π],

(32)
where b is the scale parameter, and μ is the position
parameter.

By setting the number of raysM = 20, an exam-
ple of the maximum power deviation of rays within
the cluster for different antenna pairs is depicted
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in Fig. 4. It can be observed that the maximum
power deviation is more than 6 dB for the antenna
pair (k, l) = (15, 15), which may result in some rays
within the cluster being invisible to the receive an-
tenna. This shows the necessity for describing non-
stationary properties of clusters in terms of rays.
Furthermore, by setting the threshold value −100

dB, an example of ray evolution on the array axis is
depicted in Fig. 5. There are originally 20 rays (Ray1
to Ray20) existing within one cluster, and these rays
evolve according to their visibility gain. It can be ob-
served that four rays (Ray13, Ray15, Ray17, Ray19)
of the original 20 rays are invisible to the first an-
tenna. Ray10 is visible to the entire receive antenna
array, and Ray5 is visible to a portion of the receive
antenna array. As a result, different antenna ele-
ments may observe different rays within one cluster.
Additionally, unlike the description of the visibility
region from the cluster perspective, the existing rays
within the cluster and their parameters are sufficient
for computing channel coefficients.
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Fig. 4 An example of maximum power deviation of
rays within the cluster

By setting Δt = 0, the spatial-temporal correla-
tion function reduces to the spatial cross-correlation
function (CCF) ρkl,k′l′,n(δT, δR; t). Furthermore,
if we set δT = 0, the impact of the number of
rays within the cluster on the absolute spatial CCF
|ρ11,12,1(0, δR; t)| of the receiver is depicted in Fig. 6.
The figure shows that the increase in the num-
ber of rays results in higher receiver antenna cor-
relations. In addition, the spatial CCF values
of the simulation model are approaching those of
the theoretical model with an increasing number of
rays. Therefore, it shows that the simulation model
is able to capture the channel spatial correlation
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Fig. 5 An example of ray evolution on the re-
ceive antenna array (the asterisk symbol in the two-
dimensional plane means its corresponding antenna
element observes its corresponding ray element)

characteristic with the finite number of rays.
By setting the number of rays M = 80, the

receiver absolute spatial CCF in terms of different
values of adjacent antenna (k′, k) pairs with |k′ −
k| = 1 is depicted in Fig. 7. On one hand, it shows
the trend that spatial CCF values slowly decrease as
the normalized antenna spacing increases, which is
similar to the observation in Wu HL et al. (2015). On
the other hand, as to |k′−k| = 1, spatial CCF values
are different with different values of k′ and k, which
shows that the spatial CCF value depends not only
on the absolute difference between antenna indices
but also on the reference antenna indices. Therefore,
WSS properties on the antenna array axis are not
valid under the spherical wave-front assumption.
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Fig. 6 Absolute receiver spatial cross-correlation
function (CCF) |ρ11,12,1(0, δR; t)| of the proposed
channel model in terms of the number of rays at
the receiver side (MR = 32, MT = 1, t = 1 s,
D = 150 m, b = 1, μ = 0, βT = βR = π/2, λ = 0.15 m,
fmax = 66.66 Hz, θv = π/3, NLOS)
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Fig. 7 Absolute receiver spatial cross-correlation
function (CCF) |ρk1,k′1,1(0, δR; t)| of the proposed
channel model in terms of different values of (k′, k)
pairs with |k′ − k| = 1 (MR = 32, MT = 1, t = 1 s,
D = 150 m, b = 1, μ = 0, M = 80, βT = βR = π/2,
λ = 0.15 m, fmax = 66.66 Hz, θv = π/3, NLOS)

Setting l = l′ and k = k′, the absolute tempo-
ral auto-correlation function (ACF) |ρkl,n(Δt; t)|, in
terms of the number of rays within the cluster at the
receiver side, is analyzed in Fig. 8. The figure shows
that the temporal ACF decreases more slowly as the
number of rays becomes larger, and the increase in
the number of rays results in temporal ACF values
of the simulation model being more similar to those
of the theoretical model. Setting the number of rays
M = 80, the auto-correlation characteristic of a sin-
gle receive antenna at different times is shown in
Fig. 9. Together with updated geometrical relation-
ships and cluster evolution on both the array and
time axes, Fig. 9 shows that the temporal ACF value
decreases as the time difference increases, demon-
strating the temporal non-stationary characteristics
of the model.

6 Conclusions

A novel theoretical non-stationary channel
model reflecting the spherical wave-front assumption
and cluster evolution on both the array and time axes
is proposed for massive MIMO. A spherical wave-
front has been assumed to capture the characteris-
tics of AoA shifts and Doppler frequency variations
because of near-field effects, and expressions for cal-
culating channel coefficients are derived. To describe
the non-stationary properties of clusters on both the
array and time axes, we propose a novel visibility re-
gion method that models cluster evolution in terms
of the ray visibility gain. Combining this visibility
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Fig. 8 Absolute receiver temporal auto-correlation
function (ACF) |ρ11,1(Δt; t)| of the proposed channel
model in terms of the number of rays within the clus-
ter at the receiver side (MR = 32, MT = 32) t = 1 s,
D = 150 m, b = 1, μ = 0, βT = βR = π/2, λ = 0.15 m,
fmax = 66.66 Hz, Vc = 1 m/s, θc,n = π/3, θv = π/3,
NLOS)
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Fig. 9 Absolute temporal auto-correlation function
(ACF) of Cluster1 |ρ11,1(Δt; t)| of the proposed chan-
nel model in terms of time t = 1 s and t = 3 s (MR =

32, MT = 32, D = 150 m, b = 1, μ = 0, M = 80,
βT = βR = π/2, λ = 0.15 m, fmax = 66.66 Hz,
Vc = 1 m/s, θc,n = π/3, θv = π/3, NLOS)

region with the birth-death process, a novel cluster
evolution algorithm is presented. Additionally, the
impacts of cluster evolution and the spherical wave-
front assumption on the statistical properties of the
channel model are investigated. A simulation model
corresponding to the theoretical model is also pro-
posed, and simulation results show that the channel
characteristics of the simulation model are consistent
with those of the theoretical model. Consequently,
our proposed channel model, which captures the im-
portant channel features of massive MIMO channels,
can serve as a design framework to model massive
MIMO channels.
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