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Abstract: Malfunction or breakdown of certain mission critical systems (MCSs) may cause losses of life, damage the
environments, and/or lead to high costs. Therefore, recognition of emerging failures and preventive maintenance are
essential for reliable operation of MCSs. There is a practical approach for identifying and forecasting failures based
on the indicators obtained from real life processes. We aim to develop means for performing active failure diagnosis
and forecasting based on monitoring statistical changes of generic signal features in the specific operation modes of
the system. In this paper, we present a new approach for identifying emerging failures based on their manifestations
in system signals. Our approach benefits from the dynamic management of the system operation modes and from
simultaneous processing and characterization of multiple heterogeneous signal sources. It improves the reliability of
failure diagnosis and forecasting by investigating system performance in various operation modes, includes reasoning
about failures and forming of failures using a failure indicator matrix which is composed of statistical deviation of
signal characteristics between normal and failed operations, and implements a failure indicator concept that can be
used as a plug and play failure diagnosis and failure forecasting feature of cyber-physical systems. We demonstrate
that our method can automate failure diagnosis in the MCSs and lend the MCSs to the development of decision
support systems for preventive maintenance.
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1 Introduction

Certain cyber-physical systems (CPSs) are mis-
sion critical systems. Their malfunction or break-
down may cause losses of life, damage the environ-
ments, and/or lead to high costs. The risk of having
critical malfunction or breakdown of systems expo-
nentially grows in line with the increase of complex-
ity (Somani and Vaidya, 1997). Therefore, prevent-
ing failures and faults is crucial for these systems.
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Preventive maintenance can guarantee that mission
critical systems can operate without failure (Pon-
sard et al., 2005). However, it assumes the recogni-
tion of emerging failures, which entails a deep under-
standing of failure manifestations and development
of reliable failure detection, diagnosis, and forecast-
ing techniques.

Failures have been interpreted as permanent in-
terruptions of the operation or as a significant devi-
ation from the expected behavior of a system (Mi-
clea and Sanislav, 2011). They may be preceded by
the occurrence of faults that are regarded as devia-
tions from the expected behavior of a sub-system or a
component (Witczak, 2014). Depending on the type
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of failure, faults may progressively occur before the
system breaks down. From the perspective of fail-
ure prevention, understanding the process of fault
manifestation is essential for developing preventive
actions (such as failure forecasting). It requires a
proper understanding of relevant features that char-
acterize different faults. These features were con-
sidered as failure symptoms and were referred to as
fault indicators (Fortuna et al., 2007).

Failure forecasting requires two main steps: (1)
recognizing the way in which failure manifests for
failure diagnosis; (2) implementing prognosis based
on the knowledge acquired about each failure man-
ifestation. We present a failure indicator based ap-
proach that aims to tackle the first step, in the
context of failure diagnosis of the first- and second-
generation CPSs. The first- and second-generation
CPSs have a relatively high degree of uncertainty in
their operation due to the large number of compo-
nents, their interaction with each other, and the host
environment. CPSs are instrumented with multiple
sensors, which provide valuable information about
the operation of the system. The acquired and gen-
erated information is used as a basis for automated
decision-making and as control of the operation of
the system.

We define the failure indicators as observable
and measurable statistical deviations of system op-
eration from the expected behavior of the system.
We take advantage of the high level of instrumen-
tation of a CPS to perform parallel analysis of the
multiple system signals representing mass, energy,
and information flows. Deviations in the signal char-
acteristics are considered as manifestations of faults,
i.e., fault indicators. Recognition of the deviations
is facilitated by segmentation of signals based on the
operation mode of the system. Our failure analysis
method strongly uses the fact that statistical vari-
ance of signal characteristics in a specific operation
mode is smaller than that in the overall system op-
eration. Our main assumption is that failure symp-
toms are manifested in system signals differently de-
pending on the system’s operation modes, and that
both symptom occurrence and the lack of symptoms
can be used as indicators to determine the type of
failure. This gives a good basis for a failure diag-
nosis method to distinguish signal deviations with
higher accuracy, and to provide the means for con-
ducting failure forecasting in our future research. It

is our assumption that fault symptoms and the lack
of symptoms form a unique pattern (i.e., failure in-
dicator) for each failure mode, providing a reliable
foundation for not only the failure diagnosis but also
the understanding of the phenomenon of failure man-
ifestation. Time-dependent analysis of failure indi-
cators provides the means for understanding failure
evolution and the basis for implementing failure fore-
casting methods.

2 Overview of indicators-based failure
detection and diagnosis methods

The analysis of failure manifestations entails
studying fault occurrence as these precede failures,
and constitutes its main symptoms. Multiple fault
detection and diagnosis techniques have been devel-
oped to keep continuous system operation in a cost-
effective way. The first approach of the fault detec-
tion and diagnosis techniques directly involves sys-
tem operators and system experts. They are used
to analyze system characteristics, such as compo-
nent wear, sound, and smell, to determine abnor-
mal events that could be related to failures. In this
context, the most elementary approaches are limit
checking and redundancy.

Limit checking investigates whether certain pa-
rameters are within the pre-defined upper and lower
limits (Fujimaki et al., 2005). In this method, the
fault indicator is interpreted as a deviation of the
observed data from a defined threshold (Johnson,
1996). Due to its simplicity, limit checking has been
widely used in rule-based approaches (where experts
determine the value of a threshold based on their
knowledge and experience), or in distribution-based
approaches (He et al., 2016). However, the use of
thresholds for analyzing failures in non-linear sys-
tems is difficult for two reasons: (1) non-linear sys-
tems have an unpredictable behavior, which requires
the specification of a wide range of threshold values;
(2) a wide range of threshold values makes fault de-
tection unreliable (Lee et al., 2009). To overcome
these limitations, the adaptable thresholding meth-
ods have been proposed (Qi et al., 2007; Patan, 2008;
Cholewa et al., 2010; Rezazadeh et al., 2014). These
methods make use of historical data or estimate a
residual index (i.e., the difference between the ob-
served behavior and the predicted one) to set the
range of acceptable performance of a component in
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various application contexts. However, these ap-
proaches focus on the isolated problem of compo-
nent faults but do not consider the dynamic interre-
lationship between the various signals of the system
(Sobhani-Tehrani and Khorasani, 2009a).

Redundancy-based fault detection techniques
check the consistency between the known variables,
inputs, and measured outputs based on relations de-
rived from a system’s model or based on the du-
plication of hardware components (Tornil-Sin et al.,
2014). This consistency is evaluated by estimating
a residual index. The first implementation of redun-
dancy implies the duplication of hardware compo-
nents. It requires using at least two identical sensors
or actuators as signal and data sources for character-
izing the system performance from the perspective of
fault diagnosis (Hwang et al., 2012). Nevertheless,
redundant implementation of hardware implies an
increase in production and maintenance costs (Shui
et al., 2009; Yodo and Wang, 2015). This situation,
along with the limitations that limit checking entails,
led researchers to develop more sophisticated meth-
ods that provide a reliable fault detection and diag-
nosis in a cost-effective way. The literature distin-
guishes three main approaches: model-based, data-
driven, and signal-based failure diagnosis.

2.1 Model-based fault detection methods

Model-based fault detection simultaneously ap-
plies several fault detection and diagnosis techniques,
such as state observer-based, parity equations, and
parameter estimation. These techniques conduct
residual estimation based on analytical models (Iser-
mann, 2006b), and the model’s output is compared
with the observed system’s output (Ding, 2008a).

In general, parity equations are mathematical
models of the system which are used to determine
the residual between the observed system behavior
and the estimated one (Sharifi and Langari, 2013);
state observer estimates the residuals based on math-
ematical models that reconstruct process state vari-
ables from available system measurements (Soroush,
1997); parameter estimation uses analytical models
to compute the residuals of the system parameters
as it presupposes that faults are manifested in the
physical parameters of the system.

One of the most common residual-based ap-
proaches is the Kalman filter (KF) (Rudin et al.,
2014; Zhang et al., 2014; Ghanbari, 2015; Irita and

Namerikawa, 2015). KF is a state observer-based
fault detection method that considers multiple fac-
tors for the estimation of the residual index, such as
the effect of noise, uncertainty, and faults (Daum,
2015). Although this method has been widely im-
plemented, the KF does not suffice for dealing with
the significant nonlinearities and uncertainties (Qi
et al., 2007). Some variations of the KF have been
developed to face this problem, such as the extended
Kalman filter (EKF) (Gao et al., 2015). However,
the stability and accuracy of this method are still
questionable (Daum, 2015). In the case of parity
equations, analysis of residuals is conducted based
on the dynamic input-output models that are used
to describe the operation of the system (Gertler and
Singer, 1990). These techniques are sensitive to mea-
surement noise and system disturbances caused by
the derivatives used to compute the residual index
(Sobhani-Tehrani and Khorasani, 2009a).

Realization of the residual index as a fault in-
dicator depends on the reliability of the analytical
model of a complex system. Simplifications applied
to the analytical models may cause a mismatch be-
tween the output of the model and observed system
behavior (Puig et al., 2015). This mismatch may
be enhanced by the effect of noise and disturbances
that cannot be modeled, thus causing the residual to
become nonzero during the failure-free operation of
the system (Luh et al., 2004). This problem limits
the applicability of the model-based failure indica-
tors to well defined operation scenarios that are not
subject to uncertainties, unlike non-linear systems
(Bocaniala and Palade, 2006; Zweigle et al., 2013).
Furthermore, the residual indicator is limited to the
specific system functions that are widely known and
predictable, hindering its application in highly com-
plex systems where fault propagation across subsys-
tems occurs (Sun et al., 2014). The implementation
of the residual index in the context of model-based
analysis strongly depends on limit checking. It deter-
mines the admissible threshold that triggers a failure
alarm (Ding, 2008b) whenever it exceeds the defined
threshold (Johnson, 1996). This makes the residual
index susceptible to the drawbacks of limit checking.
In the case of discrete event-based failure diagnosis
approaches, the use of the residual as a failure indica-
tor is complex, because the difference between events
is not necessarily well defined (Sobhani-Tehrani
and Khorasani, 2009b). Furthermore, the way of
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measuring the error between the observed behavior
and the expected one cannot be generalized for these
cases due to the qualitative nature of the system
models.

2.2 Data-driven techniques

Data-driven approaches rely on the historical
data for determining the occurrence and type of fail-
ures. The main advantage of these approaches is
that they do not require specific knowledge about the
system and its operation in the way that the model-
based approaches do. They operate with a large
amount of data (Wang et al., 2013), which makes
them suitable for failure detection and diagnosis in
large and complex systems (Alzghoul et al., 2014).
One subset of the data-driven techniques is the clas-
sification techniques.

Classification techniques relate to the reference
symptoms of the well known failure mode with the
observed ones to conduct failure diagnosis (Ye et al.,
1993). Bayes classifiers, support vector machine, ar-
tificial neural networks, and k-means use fault in-
dicators, such as probability, residuals, and data
distance, for fault detection and diagnosis based on
classification approaches. Bayes classifiers have been
widely used for fault detection and diagnosis (Hood
and Ji, 1997; Krishnamachari and Iyengar, 2004;
Mehranbod et al., 2005; Zhou et al., 2011). They
estimate the probability distributions of different at-
tributes (among others such as data mean, standard
deviation, amplitude, and frequency) that represent
symptoms, given the class from a training dataset
(Ramoni and Sebastiani, 2001). The main draw-
back of Bayes classifiers is that they require the data
with Gaussian probability density distribution and
the definition of class-specific densities (Isermann,
2006a). To determine the probability for classifi-
cation of failures, polynomial classification is con-
ducted based on the assumption that decision rules
can be approximated by polynomials (Leonhardt and
Ayoubi, 1997). However, the definition of polynomial
order is not straightforward and it constitutes a crit-
ical step of this approach.

The residual index is used to conduct
classification-based fault diagnosis. Artificial neural
network (ANN) can be used for classification of faults
based on the evaluation of residual signals (Luh
et al., 2004; Patan, 2008; Li et al., 2014; Zarei et al.,
2014). Opposite to the approach of the previously

discussed analysis of signal residual, ANN does not
compare the observed output with that of an ana-
lytical model of the system. Instead, it determines a
model that explains failures based on the input and
output data. This approach provides high flexibility,
because no previous knowledge in the relationship
between the inputs and outputs is required due to
the lack of analytical models describing system be-
havior (Puig et al., 2015).

ANN is typically implemented as a black box
approach, in which the relationships between the
symptoms and failure modes remain hidden. As a
result, ANN cannot provide insight into failure man-
ifestations and failure forming processes. Moreover,
the application of ANN has an important drawback
since it is easily trapped into a local minimum (Wu
et al., 2016), thus preventing the residual reaching
its real minimum. Several approaches have been de-
veloped to solve this problem. These approaches
include the modification of the network parameters
(such as the weight and size of the network), intro-
duction or subtraction of neurons, and implemen-
tation of statistical parameters (such as mean and
variance) for evaluating the weight, error, and out-
put (Bellido and Fernández, 1991). The introduction
of a momentum parameter is made to avoid the algo-
rithm converging to a local minimum by modifying
the step change of the weight (Shukla et al., 2010).

Support vector machine (SVM) uses a classifi-
cation distance as a criterion to determine the oc-
currence of a failure mode (Liu et al., 2010; Mu-
ralidharan et al., 2014; Yin et al., 2014; Hang et al.,
2016; Swetapadma and Yadav, 2016). In its classical
version, this method determines a hyper-plane that
optimally divides data corresponding to two differ-
ent classes through training datasets (Kishore et al.,
2016). Although this method has a high predictive
accuracy, it is very sensitive to parameter selection
(Stockman et al., 2012). It is also sensitive to over-
lapping groups, as observations near one another are
treated alike (Berk, 2008). Although the classical
implementation is limited to a two-class classifica-
tion problem, multiclass classification can be mostly
used by decomposing the problem into several bi-
nary analyses that involve the multiple implemen-
tation of binary SVM (Mathur and Foody, 2008).
One-vs-all SVM, pairwise SVM, error-correcting out-
put code (ECOC), and all-at-once SVM are the
most common methods for conducting multiclass
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prediction (Abe, 2010). Nevertheless, these are com-
putationally more expensive. Although the nearest
neighbor-based fault detection is sensitive to overlap-
ping groups and uneven data density, cluster density
information has been proved useful in improving the
accuracy of the classification, overcoming the uneven
data density problem (Kang et al., 2016).

Data distance-based fault indicators can be im-
plemented without previous specification of the class
during the learning process, as it is the case of k-
means and ANN based on the radial basis functions.
These types of methods are known as the “unsu-
pervised failure classification,” as they can recognize
hidden relationships in unlabeled data (Abdolsamadi
et al., 2015). They enable the classification of not
only the known failures but also the emerging ones
(Zhang, 2016). They determine the distance of any
new observation with respect to the center of each
of the available classified failure clusters. However,
these methods are not as powerful or reliable as the
supervised ones, because the distance index used as
the failure indicator presents problems for managing
overlapping classes (Isermann, 2006b). Additionally,
supervised classification methods raise the stability-
plasticity dilemma. This refers to the behavior that
causes the system to forget the already learned cat-
egories when it learns new clusters and patterns of
relationships (Fernando and Surgenor, 2017).

Data-driven techniques are the very flexible
methods, as they can discover variable relationships
based on historical data. The learning capabilities
they provide make them very suitable for failure
analysis, particularly for facing the emergence of the
unknown failure modes. Nevertheless, these methods
do not provide information that allows understand-
ing of failure manifestations. Classification methods
have proved very useful for pattern recognition and
for discriminating data coming from different classes.
However, the relationship between predictors is dif-
ficult to understand, hindering failure analysis.

2.3 Signal-based analysis techniques

Signal-based analysis is underpinned by the de-
velopment of signal models for determining the de-
viations from a reference signal. These deviations
are manifested on signal attributes, which can be
extracted in time, frequency, or time-frequency do-
mains. Signal analysis in the time domain studies the
measured variables as a function of time by focusing

on the geometrical factors, such as amplitudes,
peaks, and statistical parameters. Cross-correlation
analysis and statistical features-based analysis are
usually conducted in the time domain (Lei, 2017).
The cross-correlation analysis can be used to eval-
uate the similarity between two signals, e.g., when
comparing a failure-free reference signal with an ob-
served one with regard to detecting failures. The
statistical features-based analysis makes use of signal
statistical properties for failure detection. However,
some sorts of distortions and small disturbances of
signals are difficult to detect in the time domain. Be-
cause of these limitations, frequency-domain analysis
(FDA) is presented as another option for feature ex-
traction. FDA transforms the captured signal from
the time domain to the frequency domain. The most
popular technique is Fourier analysis, which repre-
sents an arbitrary function in a finite interval as
a sum of sinusoids (Alencar and da Rocha, 2005).
While the representation of signals in the time do-
main indicates the evolution of the signal amplitude
over time, representation in the frequency domain
shows how quickly such changes take place (Mon-
taño et al., 2007). This approach has, however, an
important limitation. FDA does not allow determin-
ing the time in which failure symptoms occur, thus
preventing the interpretation of the failure manifes-
tations and the analysis of their root cause.

The need for time-frequency domain analysis
(TFDA) typically arises because of the lack of time
information in frequency-domain analysis (Ramos
et al., 2009). Information about time may be re-
quired in some cases, as the actual signal frequency
composition may change with time. For this rea-
son, TFDA analysis captures both frequency and
time information about the processed signal. Among
others, the widely known methods for performing
TFDA analysis are short time Fourier (STF) analy-
sis, Wigner-Ville distribution (WVD) analysis, and
wavelets analysis. The wavelets analysis method is
the most popular one. As with other signal-based
analyses, it represents signals as a composition of a
set of basis functions. Nevertheless, the selection of
such functions implies minimizing the complexity of
its representation (Albertos and Mareels, 2010).

Signal-based prediction is a very useful tech-
nique for evaluating system performance. The rea-
son is that signals typically have features that may
be indicators of failure onset and their manifestation.
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However, these methods rely on prior knowledge of
the way in which signal characteristics are influenced
by the occurring failures. This makes it difficult to
use these methods to evaluate the emerging failures
and to automate the failure diagnosis process. Con-
trol actions can have a negative effect on signal-based
failure analysis. They modify system settings, thus
altering signal properties. This situation can lead to
false failure alarms, as variations in such properties
can be misinterpreted as failure effects.

In conclusion, all the aforementioned fault di-
agnosis methods are typically embedded into com-
plex algorithms that aim at detecting failures. Their
implementation is limited to the analysis of specific
parameters or component functions. Therefore, they
do not facilitate reasoning on the effect of faults at
the system level. They still face four important chal-
lenges: (1) scalability of the fault indicator to deal
with emerging functions and their possible faults
without losing autonomy in failure diagnosis; (2) au-
tomated failure diagnosis based on reasoning with
multiple signals; (3) understanding of failure mani-
festations and failure evolution; (4) scalability of the
method for forecasting purposes. To address these
challenges, we introduce a novel concept for explor-
ing failure indicators based on heterogeneous signal
processing. This concept is a data-driven approach
to failure diagnosis and forecasting. It allows itself
to learn the relationships between symptoms and
failure modes; therefore, unknown failures can be
learned. However, unlike the aforementioned meth-
ods that conduct failure classification based on data
density, the proposed approach performs classifica-
tion based on the pattern formed by the combination
of symptoms and the lack of symptoms that each fail-
ure mode produces.

3 Elements of the theory underpinning
the proposed failure indicator

3.1 Theoretical considerations

The proposed method intends to obtain failure
indicators (FI). It relies on the segmentation of sig-
nals which belong to a set of sensor signals (SS) ob-
tained from sensors installed in the system:

SS = {SSj |j = 1, 2, . . . , p}. (1)

In addition to these measures, the actuator
information is collected through a set of actuator

signals (SA) that are used as the trigger for the
segmentation process. Actuator signals are symboli-
cally represented as

SA = {SAj |j = 1, 2, . . . , n}. (2)

Hence, SS and SA together form the set of sys-
tem signals (S), S = SA ∪ SS.

The natural variations in the surrounding envi-
ronment and the frequent changes of the use condi-
tions demand that the system should present multi-
ple operative behaviors. Every operative behavior is
enabled by a particular combination of system set-
tings. A system operation mode (SOM) describes
system behavior at time t based on the actual sys-
tem settings. Our formal definition of an SOM is a
singular combination of all the component operation
modes (COM) of the system at a particular time t.
COMs can be regarded as the component state at
time t. From now on, the set of all potential COMs
(ζ) of SAj can be expressed as

ESAj
= {ζ1, ζ2, . . . , ζu}. (3)

All the above-presented definitions are neces-
sary for the technical introduction of the concept of
“system level failure indicator.” Denote ζd for any
particular SOM at time t, where ζ(t) = {ζd(t)|d =

1, 2, . . . , l}. Considering that SOM denotes a single
combination of COM at time t, ζd can be expressed
as

ζd = {ζSA1
(t), ζSA2

(t), . . . , ζSAk
(t)}. (4)

For instance, let us consider the example of a
greenhouse where the water tank is irrigating and
heating up the water in the reservoir at the same
time t. Considering the aforementioned notation,
the system operation mode ζd at time t can be rep-
resented as ζd = {ζSA1

(t), ζSA2
(t), ζSA3

(t), ζSA4
(t)},

where, for example, it may represent a situation
such as ζSA1

(t) = ValveOpen, ζSA2
(t) = ValveClose,

ζSA3
(t) = ValveClose, and ζSA4

(t) = HeaterOn.
Some other important concepts should be intro-

duced for defining a system-level failure indicator.
These are “failure mode” (Fr) and “signal segment”
(Sg). Failure mode is a particular type of failure that
can occur in a system. Every failure mode presents
certain characteristic symptoms (φ) that can be used
in failure diagnosis. We consider a symptom any de-
viation of a signal from its expected behavior, which
can be explained by the effect of a failure.
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A “signal segment” (Sg) is a part of a signal that
is measured during a particular time interval. It in-
cludes all measured/sampled values of a signal (SSj )
between a start point in time ts and an end point
in time te. The start and end points are determined
by any variations on any COM. Therefore, Sg repre-
sents a system variable during a specific SOM (ζd).
The same SOM (ζd) can occur several times during
the whole signal measurement period, and may be
detected several times in the whole signal during the
system operation. Therefore, each individual seg-
ment, representing a SOM, is expressed as

Sgh = [SS(ts), . . . , SS(te)], (5)

where SS(t) is the measured value of a particular
sensor signal (SS) in a specific time t.

3.2 Description of the proposed failure
indicator (FI)

We define the “failure indicator” (FI) as anm×n
matrix whose rows are system sensor signals (SS) and
columns are system actuator signals (SA). In the FI

matrix, each item FIi,j is composed by the presence
or absence of a symptom φ in a segment Sgh from the
signal SSj corresponding to a particular SOM (ζd),
expressed as

FI =

⎡
⎢⎣

φ1,1 · · · φ1,n
...

...
φm,1 · · · φm,n

⎤
⎥⎦ , (6)

where φ(SSj , ζd) equals 1 if there is a symptom, or 0
if there is a lack of symptom.

To build a failure indicator, it can be inferred
that failures are derived because of the deviation be-
tween the signal features obtained from the regular
operation (O) (i.e., without failure) and irregular op-
eration of the system (i.e., under fault/failure condi-
tions). The reference behavior (∂) is introduced to
describe the characteristic behavior of either a par-
ticular “failure mode” (Fr) or a failure-free system. In
every SOM (ζd), data corresponding to the observed
signal (SSj ) are compared with data of the system’s
reference behavior ∂, corresponding to a given signal
(SSj ) during ζd. A detailed description of the process
to be followed to build an FI is given in the following
sections.

3.3 Methods for deriving failure indicators

Signals collected through data from the system
is collected in a vector S, where signals from actua-
tors SA and sensors SS are arranged as

S = [SA1 , . . . , SAn , SS1 , . . . , SSp ], (7)

where n denotes the number of actuators, and p is
the number of sensors. All signals have the same
time t; therefore, they are stored as follows:

S(t) = [SA1(t), . . . , SAn(t), SS1(t), . . . , SSp(t)]. (8)

The entire system database D consists of the
storage of S in each sample time t:

D =

⎡
⎢⎢⎢⎣

S(t = 1)

S(t = 2)
...

S(t = k)

⎤
⎥⎥⎥⎦ . (9)

3.3.1 Identification and representation of the opera-
tion modes of a system

Each SA from the vector S(t) corresponds to a
COM. The SOMs are the results of a unique com-
bination of the COMs (SAj ). The progression in
time t enables the SOM identification by analyzing
if SAj (t) �= SAj (t + 1), which implies a change in
the SOM. For this reason, a collection of COM is
gathered in an operation mode matrix OMl×n with
l rows (representing the SOM in the sampling time
t) and n columns (corresponding to the number of
actuator’s signals SA), and it can be denoted as

OMl×n =

⎡
⎢⎣
Sζ1
A1

. . . Sζ1
An

...
...

Sζl
A1

. . . Sζl
An

⎤
⎥⎦ . (10)

The time instant t in SAj(t) �= SAj (t+ 1) is ex-
tracted to determine the moment in which the SOM
changes. These times are collected in a T2×l matrix,
where the starting time of a ζd is denoted as ts, and
its end time SOM is denoted as te. Therefore, ts1
denotes the time instant when ζ1 starts, and te1 de-
notes the time instant when ζ1 switches to the next
SOM.

T =

⎡
⎢⎣
ts1 te1
...

...
tsl tel

⎤
⎥⎦ . (11)
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Considering that each ζd may occur several
times during the system’s operation, OM contains
rows that are repeated. A matrix extracts all possi-
ble ζ’s by filtering OM, avoiding repetition created.
This matrix is SOMv×n, where v is the total num-
ber of ζ’s that may occur in the system, and n is the
number of actuator’s signals SA.

3.3.2 Segmentation of signals

Each row of T is used as a reference for sig-
nal segmentation. Data represented in D are ex-
tracted and stored in vectors denoted as Sgh , where
h = 1, 2, . . . , w (w is the total number of signal seg-
ments). Time instants ts and te stored in row h of
matrix T are used as references to extract all data
corresponding to SS from D, in the time interval
between tsh and teh . We thus have

Sgh = {SS(ts), . . . , SS(te)}. (12)

Therefore, there is a dataset DS that contains
all signal segments:

DS = {Sg1 , Sg2 , . . . , Sgw}. (13)

The segmented data are stored in an array called
the “segment” that organizes each Sgh depending on
the SOM occurring in the period of time when signal
segment Sgh is sensed, so that

Segment.OMg ← Sgh . (14)

For example, if segments Sg7 , Sg15 , and Sg30

are sensed in the periods of time when the sys-
tem is in the operation mode OM3, and the seg-
ments Sg5 , Sg40 , Sg58 , and Sg72 are sensed in pe-
riods when the system is in the operation mode
OM1, then Segment.OM3 = {Sg7 , Sg15 , Sg30} and
Segment.OM1 = {Sg5 , Sg40 , Sg58 , Sg72}.

3.3.3 Characterization of signal segments

A signal feature, a(Segment.OMg), provides a
simple representation that can capture the trends
and characteristic features of signal segments. De-
pending on the type of signal, the feature may
be determined by the parameters relevant to
time- or frequency-domain signal analysis. Given
a(Segment.OMg), there is a vector A that groups
the features of all segments Sgh stored in the

Segment.OM, and we have

Aζd =

⎡
⎢⎣
a(Segment.OM1)

...
a(Segment.OMz)

⎤
⎥⎦ , (15)

where z is the total number of segments correspond-
ing to ζd. Among others, features, such as the deriva-
tive of the whole segment

(
dS
dt

)
, area of the segment(∫ ts

te
SS

)
, change of the signal’s slope

(
d2S
dt2

)
, mean

of the slope, number of zero crossings, and mean of
the derivative (point by point), can be used to char-
acterize signal segments. The selection of α depends
on the particular characteristics of each signal.

3.3.4 Evaluation of the deviation of signals

The evaluation of the deviation of signals aims
to identify significant anomalies, which can be caused
by failures, in the operation of the system. This pro-
cess is based on the application of a statistical test
(ST), in which a sample coming from the system’s
reference behavior A∂

ζd
during the system’s operation

mode ζd, is compared with the system’s observed be-
haviorAO

ζd
during ζd. The observed behavior may be

or may not be under the effect of a particular failure.
The aim of ST is to determine whether AO

ζd
presents

any deviation from the reference behavior ∂ due to
the effect of a failure. Considering ST(A∂

ζd
, AO

ζd
), our

null hypothesis H0 states that samples A∂
ζd

and AO
ζd

have the same distribution Θ, expressed as

H0 : μ∂ ∈ Θ ∧ μ0 ∈ Θ, (16)

where μ∂ is the mean of sample A∂
ζd

and μ0 is the
mean of the observed data AO

ζd
. Conversely, our al-

ternative hypothesis H1 states that samples A∂
ζd

and
AO

ζd
belong to different distributions:

H1 : μ∂ ∈ Θ ∧ μ0 /∈ Θ. (17)

Therefore,

Φ(A∂
ζd
, AO

ζd
) =

{
1, if ST(A∂

ζd
, AO

ζd
) ∈ Ω,

0, if ST(A∂
ζd
, AO

ζd
) /∈ Ω, (18)

whereΩ is the rejection region. When Φ(A∂
ζd
, AO

ζd
) =

1, it means that H0 is rejected, and therefore
φ(SSj , ζD) = 1. When Φ(A∂

ζd
, AO

ζd
) = 0, it means

that H0 is accepted, and thus φ(SSj , ζD) = 0. To
determine the result of Φ and φ(SSj , ζD), the con-
cept of p-value is used. The p-value determines the
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probability that ST(A∂
ζd
, AO

ζd
) ∈ Ω due to the effect

of failure. In our case, we consider a p-value of 0.05
as the threshold that determines the significance of
the results:

{
ST(A∂

ζd
, AO

ζd
) ∈ Ω, if p < 0.05,

ST(A∂
ζd
, AO

ζd
) /∈ Ω, if p > 0.05.

(19)

Considering that this process is conducted for
all signal segments, there is a p-value pi,j for each
element of matrix FI, so φ(SSj , ζD) can be deter-
mined. The result of this process is matrix FI, where
FIi,j = 1 if pi,j < 0.05, and FIi,j = 0 if pi,j < 0.05.
Therefore, FI is a matrix composed by zeros and
ones.

Different statistical tests can be implemented
depending on the type of data distribution. For ex-
ample, the t-test can be used for normal distribution,
while the Kruskal-Wallis test can be used whenever
the analyzed data do not present a parametric dis-
tribution. In addition, the decision algorithms, such
as Monte Carlo, can be used to determine the signif-
icance of the difference between A∂

ζd
and AO

ζd
.

3.3.5 Deriving operation mode-dependent failure
indicators

System-level failure indicators are generated
based on the frequency of symptom occurrence in
the multiple operating scenarios (Sc) subject to the
same failure mode r. Each scenario is an operation
context determined by the combination of different
system initial conditions or system settings caused
by the surrounding environment and the user’s ma-
nipulation. Sc are considered as they influence sys-
tem signals and SOMs. A resultant FI matrix FIr

is formed as
{

if
∑Scψ

Sc1
FIi,j < 0.95ψ, then FIri,j = 0,

if
∑Scψ

Sc1
FIi,j > 0.95ψ, then FIri,j = 1,

(20)

where r denotes the reference behaviors that FI rep-
resents (r = 0, 1, . . . , u), u is the total number of ref-
erence failure modes that are available in the system
(for clarity, we denote FIr as the reference indica-
tors and FI as the observed indicator correspond-
ing to the current failure performance), Sc is each of
the datasets corresponding to the scenarios analyzed,
and ψ is the total number of the cases analyzed. If
95% of the FIi,j considered for deriving FIri,j sat-
isfy φ(SSj , ζD) = 1, then FIri,j is red. Conversely, if

95% of the FIi,j considered for deriving FIri,j satisfy
φ(SSj , ζD) = 0, then it is green. Yellow cells are those
that do not reach a 95% either in φ(SSj , ζD) = 1 or
in φ(SSj , ζD) = 0 (Fig. 1).

Fig. 1 Example of a colored R matrix

References to color refer to the online version of this figure

3.3.6 Matching equation

The matching of matrix FI of the actual system
operation to identify failure indicators stored in a
library is achieved based on the comparison of the
similarity with a failure indicator reference FIr. It
is a pairwise comparison process during which their
degree of similarity, MD, is measured, so that

MD = 100− C

(C +NC)−W × 100, (21)

where C is the number of the symptoms and the
lack of symptoms in common. The failure indicator
reference FIr and the observed failure indicator cor-
respond to the actual system behavior FI. NC is the
number of symptoms that differ from those in C, and
W is the number of operation modes with no data.

4 Operationalization of the proposed
failure indicator concept

The proposed concept of deriving failure indi-
cators is implemented as a smart (software-based)
augmentation module of a cyber-physical system and
operationalized as a transversal process that is con-
currently executed with the regular system opera-
tion. While the traditional complex system trans-
forms the flows of material, energy, and informa-
tion to provide its regular functions and services,
the proposed indicator-based failure detection mech-
anism takes the system signals as inputs, along with
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the report of the component operation modes cor-
responding to each SAj to conduct failure diagnosis
and forecasting.

After a complicated system has been tuned
to proper operation, our failure indicator based
diagnosis and forecasting method can be applied.
Fig. 2 shows the operationalization of the proposed
method. The first step is to determine the failure in-
dicator matrices FIr, in which the system signals are
recorded and segmented based on the system’s opera-
tion modes. This process is initially conducted when
the system is operating under regular conditions, i.e.,
without the presence of faults or failures. The re-
sult of this step is the system’s reference behavior ∂,
which is stored in the failure indicator library to be
used as a basis for further failure diagnosis processes.
This process is not static, as the reference behavior
can be updated whenever there is a system upgrade
or the system is reconfigured.

4.1 Failure diagnosis

The reference behavior ∂ is used as a basis for
a continuous failure detection and diagnosis process.
System signals are recorded during a specified time
window and used as inputs to determine the FIr

matrix of the reference behavior. The time window

should be defined for each individual system based on
its dynamic behavior and typical use cases in which
the system operates. FI is derived through the com-
parison of the observed dataset A∂ with the refer-
ence dataset A∂ to determine the possible symptoms
of faults (Fig. 3). If no symptoms are identified (i.e.,
the statistical deviation of the signal features is not
significant), the system will continue to operate. The
occurrence of the symptoms (significant deviations)
stops the loop and starts the execution of the fail-
ure indicator matching process to identify the failure
modes. Fig. 4 shows the pseudo algorithm matching
the failure indicator matrices to the failure indicator
library.

Identify system operation mode (SOM)

Record system signals

Segment signals based on SOM

 Characterize signal segments 

 Generate descriptive statistics for failure indicator matrix

Fig. 3 Operationalization of the identification of FI

Focus of the article

Determine the failure
indicator matrix
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history
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Fig. 2 Operationalization of the proposed method
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Fig. 4 Operationalization of the matching process

The failure indicator matching algorithm re-
trieves and evaluates each failure indicator FIr

stored in the library and computes its similarity score
based on the equation presented in Section 3.3.6.
The degree of the matching MD helps rank possible
failure modes and select the best match for the ac-
tual failure indicator FI. If the MD is higher than
a preset threshold (such as 70%), then the match is
considered to be a “good match.” If it is lower than
30%, the match is considered to be “no match,” and
anything between these threshold values is classified
as a “partial match.” In the case of a “good match,”
the observed behavior is associated to a particular
failure mode, and a relevant maintenance action is
scheduled. In the case of a “partial match,” the fail-
ure indicator shows either a forming failure (already
known) or an unknown failure, which triggers the
execution of the forecasting algorithm or the process
of identification of a new failure.

4.2 Learning process of new failure indicators

Whenever there is no match and the forecasted
matrix does not correspond to any of the failure
modes available in the system’s library, potential
failure sources should be identified. This situation
occurs when the actual failure mode is unknown and
its corresponding failure indicator is not stored in
the system’s library. The observed symptoms in
the failure indicator matrix, however, can provide
relevant information about the potential source of

errors as they are associated with the system com-
ponents. The types of sensors and their positions in
the system architecture contain valuable information
about the origin of the failure. The probability of
the failure for each identified component is analyzed
and ranked. This process should be conducted by a
maintenance expert. Once it is possible to provide a
reasonable explanation to the pattern of symptoms,
the observed failure indicator is stored in the failure
indicator library (Fig. 5). The extension of the fail-
ure indicator library enables the determination of the
corrective action during a new occurrence of such a
failure mode and preventive actions, when the failure
forming process has started.

Fig. 5 Description of the learning process

5 Experimental validation of signal-
based indicator exploration in failure
diagnosis

5.1 Description of the experiment

To validate the proposed failure diagnosis
method in a realistic environment, we have built a
testbed of a cyber-physical greenhouse (Fig. 6). This
system consists of two plant bed units and a central
unit. Each of the units is equipped with an indepen-
dent control, an XBee-based transmission unit, and
a real-time clock (RTC), besides its corresponding
sensors and actuators. A detailed description of the
system components and their locations is presented
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in Fig. 7. All data sensed are sent to a coordinator
node, which redirects it to a faster processing unit
where the signal segmentation-based failure diagno-
sis algorithm is executed. This processing unit gath-
ers all system data, synchronizes them, facilitates
their visualization, and executes the failure diagnosis

algorithm implemented in Matlab. The collected
data are arranged in a matrix S, where actuator
signals SA and sensor signals SS are recorded. A de-
tailed description of the signals considered for failure
diagnosis is shown in Tables 1 and 2.

Fig. 6 Setup of the experiment

Plant

Irrigation pipes
Infrared/UV light
White light

Water light

Xbee

Electrovalve

Control unit

Fan-out

Fan-in

Water heater
PH sensor 
Ambient temperature sensor
Environment humidity sensor
Soil temperature sensor
Soil humidity sensor
Sunlight sensor
CO2 sensor
UV/Infrared sensor
Water level sensor
Water temperature sensor

RPM sensor fan-out
RPM sensor fan-in

Central unit

Plant bed 2 unit Plant bed 1 unit

External processing unit

Fig. 7 Configuration of the testbed
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Table 1 Description of the system variables

System component Variable Description

LDR sensor SS1
White light level on plant bed 1

Sensor SS2
Lighting power consumption on plant bed 1

Soil moisture sensor SS3
Soil humidity on plant bed 1

Soil temperature sensor SS4
Soil temperature on plant bed 1

PAR light sensor SS5
PAR light on plant bed 1

Sunlight sensor SS6
UV light level on plant bed 11

PH sensor SS7
PH level on plant bed 1

Water level sensor SS8
Water level in tank

Water temperature sensor SS9
Water temperature in tank

Thermohygrometer SS10
Greenhouse temperature

Thermohygrometer SS11
Relative humidity into the greenhouse

CO2 sensor SS12
CO2 level in the greenhouse

RPM sensor SS13
RPM fan-in

RPM sensor SS14
RPM fan-out

LDR sensor SS15
White light level on plant bed 2

Sensor SS16
Lighting power consumption on plant bed 2

Soil moisture sensor SS17
Soil humidity on plant bed 2

Soil temperature sensor SS18
Soil temperature on plant bed 2

PAR light sensor SS19
PAR light on plant bed 2

Sunlight sensor SS20
UV light level on plant bed 2

PH sensor SS21
PH level on plant bed 2

Table 2 Description of the actuator variables of the greenhouse

System component Variable Description Domain/Set-point

Electro valve
SA1

Irrigation valve
ESA1

= {ValveClose, ValveOpen}
Plant bed 1 of plant bed 1
Electro valve

SA2
Inlet tank valve ESA2

= {ValveClose, ValveOpen}
Water reservoir

Heater SA3

Water resistance
ESA3

= {ResistanceOff, ResistanceOn}
for the heater

Fan-in SA4

Fan-in of
ESA4

= {Fan-inOff, Fan-inOn}
the central unit

Fan-out SA5

Fan-out of
ESA5

= {Fan-inOff, Fan-inOn}
the central unit

Electro valve
SA6

Irrigation valve
ESA6

= {ValveClose, ValveOpen}
Plant bed 2 of plant bed 2

5.2 Signal pre-processing for failure diagnosis

Actuator signals SA are binary signals with pos-
sible values of 0 or 1, where 0 represents the inac-
tive state and 1 presents the active state. For ex-
ample, the <ResistanceOff> component operation
mode corresponding to SA3 is reported as 0, while the
<ResistanceOn> component operation mode corre-
sponding to the same component is reported as 1.
Sensor signals SS require sophisticated signal pro-
cessing techniques. A digital filter (moving aver-
age) is implemented to clean the noise and distur-
bances presented during the signal’s sensing of SS.
The filter averages the last 40 data measurements
before delivering them to the external processing

unit. The data are cleaned from the noise caused
by the communication problems between the coor-
dinator node and the processing unit. This filtering
process is conducted by analyzing the signal deriva-
tives, identifying the measurements SSj (t) in which
SSj(t + 1) − SSj(t) < SDSSj

(where SDSSj
denotes

the standard deviation of SSj ), and replacing them
with the previous value of SSj (t − 1). All system
signals have a sampling time of 1 s.

5.3 Validation process

The goals of this experiment are: (1) analyzing
the distinctive power of failure indicators, i.e., how
the reliable failure indicators can distinguish differ-
ent types of failures; (2) evaluating to what extent
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the derived failure indicators are sensitive to the se-
lected signal features; (3) exploring the effectiveness
of the matching algorithm for operationalizing the
failure diagnosis; (4) demonstrating the benefits of
the signal segmentation based on operation modes
in the failure diagnosis process. Three different fail-
ure modes were injected to the system: (1) a leak
on the water reservoir, (2) an obstruction in the ir-
rigation pipes, and (3) an irregular fan operation.
A set of data obtained during the regular operation
of the system in different periods of the day were
collected and stored as reference A∂ in the differ-
ent failure injection experiments. All experiments
were conducted with the goal to identify what is the
corresponding failure indicator of each failure mode
and to evaluate to what extent it can be diagnosed
through the proposed method. The coherence of the
obtained indicators was studied by analyzing 9400

independent data samples measured during five dif-
ferent injection processes for each failure mode over
five days. The procedure of failure injection is ex-
plained in the following:

1. Failure 1 (F1): tank leak. To inject the fail-
ure of a leak in a controlled manner, a drain valve
was installed on one of the walls of the tank, close
to its bottom and below the inlet and outlet valves.
This installation enabled the manipulation regula-
tion of the outflow of leaking water that leaves the
tank through this drain value. For this purpose, four
different opening levels of the valve were installed
to produce a failure with different intensities. Each
opening level constitutes a different experiment.

2. Failure 2 (F2): blockage in the irrigation
pipes. The irrigation holes corresponding to plant
bed 2 were partially obstructed with teflon tape.
This failure forming process was conducted by cov-
ering different numbers of irrigation holes; therefore,
the failure could be repeated with different but re-
alistic scenarios. The manipulated variable was the
flow rate of irrigation.

3. Failure 3 (F3): irregular fan operation. A
resistance reducing the electrical current that feeds
the fan was installed to alter the regular speed of ro-
tation of the inlet air fan. The manipulated variable
was the number of revolutions per minute (RPM) of
the fan.

External factors, such as sunlight, ambient tem-
perature, and inflowing water temperature, can have
a strong influence on the system operation and affect

the results. Therefore, in our testbed setup, we moni-
tored these external factors and included them in our
experiments. All experiments corresponding to the
same failure mode were performed under the follow-
ing conditions: (1) sunlight 3000–4500 lx; (2) am-
bient temperature 27–30 ◦C; (3) water temperature
29–32 ◦C. Failures were compared with reference
data A∂ obtained in days whose sunlight level, am-
bient temperature, and water temperature fell into
the above-mentioned ranges.

5.3.1 Data sorting

The Kruskal-Wallis test was used to evaluate
the deviation of signals to derive the failure indi-
cator. The different datasets corresponding to the
reference data were merged into a single dataset A∂ .
In this manner, a dataset per failure mode was gen-
erated. AO

F1
is the dataset corresponding to the tank

leak,AO
F2

is the dataset corresponding to the obstruc-
tion in the irrigation pipes, and AO

F3
is the dataset

corresponding to the irregular fan operation. Each
dataset AO

Fr
was randomly divided into a training set

ΓFr and a test set TFr .

5.3.2 Deriving reference failure indicator matrix

A total of 500 FI matrices were generated per
Fr to derive its corresponding FIr in the process
described in Section 3.3.5. Each FI matrix was de-
rived from matching one randomly selected subsam-
ple ΓFij and one randomly selected subsample A∂

k .
This process was conducted for each signal feature
considering the derivative, mean, standard devia-
tion, RMS, and area. The obtained matrices FIr

(r = 1, 2, 3), FI1 for tank leak, FI2 for obstruction
in the irrigation pipes, and FI3 for irregular fan op-
eration, are shown in Fig. 8.

Theoretically, our testbed can have 64 system
operation modes (SOMs). However, only 10 were
actually activated during our experiment. The ac-
tivated SOMs are presented in Table 3. The SOMs
that did not occur are represented through white
cells in the resultant matrices FIr. In our exper-
iment, we found that some operation modes were
triggered by the emerging failures, pushing the sys-
tem into an “abnormal” operation mode (i.e., a com-
bination of component operation modes not typical
under regular circumstances). These will be called
the “failure induced operation mode” (FIOM).
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Table 3 Occurring system’s operation modes

SOM SA1
SA2

SA3
SA4

SA5
SA6

9 Off Off Off On Off Off
11 Off On Off On Off Off
12 Off On On On Off Off
13 Off Off On On Off Off
15 Off On On On Off Off
33 Off Off Off Off Off On
41 Off Off Off On Off On
43 Off On Off On Off On
45 Off Off On On Off On
47 Off On On On Off On

5.3.3 Exploring the distinctive power of failure
indicators

We made a pairwise comparison of the FIr ma-
trices for each feature to determine their dissimilar-
ity. This comparison allows us to evaluate if the FIr

corresponding to a failure mode is a subset of another
failure indicator or could be a cause of misclassifica-
tion. Therefore, we can obtain

D =
C

(C +NC)−W × 100. (22)

The elements of Eq. (22) correspond to the
same elements of MD. These were presented in Sec-
tion 3.3.6. W cells were not considered in the estima-
tion of the level of dissimilarity, as the correspond-
ing system operation modes did not occur during our

experiment. Table 4 shows the dissimilarity analysis
of failure indicators for our testbed. Failure indica-
tors had a dissimilarity in the range of 27%–44.76%,
where a maximum of 44.76% was found in the case of
F2 vs. F1 with signal feature mean. Area and slope
are signal features that present the lowest levels of
dissimilarity, and therefore it is expected that these
signal features are more likely to present misclassifi-
cations during the failure diagnosis process.

It can be concluded that the slope and area fea-
tures have weaker distinctive power than the rest of
the signal features analyzed. In contrast, RMS and
mean are the features that have better distinctive
power. Dissimilarities between F1 and F3 in area
and F2 and F3 in RMS are graphically presented
in Fig. 9. F1 and F3 selected in area present the
lowest dissimilarity level, and F2 and F3 in RMS
present a high level of dissimilarity. Black cells rep-
resent the signal cells that do not coincide between
the pairwise-based analysis of failure indicators.

From this study, it can be inferred that a wide
range of signal features should be used to define fail-
ure indicators to guarantee reliable failure diagno-
sis. Using dissimilarity analysis of failure indicators,
signal attributes with high distinctive power can be
identified and used in failure classification. Such a
selective approach can further improve the reliability
of failure diagnosis.

F1

F2

F3

Slope Standard deviation

 

AreaMeanRMS 

Fig. 8 Obtained failure indicators
Cells corresponding to the FIOM are highlighted in light blue. References to color refer to the online version of this
figure

Table 4 Dissimilarity level between failure indicators

Failure mode
Slope (%) Standard deviation (%) RMS (%) Mean (%) Area (%)

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

F1 0 38 27.51 0 41 35.4 0 39.68 42.32 0 44.76 43.38 0 30 22.22
F2 38 0 36.5 41 0 42.3 39.68 0 41.26 44.76 0 44.76 30 0 40
F3 27.51 36.5 0 35.4 42.3 0 42.32 41.26 0 43.38 44.76 0 22.22 40 0



Ruiz-Arenas et al. / Front Inform Technol Electron Eng 2019 20(2):152-175 167

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Failure indicators overlapped for comparison:
(a) area feature for F1; (b) area feature for F3; (c)
RMS feature for F2; (d) RMS feature for F3; (e) area
feature for F1 and F3; (f) RMS feature for F2 and F3

5.3.4 Sensitivity to signal features

Another aspect of failure differentiation is the
dissimilarity of FIr between signal features. It is de-
sirable to have high dissimilarity between the FIr of
signal features to reduce the redundancy of failure in-
dicators. Although analyzing several signal features
improves the reliability of failure diagnosis, it comes
at the cost of computing. Therefore, it is impor-
tant to evaluate to what extent each signal feature
conveys similar and dissimilar fault symptoms of the
analyzed failure modes. The results are presented in
Table 5. Each table cell presents the dissimilarity
level corresponding to two different features. They
are grouped by failure modes as each type of failure
is represented by a failure indicator matrix FIr per
signal feature.

The RMS and mean present the lowest levels of
dissimilarity, as low as 1.06% in the case of F1 and
a maximum of 10.95% for F2. This implies that the
inclusion of both failure indicators does not provide
any added value to the failure diagnosis process, as
they are rather redundant. On the other hand, area
presents the highest level of dissimilarity to the other
signal features. However, this feature, along with
slope, presents the lowest levels of distinctive power
between different failure modes.

Table 5 Dissimilarity level (%) between failure indi-
cators using signal feature as the evaluation criterion

Failure mode 1

Feature Slope SD RMS Mean Area

Slope 0.00 18.52 28.57 29.63 40.21
SD 18.52 0.00 20.63 20.63 24.87

RMS 28.57 20.63 0.00 1.06 19.05
Mean 29.63 20.63 1.06 0.00 17.99
Area 40.21 24.87 19.05 17.99 0.00

Failure mode 2

Feature Slope SD RMS Mean Area

Slope 0.00 15.24 31.90 22.86 35.71
SD 15.24 0.00 22.38 11.43 28.10

RMS 31.90 22.38 0.00 10.95 28.57
Mean 22.86 11.43 10.95 0.00 17.62
Area 35.71 28.10 28.57 17.62 0.00

Failure mode 3

Feature Slope SD RMS Mean Area

Slope 0.00 13.76 32.80 31.22 52.91
SD 13.76 0.00 26.46 24.87 41.27

RMS 32.80 26.46 0.00 4.76 21.16
Mean 31.22 24.87 4.76 0.00 22.75
Area 52.91 41.27 21.16 22.75 0.00

5.3.5 Effectiveness of the matching equation

Twenty FI matrices were generated for each sig-
nal feature for each failure mode. Data for these
matrices were randomly taken from the test set T .
The obtained matrices FI were matched with FI1,
FI2, and FI3. We averaged the results concerning
the similarity level obtained for the 20 considered
cases per failure mode. To evaluate the effect of
FIOM (blue cells), we performed the matching with
and without the inclusion of failure-induced opera-
tion modes. In Fig. 10, red bars represent the av-
eraged results of the analysis of the similarity level
without FIOM, while green bars represent the aver-
aged results with FIOM. They were placed together
to ease visualization of the difference between them.
Each of the plots was divided into three main groups
organized as follows: the first three bars (of the same
color) corresponded to the match of the test cases in
which F1 was injected; the second three bars corre-
sponded to the comparison of the test cases in which
F2 was injected; the last three bars corresponded to
the match of the cases in which F3 was injected. In
each of these groups, the first bar of each color was
the average similarity of the analyzed test cases with
FI1, the second bar was the average similarity of the
test cases corresponding to a group with FI2, and
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the third bar was the average similarity of the test
cases belonging to this group with FI3.

We analyzed the standard deviation of the re-
sults of the matching degree for both cases, with and
without FIOM (Fig. 11). Fig. 11 shows that without
FIOM, results for F1 and F2 are satisfactory with
correct matches, higher than 72%. However, it is not
the case for F3, as it presented a higher match with
FI2 than with FI3 for the slope and SD features.
Since the average dissimilarity was 33% between F2

and F3, there is a chance of misclassification as the
rest of the fault symptoms were the same. Then,
we can infer that the effect of F3 on the slope and
SD features is not very consistent; thus, symptoms
change when the failure occurs. Nevertheless, it is
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Fig. 10 Averaged similarity level for slope (a), stan-
dard deviation (b), RMS (c), mean (d), and area (e)
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not the case for RMS, in which the mean and area
features presented a high degree of matching with
the failure indicator matrix FI3.

In the case for failure diagnosis with FIOM, sig-
nificant improvements were found as shown by the
MD boxplots. This improvement was clearly observ-
able even for F3, when analyzed through SD which
was initially misclassified by failure diagnosis with-
out FIOM. Although cases injected with F3 were
still misclassified by the slope feature, the inclusion
of FIOM reduced the difference between the match
conducted with FI3 and the one corresponding to
FI2.

The frequency analysis of correct matches (i.e.,
the percentage of data samples that were properly
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Fig. 11 Boxplots of the similarity levels for slope (a),
standard deviation (b), RMS (c), mean (d), and area
(e)
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matched) corresponding to the analyses with FIOM
is presented in Table 6. It can be seen that 100%

of the analyzed samples were successfully classified
except for F3, where only 5% of the analyzed samples
were properly matched when analyzed with the slope
feature.

Table 6 Frequency of correct matches with FIOM

Failure mode
Frequency of correct matches (%)

Slope SD RMS Mean Area

F1 100 100 100 100 100
F2 100 100 100 100 100
F3 5 100 100 100 100

From these results, it can be concluded that
FIOM provides valuable information about each of
the analyzed failure modes; thus, it should be consid-
ered during the diagnosis process. It has a positive
effect on the matching process by significantly reduc-
ing the number of cases of misclassification (Fig. 10).
The analysis of the standard deviation in Fig. 11
shows that it is possible to validate the matching
process as its standard deviation is low (the highest
standard deviation obtained is 0.96).

6 Contrasting the proposed method
with data-driven failure analysis
methods

Using the same datasets as used in the previ-
ous experiment, we investigated the accuracy of fail-
ure classification of some existing failure diagnosis
methods. In our analysis, we aimed to compare our
method with the methods reported in the literature.
Considering that this research addressed failure di-
agnosis in the first- and second-generation CPSs, we
discarded the model-based techniques and focused
on data-driven techniques.

To derive classification models, we generated a
predictor vector P ,

P=
[
a
SS8
1 , a

SS8
2 , . . . , a

SS8
5 , . . . , a

SS18
1 , a

SS8
2 , . . . , a

SS18
5

]
,

(23)
where a1 is the derivative feature, a2 standard devi-
ation, a3 RMS, a4 mean, and a5 area, as the failure
indicator feature derived from sensor signals without
segmentation. In this analysis, we evaluated only the
following signals: water level in tank (SS8), water
temperature (SS9), RPM fan-in (SS13), RPM fan-
out (SS14), soil humidity of plat bed 2 (SS17), and

soil temperature in plant bed 2 (SS18).
These signals were considered most likely to

present failure symptoms due to their strong relation
to the induced failures. A class vectorC composed of
the injected failure modes and the failure-free system
state was generated, and C = [F1, F2, F3].

Failure diagnosis was conducted by classifica-
tion methods of the decision tree, support vector
machines, k-nearest neighbors, boosted trees, and
discriminant analysis implemented in the classifica-
tion learner of Matlab 2017b. A summary of the
implemented techniques is presented in Table 7. We
used k-fold cross-validation (5-folds) to avoid over-
fitting and enable generalization.

The results presented a high level of accuracy
for most of the analyzed methods. The accuracy of
the classification of different methods ranged from
34.5% to 98.10% for true positives. The highest level
of accuracy was obtained by the cubic SVM classifier,
where 99% samples corresponding to the failure-free
behavior were correctly classified, 97% data samples
from F1 were successfully diagnosed, 98% data sam-
ples from F2 presented satisfactory results, and all
the data samples corresponding to F3 were correctly
classified. The confusion matrix corresponding to
cubic SVM is presented in Fig. 12.

99% 1%

3% 97%

98%

99%

1%2%

Failure-free F2F1 F3
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Fig. 12 Confusion matrix corresponding to cubic
SVM

The results demonstrated that the current stan-
dard techniques can properly classify the studied fail-
ure modes. However, the interpretability of the ob-
tained results is still an issue. These methods de-
liver the predicted class and the classification model.
Nevertheless, these techniques do not provide ex-
planatory information about failure manifestations
(such as the magnitude of the symptoms, the signals
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Table 7 Data-driven methods implemented

Method Variation Specification
Overall

accuracy (%)

Decision tree

Complex tree
Number of splits: 100

94.50
Split criterion: Gini’s diversity index

Medium tree
Number of splits: 20

94.50
Split criterion: Gini’s diversity index

Simple tree
Number of splits: 4

90.70
Split criterion: Gini’s diversity index

SVM

Linear

Multi-class method: one vs. one

97.40
Quadratic 98.10
Cubic 98.30
Fine Gaussian 57.40
Medium Gaussian 97.40
Coarse Gaussian 95.90

KNN

Fine KNN
Number of neighbors: 1

94.30
Distance metric: Euclidean

Medium KNN
Number of neighbors: 10

94.30
Distance metric: Euclidean

Coarse KNN
Number of neighbors: 100

77
Distance metric: Euclidean

Cosine KNN
Number of neighbors: 10

94.30
Distance metric: cosine

Cubic KNN
Number of neighbors: 100

93.30
Distance metric: Minkowski

Ensemble

Boosted tree
Ensemble method: AdaBoost

34.40
Number of splits: 20

Bagged tree Ensemble method: bag 97.80

Subspace discriminant
Ensemble method: subspace

94.30
Subspace dimension: 15

Discriminant Linear
Covariance structure: diagonal

87.30
analysis Quadratic 34.50

indicating that component failures are manifested,
and the approximate time of occurrence). The con-
fusion matrix that represents the results of classifica-
tion does not provide sufficient information to deter-
mine the root cause of the failures and the progress
of system degradation. This is a crucial limitation of
data-driven failure classification techniques that can
affect a further implementation of failure forecasting.

In contrast to the above-mentioned results, our
failure diagnosis concept provides information about
the possible root cause of failures. A combination of
the signal sources and system operation modes offers
a ground for reasoning about the potential source of
failures at the component level.

7 Discussions

The proposed signal segmentation based failure
diagnosis presented satisfactory results during the
execution of the case study. Our experiment showed

that the proposed concept of failure indicator is use-
ful for not only diagnosing failure modes but also
understanding failure manifestation. We found that
there is a unique pattern for each failure mode that
is reliably reproducible each time for this type of
failure occurring in the system. This concept meets
two challenges: automated failure diagnosis based on
the reasoning of multiple signals and understanding
failure manifestations.

The results showed that in all evaluated cases,
the proposed approach can diagnose the injected fail-
ures. It presented accuracy results equivalent to
those presented by the tested set of data-driven tech-
niques. Nevertheless, the combination of all system
signals, along with the system operation modes, does
not just provide the means for conducting diagnosis,
but helps understand which particular combination
of signals and SOM failures are manifested. From
this perspective, the proposed method is superior
to the existing methods, since they lack support for
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interpretability of root cause, thus preventing the
analysis of factors, such as location, magnitude, and
transient/steady manifestation of symptoms. This
additional information about failure manifestation
can lay the ground for the development of failure
forecasting methods for cyber-physical systems.

Although the scalability of the proposed method
for dealing with emerging functions and unknown
failures was not tested in this study, our defini-
tion of system operation modes as a combination
of component operation modes enables the imple-
mentation of an extendible failure indicator matrix,
which can be used to represent and handle emerg-
ing system failures. Failure indicator matrices are
extendible by adding/removing signals or SOMs as
new rows or columns. The failure indicator needs
to be updated every time the system configuration
changes. This is another aspect of difference from
the tested data-driven techniques, as the incorpora-
tion of new system functions or the emergence of new
failure modes in traditional methods would require
re-training of classifiers, thus raising the stability-
plasticity dilemma. One of the major findings of
our research is that the failure-induced system oper-
ation modes FIOM significantly improve the distinc-
tive power of failure indicators. These SOMs occur
only as a consequence of a particular failure mode
of the system. They were initially not only con-
sidered in our failure diagnosis approach, but they
significantly improved the results of the failure clas-
sification process in our experiments. It was found
that the frequency of the occurrence of certain SOM
is altered because of the failure mode, and thus this
fault symptom should be considered as a meaning-
ful information source for failure diagnosis and fore-
casting. Nevertheless, the proposed failure indicator
concept is sensitive to the definition of the matching
equation. Any variation on the equation consider-
ably influences the results. Although the last issue
affected failure diagnosis, it did not disqualify the
concept of our failure indicator. There was a con-
sistent pattern of symptoms and a lack of symptoms
for each of the analyzed failure modes.

We evaluated how the consistency of failure in-
dicators is influenced by the alterations in failure
manifestation. Tank leakage and obstruction in the
irrigation pipes failure modes were found to be more
consistent than failure of the fan in terms of their
fault symptoms. We found that the failure indicators

generated by the signal features of slope and stan-
dard deviation present less consistent pattern of
symptoms. This can be explained by the unreliable
signal of the RPM sensor of the fan, causing disparity
in the obtained data. Nevertheless, we found that the
failure indicators of the other signal features of F3 are
consistent and they compensate for the inconsistency
of the slope and SD features. Multiple signal features
not only allow the overcoming of the inconsistency
of failure indicators, but also automate the diagnosis
and learning process, because not all failure modes
manifest in all signal features. Traditional classifi-
cation methods used in failure diagnosis require an
expert determine which signal feature(s) to consider
for identifying a specific failure. Our approach offers
a generic solution which does not require a special-
ist specify a particular signal feature. It can affect
the processing time of the method, as the considera-
tion of the multiple signal features involves running
the diagnosis process several times, one per signal
feature.

The proposed method was successfully applied
to failure diagnosis in an experimental setup. Our
experiment demonstrated how the failure indicators
can help understand the failure manifestations and
how they can provide the means to automate failure
diagnosis. They can be potentially used to identify
emergent system functions and learn failure indica-
tors corresponding to unknown failures. As the pro-
posed method is a data-driven approach with the po-
tential capability to learn new failure modes, it can
cope with emergent system behaviors and the occur-
rence of unknown failure modes. Although the last
capability was not evaluated in this study, Section 3
presented a concept of this learning approach. If the
fault symptoms represented by the red cells and the
failure-induced operation modes gradually occur as
the failure manifestation progresses, the analysis of
historical data of the failure indicators can provide
a sufficient basis for the forecasting methods. We
expect that the matching equation applied to failure
diagnosis can be used in failure forecasting to pre-
dict the type of forming failure. This claim will be
evaluated in our future research.

8 Conclusions and future work

In this paper, we have proposed a new failure
diagnosis method based on the concept of failure



172 Ruiz-Arenas et al. / Front Inform Technol Electron Eng 2019 20(2):152-175

indicators. The presented method concurrently an-
alyzes multiple signals to identify statistical de-
viations of signal features that are characterizing
changes of the system behavior caused by the occur-
rence of failures. These deviations have been defined
as fault symptoms. A novel element of this method
is the signal segmentation based on the system op-
eration modes. This concept has been introduced
to improve the consistency of generic signal features
and the reliability of failure diagnosis. The failure
indicator is a matrix whose rows are the signal fea-
tures and columns are the system operation modes.
Failure diagnosis has been operationalized by identi-
fying unique patterns of failure indicators that are a
combination of symptoms and the lack of symptoms.
We have aimed to evaluate the diagnostic capability
of our failure indicator concept and explore its poten-
tial application in failure forecasting for our future
research.

A case study has been used to evaluate the ben-
efits and limitations of the proposed methods for fail-
ure diagnosis. We have built a testbed of a cyber-
physical greenhouse to evaluate failure diagnostic ca-
pabilities of the proposed method in a realistic en-
vironment. The results showed that the proposed
failure diagnosis method is effective for diagnosing
all the induced failures. It demonstrated similar ac-
curacy and prediction to the existing classification
methods. In terms of interpretability of failure man-
ifestations, it has been found to be superior. The
results were satisfactory and the application of fail-
ure indicators can be extended to failure forecasting.

We have found that the introduction of system
operation modes for signal segmentation and signal
feature characterization has a positive effect on the
outcome of failure diagnosis. Our study showed that
the parallel use of multiple signal features for charac-
terizing the system operations provides reliable fail-
ure diagnosis. At the same time, we have found
that the failure indicators of some signal features
have a strong similarity, thereby representing redun-
dant information on the failure manifestation pro-
cess. This redundancy can either be interpreted as
an unnecessary computational load for the failure di-
agnosis process, or be used to increase the confidence
and reliability of failure diagnosis. Our experiment
has explored whether failure-induced system opera-
tion modes improve the outcome of failure diagno-
sis as they represent additional fault symptoms and

improve the distinctive power of failure indicators by
up to 15% in the best case.

Considering that the proposed concept is a data-
driven method, it can be used to derive the failure
indicators corresponding to the unknown and unpre-
dictable failure modes. It not only can be trained
for learning new failure modes, but also enables fail-
ure diagnosis in systems with self-tuning capabili-
ties by handling and interpreting the entrance and
exit of new signals and operation modes. However,
strong similarities of the failure indicators may be
a source of misclassification. This can be overcome
by a larger number of signal sources and operation
modes for deriving the failure indicator matrix. It
is operationalized through the inclusion of new rows
and columns in the failure indicator matrix as the
new signal sources and operation modes enter and
update the failure indicator.
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