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Abstract: Because the phase contains more information about the field compared to the amplitude, measurement
of the phase is encountered in many branches of modern science and engineering. Direct measurement of the phase is
difficult in the visible regime of the electromagnetic wave. One must employ computational techniques to calculate
the phase from the captured intensity. In this paper, we provide a review of our recent work on iterative phase
retrieval techniques and their applications in optical imaging.
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1 Introduction

The phase of a field is of significant importance
because it carries more information for determining
the surface profile and even the inner structure of
an object that diffracts/scatters the field (Oppen-
heim and Lim, 1981). However, in many cases, the
phase is not directly detectable for its very simple
structures such as a cosinoidal grating whose Fourier
spectrum reveals phase information. Usually, one
should use interferometric techniques, which encode
the phase of the object wave in a fringe pattern by
adding it to a known reference beam, most often
a plane wave or a spherical wave. Interferometry
has a number of advantages for phase measurement,
and has become a standard technique in various in-
dustrial and scientific applications such as optical
testing (Kreis, 2005; Malacara et al., 2005) and bi-
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ological and medical studies (Nolte, 2012). How-
ever, it depends very strictly on the experimen-
tal environment. There are many situations in as-
tronomy, crystallography, and large-aperture optic
testing, in which these requirements are difficult to
satisfy. Thus, noninterferometric techniques with
single-beam geometry are preferred in these cases.
Because the phase is coupled with the intensity when
it is seen by the image sensor, proper computational
algorithms should be developed to extract the phase
from the measured intensity patterns. This problem
has been of interest for a long time, and the most
successful algorithms are those developed by Gerch-
berg and Saxton (1972) and Fienup (1980). Phase
retrieval algorithms have found successful applica-
tions in the fields of crystallography and optics (Mil-
lane, 1990), image restoration in astronomy (Fienup,
1982), optical imaging (Shechtman et al., 2015),
etc.

In this paper, we review our recent work on the
generalizations of the Gerchberg-Saxton-type algo-
rithm, and their applications. Part of the materials
have been delivered in Situ et al. (2015).
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2 Mathematical model of the phase
problem

The problem of phase retrieval can be mathe-
matically stated as follows (Fienup, 1982): given the
intensity measurement of a scattering or diffraction
field, I(p) = |F (p)|2 and/or some a priori knowl-
edge about the object f(r) = |f(r)| exp[jφ(r)], re-
trieve the missing phase component, exp[jψ(p)], of
the field, so that the following relation holds:

|F (p)| exp[jψ(p)] = F{f(r)}

=

∫∫ ∞

−∞
f(r) exp[−j2πr · p]dr,

(1)
where r = (x, y) and p = (u, v) are the coordinates
in the object and the recording plane, respectively,
and the operator ‘F ’ represents the Fourier trans-
form. One should note that F can be replaced by
a linear canonical transform (Healy et al., 2016) in
many applications.

Before we proceed to discuss the algorithms, we
need to talk about the a priori knowledge about
the object that is assumed to be known. In many
practical applications, we always have some infor-
mation about the object. For instance, in the case of
the phase-only diffractive optical element design, the
amplitude of the illumination beam is known, which
means |f(r)| is constant. In image restoration, f(r)
is positive and real, which means that φ(r) = 0. So,
the assumption that we have a priori information is
practically reasonable.

The reconstruction of f(r) from its Fourier mag-
nitude |F (p)| alone generally has a multitude of so-
lutions. This is most easily seen by noting that
f(r), f(r + r0) exp[jφ0], and f∗(−r + r1) exp[jφ1]

have the same Fourier magnitude |F (p)|, where r0,
r1, φ0, and φ1 are real constants and the symbol
‘∗’ denotes the complex conjugate, although these
trivial ambiguities are usually of little practical sig-
nificance. One can also associate an arbitrary phase
ψ(p) with |F (p)| and yield an image that can be
quite different from the ground-truth f(r). However,
in practical physical systems, there are constraints
on f(r). The association of an arbitrary phase func-
tion to |F (p)| will yield an image that violates these
constraints. For one-dimensional (1D) signals, it
has shown that uniqueness does not exist (Walther,
1963; Millane, 1990). However, the uniqueness of
the phase problem in a two-dimensional (2D) space

for real and positive images has been investigated
by many researchers (Bruck and Sodin, 1979; Hayes,
1982; Bates, 1984; Izraelevitz and Lim, 1987). They
have shown that, usually, a real d-dimensional signal
(d ≥ 2) with the finite support N can be uniquely
characterized by the magnitude of its continuous
Fourier transform, up to the trivial ambiguities. Fur-
thermore, the magnitude of the oversampled M -
point discrete Fourier transform (DFT) sequence of
the signal, with M ≥ 2N − 1 (the inequality holds
in every dimension), is sufficient to guarantee the
uniqueness.

3 Phase retrieval as an optimization
problem

An alternative approach is to treat the phase
retrieval as an optimization problem. In this way,
one does not attempt to solve Eq. (1) directly for the
analytic solutions, but to seek feasible ones that can
minimize the error between the measured and the
retrieved data. It has been demonstrated that this
approach is more practical in terms of computation
cost. The general phase retrieval problem can be
formulated as follows (Levi and Stark, 1984):

argmin
ψ

‖ |F−1{|F (p)| exp[jψ(p)]}| − |f(r)| ‖, (2)

where ‖·‖ is the norm. Gerchberg and Saxton (1972)
found a practical solution to this problem when they
studied the aberration in electronic microscopy.

3.1 Gerchberg-Saxton algorithm

The routine of the Gerchberg-Saxton algorithm
is shown in Fig. 1. Each iteration consists of one
forward and one backward Fourier transforms, with
the corresponding constraints imposed in the Fourier
plane and the real plane, respectively. In the case
where only the Fourier magnitude is known, one
should make some changes to the retrieved image,
|fk(r)|, in each iteration, to make it satisfy the a pri-
ori constraints in the real space (i.e., the image has
finite support, is square integrable and nonnegative,
etc.). Fienup (1982) has shown that the Gerchberg-
Saxton (error-reduced) algorithm ‘converges’ in the
weak sense that the square error cannot increase with
an increasing number of iterations.

In this case, the Gerchberg-Saxton algorithm
can be formulated as a series of alternative
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projections onto the constraint (nonconvex) sets that
are defined by the measured data in the Fourier plane
and the a priori knowledge in the real plane, respec-
tively (Levi and Stark, 1984; Bauschke et al., 2002;
Marchesini et al., 2007):

fk+1 = P1P2fk, (3)

where P1 is the projection operator onto the con-
straint set in the real space, P2 is that in the Fourier
space, and fk is the image retrieved at the kth iter-
ation. For the closed set, the projection g ≡ Pf of f
onto the set C is defined as

‖ g − f ‖= argmin
y

‖ y − f ‖, ∀g, y ∈ C. (4)

According to the definition, the set in the real plane
can be expressed as

C1 = {g(r) : g(r) = 0, ∀|r| /∈ A}, (5)

if the finite support (defined as set A) constraint is
applied. Similarly, the set in the Fourier plane is
written as

C2 = {g(r) ↔ G(p) : |G(r)| = |F (p)|, ∀p}, (6)

where F is the measured Fourier magnitude. One
can easily prove that C1 is convex whereas C2 is not.
Given the above definition, the projection operators
P1 and P2 are then given by

P1g(r) =

{
g(r), |r| ∈ A,

0, |r| /∈ A,
(7)

and
P2g(r) ↔ F (p) exp[jϕ(p)], (8)

where ϕ(p) is the phase of G(p). One should be
aware of the fact that the definitions of the projec-
tions and the sets are dependent on the types of
constraints that are known. When another type of a
priori information is known, the projection operator
P1 and the set C1 should be redefined accordingly.

As a nonconvex optimization algorithm, the
Gerchberg-Saxton algorithm is strongly dependent
on the initial guess. It is known that random ini-
tialization usually leads to stagnation (Fienup and
Wackerman, 1986). Fig. 2 schematically depicts a
typical scenario of how the initial guess leads to stag-
nation. With the initialization f0, the algorithm al-
ternative projects the function between a convex set

C1 and a nonconvex set C2, until it is stuck at the
local minimum T , whereas the ground-truth solu-
tions fall in the area C1 ∩ C2. The algorithm in this
case cannot reach the global solution. Three differ-
ent modes of stagnation (Fienup and Wackerman,
1986; Guizar-Sicairos and Fienup, 2012) have been
studied. They are characterized by twin images,
stripes superimposed on the image, and the trunca-
tion of the image by the support constraint. Fienup
and co-workers have provided methods to overcome
them. For the typical applications in the design of
diffractive optics, Wyrowski and Bryngdahl (1988)
noticed that this problem arises from the singular-
ities in the phase, and proposed an alternative but
effective method to avoid stagnation. Their method
is to synthesize an iterative phase after a few initial
guesses. However, as shown in Fig. 2, an effective
method should have a way to jump out of the local
minimum. In the following subsection, we will show
that Fienup’s hybrid input-output (HIO) algorithm
provides such a mechanism.

f′k=|f′k|exp[jϕk]

fk=|fk|exp[jϕk]

F′k=|F′k|exp[jψk]

Fk=|F|exp[jψk]

Real space
constraints

FT

Fourier magnitude
constraints

IFT

k=k+1

Fig. 1 Block diagram of the Gerchberg-Saxton al-
gorithm (Gerchberg and Saxton, 1972) (FT: Fourier
transform; IFT: inverse Fourier transform)

T f2 f1 f0 

Pf0 
Pf1 

C2 

C1 
C1∩C2 

Fig. 2 Illustration of stagnation of the Gerchberg-
Saxton algorithm where C1 is convex and C2 is non-
convex: starting from point f0, sequence {fn} con-
verges to a trap point T , a local minimum, whereas
the true solution must belong to C1 ∩ C2
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3.2 Fienup’s hybrid input-output algorithm

Fineup’s HIO algorithm (Fienup, 1982) is one
of the most powerful algorithms that have been pro-
posed so far to solve practical phase-retrieval prob-
lems. The HIO algorithm has a significant improve-
ment by introducing relaxation in the real plane con-
straint. That is, instead of Eq. (7), the update of the
retrieved image is now written as

gk+1(r) =

{
g′k(r), r /∈ S,

gk(r)− βg′k(r), r ∈ S,
(9)

where β is a constant feedback parameter and S is
the set of points at which g′k violates the real plane
constraints. The value of β is usually set between 0.5
and 1 in most cases.

Interestingly, the rigorous theory for the HIO
algorithm is still an open problem, although much
effort has been made (Bauschke et al., 2002). The
HIO algorithm is also sensitive to the accuracy of the
a priori knowledge about the object. Nevertheless,
it promises to find the global solution with noise-
free data. In practical applications, however, noise
always exists in the captured data. One may prefer
to combine the HIO algorithm and the Gerchberg-
Saxton (or error-reduced) algorithm (Fienup, 1982;
Situ and Yan, 2010) for better performance.

Using the language of projection-based opti-
mization theory, the HIO algorithm can now be writ-
ten as follows (Levi and Stark, 1984):

fk+1 = P2T1fk, (10)

where
T1 = I + λ1(P1 − I), (11)

where I is the identity operator and λ1 a constant
called the relaxation parameter. Specifically, the def-
inition of the projection operator T1 is (Marchesini
et al., 2007)

T1g(r) =
{

P1g(r), r ∈ S,

(I − βP1)g(r), otherwise.
(12)

4 Generalizations and applications

After a brief review of the two most fundamental
phase retrieval algorithms, in this section we will
report our recent work on the generalizations and
their applications in computer-generated hologram,
optical encryption, and computational imaging.

4.1 Hybrid phase retrieval algorithm

The Gerchberg-Saxton algorithm has been
widely adopted for tasks such as the design of diffrac-
tive optical elements (DOEs) and the calculation of
computer-generated holograms (CGHs) (Wyrowski
and Bryngdahl, 1988; Buckley, 2011). In these cir-
cumstances, the magnitude of the object function
f(r) is expected to be constant within the entire sig-
nal window because the DOE or CGH is usually a
phase-only function. The task here can be formu-
lated as

argmin
ϕ

‖ |F (p)| − |F{exp[jϕ(r)]}| ‖, (13)

where F is the desired image to be obtained in the
Fourier plane. As aforementioned, the Gerchberg-
Saxton algorithm usually converges in a weak sense.
To improve the convergence, we recently proposed
a hybrid algorithm by combining the Gerchberg-
Saxton algorithm with the strategy of gradient de-
cent and weighting (Wang et al., 2017). The block
diagram of our algorithm is schematically shown in
Fig. 3.

Now let us describe our algorithm in detail. In
each iteration, the amplitude obtained in the im-
age plane, fk(r) = |fk(r)| exp[jφk(r)], is modified in
the following way: in addition to the replacement
of |fk(r)| by |f(r)| = 1 within the signal window,
gradient decent is applied to modify the phase as

ϕk+1(r) = φk(r) + αkhk(r), (14)

where |hk(r)| is the direction of the gradient defined
as �fk(r), which is actually proportional to the dif-
ference between the phases obtained at the current
iteration and the most recent one:

hk(r) = φk(r)− φk−1(r), (15)

and αk is an acceleration coefficient defined as

αk =

∑
tk(r)tk−1(r)∑
tk−1(r)tk−1(r)

, (16)

where
tk(r) = φk(r)− ϕk(r). (17)

Then the resulting phase ϕk+1(r) is used as the input
gk(r) = |f(r)| exp[jϕk+1(r)] for the next iteration.

In the Fourier plane, the constraint set defined
by Eq. (6) can be used until the error is stable. At
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Fig. 3 Block diagram of the proposed phase retrieval algorithm

that point, we introduce the weighting strategy to
force further decrease in the error. For this, the
constraint set should be redefined as

C′
2 = { g(r) ↔ G(p) :

|G(p)| = |2βkF (p)| − |Fk(p)|, ∀p ∈ a},
(18)

where a specifies the set of the image window, and
the weighting factor βk is

βk =

∑
|Fk(p)|∑
|F (p)| , ∀p ∈ a. (19)

More detailed discussion of the algorithm can be
found in Wang et al. (2017).

We take the holographic display of a 2D image to
demonstrate our algorithm. The simulation results
are plotted in Fig. 4. Fig. 4a shows the target image,
a Chinese dragon, and Figs. 4b and 4c are the re-
constructed images using the Gerchberg-Saxton and
our algorithms, respectively. Perceptually, we can
clearly see that the results obtained by the hybrid
algorithm are far better than the one reconstructed
by the Gerchberg-Saxton algorithm. To quantify the
difference, we calculate the root mean square error

(a) (b) (c)

0.5

0

−0.5

−1.0

−1.5

ln
(R

M
S

E
)

(d)

Fig. 4 Simulation results for the comparison between
the proposed method and the Gerchberg-Saxton (GS)
algorithm: (a) target image for holographic dis-
play; (b) reconstructed image from the computer-
generated hologram (CGH) calculated using the GS;
(c) reconstructed image from the CGH calculated us-
ing the proposed algorithm; (d) convergence behavior
of the two algorithms

(RMSE) as follows:

RMSE =

[∑
[|Fk(p)| − |F (p)|]2∑

|F (p)|2

]1/2
, (20)
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and find that the RMSE values associated with
Figs. 4b and 4c are 0.027 and 0.005, respectively.
We plot the curves of the RMSE values as a func-
tion of the iteration number in Fig. 4d. The conver-
gence behavior of the Gerchberg-Saxton algorithm is
shown with the dotted line. As expected, the RMSE
value drops very quickly within the very first few
iterations, and becomes steady after that. In com-
parison, the error function of the hybrid algorithm
drops even more quickly at the beginning due to the
gradient decent algorithm, but it is clear that a sec-
ond sharp jump occurs when the weighting strategy
is applied.

In the experiment, the calculated CGHs were
loaded onto a reflective phase-only spatial light mod-
ulator (SLM, Holoeye, LETO), which has 1920×1080

pixels, each of which is 6.4 µm × 6.4 µm in size, and
has 8-bit phase depth in [0, 2π]. When the SLM is
illuminated by a collimated He-Ne laser beam (wave-
length 633 nm), the optically reconstructed images
are shown in Fig. 5. The experimental results are
consistent with the simulation, as the eyes and scales
of the dragon are more clearly reconstructed using
the CGH designed with our algorithm (Fig. 5b).

(a) (b)

Fig. 5 Experimental results: optical reconstructions
of the Chinese dragon from the CGH calculated by
using the GS (a) and our method (b)

4.2 Cascaded phase retrieval algorithm

The phases in different planes in a normal opti-
cal system are usually related to one another. Thus,
knowing the phase, together with the amplitude in
one plane, it is possible to derive the phase distribu-
tion in another plane. However, in a special system
such as those that one encounters in optical image
encryption, the relationship of the phases between
two arbitrary planes is broken due to the random
phase modulation. Thus, the problem of retrieving

the phases in multiple planes becomes highly impor-
tant. In this case, cascaded phase retrieval algo-
rithms should be used. The purpose of encryption is
to encode a meaningful message (image) called plain-
text into a random distribution called cyphertext.
This has received increasing interest since Refregier
and Javidi (1995) proposed the technique of double
random-phase encryption. Wang et al. (1996) intro-
duced phase retrieval algorithms to the field of opti-
cal encryption. Since then, people have used phase
retrieval algorithms to encrypt images (Johnson and
Brasher, 1996; Li et al., 2000; Chang et al., 2002;
Situ and Zhang, 2004; Shi et al., 2007; 2013; Chen
et al., 2010; 2013a; 2013b) and to analyze the secu-
rity of optical encryption systems (Situ et al., 2007;
2008; 2010; Nakano et al., 2014).

Inspired by the original idea in Refregier and Ja-
vidi (1995), phase-retrieval-based optical encryption
systems usually use the 4f configuration (Johnson
and Brasher, 1996; Wang et al., 1996; Li et al., 2000)
as shown in Fig. 6, or its generalization to a cascaded
system operating in the Fresnel (Situ and Zhang,
2004; Shi et al., 2007) or even the linear canonical
domain (Guo et al., 2015a; 2015b). The general
purpose is to design the phases of the two phase-
only masks (POM1 and POM2) located at the input
plane and Fourier plane respectively, in the 4f sys-
tem, so that they produce a desired pattern at the
output plane. Similar configurations were used in
the implementation of optical interconnections (Za-
leta et al., 1995) and image reconstruction in multiple
planes (Gülses and Jenkins, 2013).

f f f f

Fig. 6 Schematic drawing of a 4f system that uses
the cascaded phase retrieval algorithm to retrieve the
phases at the input and the Fourier planes and pro-
duce a desired output. This system can be generalized
to a cascaded system operating in the Fresnel domain
by removing the lenses (Situ and Zhang, 2004)

Now let us explain the algorithm in detail. De-
noting the phase masks POM1 and POM2 as ϕ(r)
and ψ(p) respectively, the phase-retrieval problem
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can be formulated as

argmin
ϕ,ψ

‖ g(r)−|F−1{F{exp[jϕ(r)]} exp[jψ(p)]}| ‖,

(21)
where g(r) is the desired pattern at the output. To
solve this problem, one can generalize the Gerchberg-
Saxton algorithm. The constraint at the input plane
is just the illumination pattern, which can be for-
mulated as an identity operator I if a plane wave is
used. The constraint applied at the output is the
magnitude of the desired image:

|gk(r)| = |g(r)|, (22)

where gk(r) is the output image obtained at the
kth iteration. One significant difference from the
Gerchberg-Saxton algorithm is the manner in which
the phases are updated. People have proposed many
methods to do this (Johnson and Brasher, 1996;
Wang et al., 1996; Li et al., 2000; Chang et al., 2002;
Situ and Zhang, 2004). The one we used is as follows:

ψk+1(p) = arg

{
F{|gk(r)| exp[jθk(r)]}

F{exp[jϕk(r)]}

}
(23)

and

ϕk+1(r) = arg

{
F−1

{
F{|gk(r)| exp[jθk(r)]}

exp[jψk+1(p)]

}}
,

(24)
where θk is the phase numerically obtained at the
output plane at the kth iteration, and we find it very
effective. Fig. 7 shows the performance of our al-
gorithm compared to the other similar algorithms
proposed in Wang et al. (1996), Li et al. (2000), and
Chang et al. (2002). The results suggest that the
cascaded algorithm has an advantage over the origi-
nal Gerchberg-Saxton algorithm in terms of conver-
gence. There is another distinguishing feature of the
cascaded phase retrieval algorithm. That is, it is
insensitive to the initial condition according to our
observation. This may be because the double-phase
configuration may have more freedom to form the
desired pattern.

4.3 Use of diversity

As aforementioned, in an optical imaging sys-
tem, the phases in different planes are usually re-
lated to one another. It is therefore reasonable that
the phase of interest can be retrieved more faith-
fully if there are more data available about it. This

is where phase diversity plays a role. It has been
demonstrated that multiple measurements of inten-
sity can be made at different planes along the prop-
agation direction (Allen and Oxley, 2001; Zhang
et al., 2003; Anand et al., 2011), by scanning the
sample transversely through the beam while adja-
cent probe spots overlap significantly in the object
plane (Faulkner and Rodenburg, 2004; Rodenburg
and Faulkner, 2004; Marrison et al., 2013), by chang-
ing the wavelength of the illumination beam (Bao
et al., 2008; 2012), by modulating the phase of the
aperture plane (Zhang et al., 2007; 2016), or even
by introducing different nonlinearity into the optical
system (Lu et al., 2013).

8
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M
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E
)

0 20 40 60 80

Wang et al. (1996)

Chang et al. (2002)

Situ and Zhang (2004)

Li et al. (2000)

Iteration number

Fig. 7 Comparison of convergent curves of four al-
gorithms. Note that the curves are plotted in the
natural logarithmic scale to separate these curves
distinctly

One can also adopt phase diversity in the cas-
caded phase retrieval algorithm discussed in Sec-
tion. 4.2. This is particularly useful in cryptanalysis
of optical encryption techniques (Situ et al., 2007;
2010). According to Kerckhoffs’ principle, it is rea-
sonable to assume that the analyzer knows several
plaintext images input into an encryption system
and the corresponding output cyphertext images,
which are encrypted by the same set of the random
phase keys ϕ(r) and ψ(p). Knowing these plaintext-
cyphertext image pairs, it is easy to develop an algo-
rithm to recover the phase keys. Ptychography-like
techniques can be used in optical security as well. For
example, one can use a probe beam to scan across the
plaintext image in a Fresnel-based optical encryption
system (Chen et al., 2013b), and record the output
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intensity patterns corresponding to every position
of the probe beam. A ptychography-like algorithm
can be used to recover the plaintext image from the
recorded cyphertext intensity patterns. One can re-
fer to the recent review (Guo et al., 2017) for more
information about the phase retrieval problems in
optical encryption.

Here, we focus mainly on the phase diversity
problem in optical imaging. Recently, Zheng et al.
(2013) modified the original ptychography (Faulkner
and Rodenburg, 2004; Marrison et al., 2013) by
changing the angle at which the beam illuminates the
specimen instead of changing the transverse position
of the probe beam in the classical ptychography, al-
lowing scanning of the Fourier spectrum of the spec-
imen. In this way, they obtained wide-field, high-
resolution Fourier ptychographic microscopy (FPM).
The FPM technique requires collecting a series of
images of a microscopic specimen of interest. Each
image is acquired under a different angle of illumi-
nation from a coherent light source. The Fourier
spectra of the acquired image set are then stitched,
using a generalized Gerchberg-Saxton algorithm into
a final high-resolution image. However, the data ac-
quisition process in FPM is time-consuming due to
the scan of the illumination angle. Taking advan-
tage of redundancy in the spatial spectrum of natural
images (specimens), we proposed a content-adaptive
illumination scheme to improve the acquisition strat-
egy (Bian et al., 2014).

In contrast to the FPM, the sampling strategy
of the adaptive Fourier ptychography (AFP) we pro-
posed is to adaptively update the spectrum subre-
gions in a circle-wise manner, from low-frequency
regions to high-frequency regions. In each circle,
the algorithm updates only the areas with significant
contributions. Thus, much less sampling is required.
The framework of AFP is schematically shown in
Fig. 8. The detailed description of the algorithm can
be found in Bian et al. (2014).

The performance of the AFP is demonstrated in
Fig. 9. In the microscopic setup shown in Fig. 9a,
we used an Olympus B × 43 microscope with a 2×
(NA = 0.08) objective to collect the light. Both the
USAF (United States Air Force) resolution chart and
a mouse brain slice (fiber tissue) were used to test
the AFP. Specifically, the experimental results show
that, with 85 low-resolution images, the AFP can
resolve the feature of group 9, element 3 on the USAF

chart. In comparison, the FPM needs to take 225
measurements to achieve the same resolution. This
verifies the efficiency of the proposed AFP method
in data acquisition.

(2) Update spectrum circle by circle 
adaptively towards high-frequency 
direction

(3) Output(1) Initialization

Fig. 8 Flowchart of the proposed adaptive Fourier
ptychography framework. After initialization, as the
left part shows, final results can be exported by adap-
tively and iteratively updating the high-frequency
spectrum (as the hollow blue arrows show), using a
small number of images captured in the first itera-
tion (as the solid red arrows show), under different
incident illuminations, which correspond to the red
labelled spectrum bands shown in the central part
(Bian et al., 2014). References to color refer to the
online version of this figure

5 Conclusions

In conclusion, we revisited the basic principle of
the Gerchberg-Saxton algorithm and Fienup’s HIO
algorithm, and reviewed our recent work on the
generalizations of the iterative phase-retrieval algo-
rithm: (1) combining it with other optimization tech-
niques such as gradient decent, (2) modifying it for
the retrieval of multiple phases in a cascaded sys-
tem, and (3) using diversity. These generalized algo-
rithms have found interesting applications in the cal-
culation of computer-generated holograms for holo-
graphic display, optical image encryption, and quan-
titative phase microscopic imaging, among others.
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