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Abstract: Security issues in networked control systems (NCSs) have received increasing attention in recent years.
However, security protection often requires extra energy consumption, computational overhead, and time delays,
which could adversely affect the real-time and energy-limited system. In this paper, random cryptographic protection
is implemented. It is less expensive with respect to computational overhead, time, and energy consumption,
compared with persistent cryptographic protection. Under the consideration of weak attackers who have little system
knowledge, ungenerous attacking capability and the desire for stealthiness and random zero-measurement attacks
are introduced as the malicious modification of measurements into zero signals. NCS is modeled as a stochastic
system with two correlated Bernoulli distributed stochastic variables for implementation of random cryptographic
protection and occurrence of random zero-measurement attacks; the stochastic stability can be analyzed using a
linear matrix inequality (LMI) approach. The proposed stochastic stability analysis can help determine the proper
probability of running random cryptographic protection against random zero-measurement attacks with a certain
probability. Finally, a simulation example is presented based on a vertical take-off and landing (VTOL) system. The
results show the effectiveness, robustness, and application of the proposed method, and are helpful in choosing the
proper protection mechanism taking into account the time delay and in determining the system sampling period to
increase the resistance against such attacks.

Key words: Networked control systems; Security; Cyber attacks; Stochastic stability; Cryptographic protection
https://doi.org/10.1631/FITEE.1700334 CLC number: TP273

‡ Corresponding author
* Project supported by the National Natural Science Foun-
dation of China (No. 61433006), the Key Research Project
of Zhejiang Province, China (No. 2017C01062), the Open Re-
search Project of the State Key Laboratory of Industrial Con-
trol Technology, Zhejiang University, China (No. ICT1800422),
the Opening Project of Shanghai Key Laboratory of Integrated
Administration Technologies for Information Security, China
(No. AGK2018003), the Department of Education of Zhejiang
Province, China (No. Y201840611), and the Zhejiang Provincial
Natural Science Foundation of China (No. LY16F020019)

ORCID: Meng-zhou GAO, https://orcid.org/0000-0003-2250-
2127
© Zhejiang University and Springer-Verlag GmbH Germany,
part of Springer Nature 2018

1 Introduction

The upgrade of proprietary network protocols to
open protocols and the accessibility of remote users
to sensor-control data via corporate networks and
the Internet increase the efficiency of networked con-
trol systems (NCSs), but create cyber vulnerabilities
in NCSs at the same time (Amin et al., 2013; Teixeira
et al., 2015; Wang YN et al., 2016).

NCS cyber vulnerabilities, especially to decep-
tion attacks that compromise integrity (Teixeira
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et al., 2012), have received considerable attention in
recent years. Following a carefully designed attack
strategy, deception attacks are launched by compro-
mising control packets or measurements (Pasqualetti
et al., 2013) and changing correct data into designed
incorrect data to cause the system to make incorrect
decisions. In particular, stealthy deception attacks
can be implemented without being discovered by tra-
ditional anomaly detectors, such as bad data detec-
tion schemes. The failure to give an alarm about an
abnormal situation can cause serious control issues,
such as stability problems. However, it has been
overlooked largely that cyber attacks can be under-
stood as intermittent or random implementations for
the following reasons: (1) Success of adversary at-
tacks is highly dependent on the network circum-
stances (e.g., network load, network congestion, and
network transmission rate); (2) Attacks cannot be
(or are arbitrarily) launched persistently if attack-
ers have limited resources (e.g., energy) (Ding et al.,
2017a, 2017b).

Recent research addresses intermittent or ran-
domly occurring cyber attacks. The malicious mod-
ification of sensor data is characterized statistically
by a set of unknown probability transition matri-
ces and the distributed estimation problem is stud-
ied using quantized data in the presence of attacks
(Zhang et al., 2015). Sensor measurements that
may have been corrupted by a cyber attacker are
estimated based on a binary random variable by
new game-theoretic approaches (Vamvoudakis et al.,
2014). Cyber attacks are modeled by a random
Markov process in multiagent systems to study a dis-
tributed secure consensus tracking control problem
(Feng et al., 2017). Deception attacks on commands
and measurements are introduced intelligently and
with intermittent behaviors to produce the most
damage without being discovered (Muradore and
Quaglia, 2015). The filter and fault estimator against
randomly occurring nonlinearities and deception at-
tacks are co-designed (Hu et al., 2016). Neverthe-
less, protection against such attacks is not considered
simultaneously.

To protect the networked control system against
deception attacks, cryptographic protection can be
applied to an NCS that attempts to refuse well-
designed attacks and deceives attackers by hiding
information within a confusing string of seemingly
random symbols. Moreover, stealthy deception

attacks on encrypted data during transmission would
be revealed and lose the stealthiness advantage even-
tually when the compromised data fail to derive the
original plain data and turn into messy code dur-
ing decryption. There have already been various
applications of cryptographic protection to secure
systems. Muradore and Quaglia (2015) proposed
the application of a cryptographic algorithm on a
short digest of a commonly known hash function
between senders and receivers, so that the message
signature is generated to ensure message integrity
during transmission. A new concept of encrypting
a linear controller using the modified homomorphic
encryption schemes based on the public-key Rivest–
Shamir–Adleman (RSA) and ElGamal encryption
systems has been presented by Kogiso and Fujita
(2015). A privacy-preserving protocol based on the
Pallier additive homomorphic cryptosystem where
each agent encrypts its own information before send-
ing it to an untrusted cloud computing infrastructure
was proposed by Shoukry et al. (2016). Symmet-
ric cryptography and one-way encryption keys were
used to protect sensitive data in networked critical
infrastructures by Cao et al. (2013). Pang and Liu
(2012) presented a secure transmission mechanism
between the controller side and the plant side, involv-
ing the integrated data encryption standard (DES)
algorithm, the message digest (MD5) algorithm, the
timestamp strategy, and the recursive networked pre-
dictive control method. Some vendors have incorpo-
rated the AES-128 and AES-256 encryption algo-
rithms into their meter design to protect confiden-
tiality (Bennett and Wicker, 2010) and integrity in
some cases. The IEC 62 351 protocol standard speci-
fies the security requirements of data authentication,
data confidentiality, access control, and intrusion de-
tection (Wang et al., 2011).

However, cryptographic protection requires ex-
tra computational overhead, time, and energy con-
sumption. It often makes security objectives con-
flict with real-time dynamic performance due to lim-
ited computation capacity, energy resources, and
time and communication constraints (Wang D et al.,
2016). Excessive cryptographic protection is waste-
ful and may even be harmful to the system. There-
fore, cryptographic protection needs to be designed
properly.

Qiu et al. (2012) balanced security strength
and energy for a phasor measurement unit (PMU)
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monitoring system in a smart grid. The tradeoff be-
tween the system’s dynamic performance and its se-
curity was analyzed in a distributed networked con-
trol system (NCS) against various network attacks
(Zeng and Chow, 2013). Muradore and Quaglia
(2015) proposed a packet-based selective encryption
mechanism which is designed to be active only when
needed to reduce energy consumption, and to detect
when an attack starts and ends. Jiang et al. (2016)
proposed a unified framework to tackle energy, secu-
rity, reliability, and timing requirements for security-
and safety-critical systems.

In this paper, we propose a random implemen-
tation of cryptographic protection. This approach
reduces the number of times that the protection is
implemented, and therefore reduces computational
overhead, time delays, and energy consumption
compared with continuous cryptographic protection.
We also introduce random zero-measurement at-
tacks, which require less system knowledge, pos-
sess stealthiness well against the basic abnormal de-
tection, and study the stochastic stability of NCS
with random cryptographic protection under ran-
dom zero-measurement attacks. The proposed the-
orem for stochastic stability considers the running
probability of protection and attacks as two corre-
lated Bernoulli distributed random variables. Sim-
ulations are carried out in a vertical take-off and
landing (VTOL) aircraft system to show the effec-
tiveness and application of random cryptographic
protection against random measurement attacks
and the robustness of the method in the pres-
ence of measurement noise. The theorem can be
used to determine the proper probability of ran-
dom cryptographic protection against random zero-
measurement delays if the attack probability is
known previously and the result is meaningful for
an energy-limited or energy-constrained real-time
system.

To facilitate the following discussions, a list of
mathematical notations used in this study is given
in Table 1.

2 Problem description

In this section, random cryptographic protec-
tion and random zero-measurement attacks are for-
mulated and introduced. The linear time-invariant
control system with a sampled controller under

Table 1 Notation list

Notation Meaning

τ The delay caused by the added security
protection

T Sampling period
k Sequence number of the sampling instant
tk The kth sampling instant

A, B, C System matrices
K Fixed feedback control gain
x(t) The state vector at time t

y(t) The measurement output with no attacks at
time t

x0 Initial state vector
xk The state vector at the kth sampling instant
yk The measurement output without attacks at

the kth sampling instant
αk The stochastic variable followed by random

cryptographic protection at the kth

sampling instant
β′
k The stochastic variable followed by random

zero-measurement attacks with no
protection at the kth sampling instant

βk The stochastic variable followed by random
zero-measurement attacks, in practice
considering random cryptographic
protection at the kth sampling instant

ᾱ Protection probability, which is the
probability distribution of αk

β̄ Attack probability, which is the probability
distribution of β′

k

ξk The malicious sampled measurement signals
modified by adversaries at the kth

sampling instant
ya
k The measurements considering both attacks

and protection at the kth sampling
instant

ua
k The control input considering both attacks

and protection at the kth sampling
instant

random cryptographic protection and random zero-
measurement attacks is also presented.

2.1 Random cryptographic protection

To protect integrity and confidentiality, data
(e.g., measurements and control commands) are en-
crypted before transmission through the network and
then decrypted at the destination to obtain the orig-
inal data. Specifically, unauthorized modification of
encrypted transmitted data will cause incorrect de-
cryption and result in messy code, which can be used
as the evidence of data attacks. Compromised mali-
cious signals can be discovered, discarded, and even
trigger an alarm easily. Integrated cryptographic
protection, however, inevitably causes additional de-
lays and power consumption (Qiu et al., 2011).
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Considering the limited computational abil-
ity and sacrificed performance of NCSs, random
cryptographic protection is used to decrease the
number of implementations and reduce implemen-
tation costs. In random cryptographic protection,
communicated measurements are protected stochas-
tically at different instants. Specifically, after mea-
surements are sampled at sampling instant tk, ran-
dom cryptographic protection is implemented fol-
lowing stochastic variable αk ∈ {1, 0}, which is the
Bernoulli distributed white sequence. If αk = 1, se-
curity protection is running and protection delays
occur between the sensor and controller; if αk = 0,
security protection is not running and protection de-
lays do not occur between the sensor and controller.
The protection probability of αk is given as

{
Prob{αk = 1} = E{αk} = ᾱ,

Prob{αk = 0} = 1− E{αk} = 1− ᾱ.
(1)

Thus, the energy consumption and resource sav-
ings as a result of random cryptographic protection
are (1−ᾱ)×100% of the energy consumption and re-
sources that are needed for continuous cryptographic
protection, respectively. Note that with random
cryptographic protection, an encryption check will
be launched before decryption to decide whether to
decrypt the data.

2.2 Random zero-measurement attacks

Consider careful attackers who wish to be
stealthy but have little capacity to design tricky
attacking methods that can bypass basic detection
of abnormalities. For example, if the injected at-
tack value is too small or too large, and is beyond
the allowable state threshold, the system will recog-
nize the anomaly and can possibly raise an alarm to
the system operator. Furthermore, the deviations
caused by attacks will accumulate when the number
of attacks increases if the expectancy value of the
injected attacks is not equal to the true measure-
ment value (Ding et al., 2017c). Under such consid-
erations, zero-measurement attacks are designed by
changing all sampled measurement signals into ze-
ros (ξk = 0, k ∈ Z) which are mostly normal and
expected (sometimes the nominal states are used
as zeros) to spoof NCS with no need for external
inputs.

Moreover, attackers who do not have a cor-
rect cryptographic key are unable to tamper with
encrypted data without being discovered. Accord-
ing to Muradore and Quaglia (2015), the attacker
cannot touch the encrypted messages if they expect
to avoid being discovered. Assume that attackers
have the ability to determine if messages are pro-
tected. This is reasonable because encrypted mes-
sages will be gibberish and unreadable. Facing un-
encrypted signals, attackers randomly launch zero-
measurement attacks, which can be called ‘random
zero-measurement attacks’, in light of their spe-
cific ability to follow a stochastic binary variable
β′
k ∈ {0, 1}. In particular, when random cryp-

tographic protection is not implemented, β′
k = 1

means that zero-measurement attacks are injected;
β′
k = 0 means that zero-measurement attacks are

not launched. When random cryptographic protec-
tion is implemented, zero-measurement attacks will
not run and β′

k is always equal to zero. The proba-
bility distribution of β′

k is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Prob{β′
k= 1|αk= 0}= E{β′

k|αk= 0} = β̄,

Prob{β′
k= 0|αk= 0}= 1− E{β′

k|αk= 0} = 1− β̄,

Prob{β′
k= 1|αk= 1}= E{β′

k|αk= 1} = 0,

Prob{β′
k= 0|αk= 1}= 1− E{β′

k|αk= 1} = 1.

(2)

If the attackers are powerful, zero-measurement
attacks can be launched frequently and even con-
stantly; however, if the attackers have limited at-
tacking energy, they might be unable to launch fre-
quent zero-measurement attacks. As we can see, bi-
nary variables αk and β′

k are correlated so that se-
curity protection affects the implementation of at-
tacks. Considering the correlation with random
cryptographic protection, the implementation of ran-
dom zero-measurement attacks, in practice, follows
probability βk, which is formulated as

βk = β′
k(1− αk). (3)

Note that αk and β′
k−1 are independent. Sim-

ilarly, αk and βk−1 are independent. βk is also a
binary variable. Because αk, β′

k, and βk are binary
variables, we can obtain αkαk = αk, β′

kβ
′
k = β′

k, and
βkβk = βk. Moreover, the binary variables follow the
distributive law of multiplication, and the following
equalities can be derived:
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⎧⎪⎨
⎪⎩

(1−β′
k)(1−αk)=1−αk − β′

k(1−αk)=1−αk−βk,
αkβk=αkβ

′
k(1 − αk)=0,

αk(1−βk)=αk−αkβ
′
k(1−αk)=αk.

(4)

2.3 Networked control system model with
random cryptographic protection under ran-
dom zero-measurement attacks

The NCS model is shown in Fig. 1. System
states are sensed under fixed sampling period T , and
then sent to controllers via a communication net-
work. Assume that time delay τ caused by crypto-
graphic protection is smaller than sampling period
T . In the case of random cryptographic protection,
the system dynamics at sampling instant tk becomes

xk+1 = Axk +B2uk + αkB3uk−1 + (1− αk)B3uk

= Axk +B1uk + αkB3(uk−1 − uk),

(5)
where

xk=x(tk),uk=u(tk),A=eAT ,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B1=

∫
T0eAθdθB=(eAT − I)A−1B,

B2=

∫ T−τ0

0

eAθdθB=[eA(T−τ0) − I]A−1B,

B3=B1 −B2.

Check
protection

Cryptographic 
protection

Send out

Implement
attacks

Protected

Communication

Plant

Not protected

Random zero-measurement attacks

αk=1

αk=0

ξk=0

yk

yk

′ = 1kβ

′ = 0kβ

a
ky

Random cryptographic protection

Fig. 1 The networked control system model under
random zero-measurement attacks and random cryp-
tographic protection

The discrete controller can be modeled as

u(t) =

{
u0, 0 ≤ t < T + τ,

uk, kT + τ ≤ t < (k + 1)T + τ, k ∈ Z
+,

(6)
where uk = Kyk. In the case of random zero-
measurement attacks, the measurement of sampling
instant tk = kT (k ∈ Z

+) becomes

ya
k = αkyk + (1 − αk)[β

′
kξk + (1 − β′

k)yk]

= yk + βk(ξk − yk),
(7)

where yk = Cxk is the normal measurement without
being compromised. Then, the control input under
a random attacking strategy turns into

ua
k = Kya

k . (8)

Substituting Eqs. (7) and (8) into Eq. (5), the
formulation of the closed-loop system considering
both the possible attacks and protection becomes

xk+1=(A+B1KC)xk+βkB1K(ξk−Cxk)

−αkB3KCxk+αkB3K[Cxk−1

+βk−1(ξk−1−Cxk−1)], (9)

where if ξk = 0, the NCS under random zero-
measurement attacks and random cryptographic
protection is formulated as

xk+1 =(A+B1KC)xk − βkB1KCxk

− αkB3KCxk + αk(1 − βk−1)B3KCxk−1.

(10)

3 Main results

In this section, some sufficient conditions are
provided based on stochastic analysis. The following
preliminaries are used to derive our main results:
Definition 1 (Stochastic stability (Xu et al., 2004))
The stochastic system (Eq. (10)) is said to be
stochastically stable if there exists a scalar δ > 0

such that

E

{ ∞∑
k=0

x2
k

}
≤ δE

{
x2
0

}
. (11)

Lemma 1 (Tarn and Rasis, 1976) Let V (xk)

be a Lyapunov functional. If there exist real scalars



Gao and Feng / Front Inform Technol Electron Eng 2018 19(9):1098-1111 1103

ψ1 ≥ 0, μ > 0, ν > 0, and 0 < ψ2 < 1 such that

μx2
k ≤ V (xk) ≤ νx2

k (12)

and

E{V (xk+1)|xk} − V (xk) ≤ ψ1 − ψ2V (xk), (13)

then sequence xk satisfies

E{x2
k} ≤ ν

μ
x2
0(1− ψ2)

k +
ψ1

μψ2
. (14)

Lemma 2 (Schur’s complements) Given constant
symmetric matrices Σ1, Σ2, and Σ3, where Σ1 =

ΣT
1 and Σ2 = ΣT

2 , the following conditions are
equivalent:

Σ2 > 0,Σ1 +ΣT
3 Σ

−1
2 Σ3 < 0 (15)

and

[
Σ1 ΣT

3

Σ3 −Σ2

]
< 0 or

[−Σ2 Σ3

ΣT
3 Σ1

]
< 0. (16)

We shall focus on the stochastic stability analy-
sis for system (10). The two stochastic variables are
considered correlated, and the correlation makes our
stochastic stability different from those in previous
studies. Now, we provide the main results in the
following theorems:
Theorem 1 For a given controller gain matrix K,
closed-loop system (10) with random cryptographic
protection of probability ᾱ is stochastically stable
under random zero-measurement attacks of proba-
bility β̄, if there exist positive-definite matrices P1

and P2 satisfying

⎡
⎢⎢⎣

Λ1 ∗ ∗ ∗
0 Λ2 ∗ ∗

ρP1(A+B1KC) ρP1B3KC −P1 ∗
ρP1B3KC ρP1B3KC 0 −P1

⎤
⎥⎥⎦<0,

(17)
where ρ, Λ1, and Λ2 are denoted in Eq. (18), shown
on the top of the next page.
Proof We define the following Lyapunov function
for system (10):

Vk = xT
kP1xk + xT

k−1P2xk−1,

where P1,P2 are positive-definite matrices. Then
we can derive Eq. (19), shown on the top of the next
page.

Note that

E{αk(1−βk−1)}=E{αk−αkβ
′
k−1−αkβ

′
k−1αk−1)}

= ᾱ(1−β̄+ᾱβ̄),
(20)

E{βk} = E{βk|αk = 0} =

2∑
i=1

xiP(βk = xi|αk = 0)

= P{βk = 1|αk = 0} = (1 − ᾱ)β̄.
(21)

Then we have Eq. (22), shown on the top of the next
page, where

ηk = [xk,xk−1]
T,

Λ =

[
A+B1KC B3KC

B3KC −B3KC

]T

·
[
ᾱ(1− β̄ + ᾱβ̄)P1 0

0 ᾱ(1− β̄ + ᾱβ̄)P1

]

·
[
A+B1KC B3KC

B3KC −B3KC

]
+

[
Λ1 0

0 Λ2

]
.

(23)
By Schur’s complement, inequality (17) implies

Λ < 0. Thus, we have

E{Vk+1|xk,xk−1, · · · ,x0} − Vk = ηT
k Ληk

≤ −λmin(−Λ)ηT
k ηk < −αηT

k ηk,
(24)

where
0 < α < min{λmin(−Λ), σ}. (25)

Define σ := max{λmax(P1), λmax(P2)}. From in-
equality (24), we have

E{Vk+1|xk,xk−1, · · · ,x0} − Vk

< −αηT
k ηk < −α

σ
Vk := −ψVk.

(26)

Therefore, by Definition 1, it can be veri-
fied from Lemma 1 that closed-loop system (10) is
stochastically stable by ψ2 = ψ and ψ1 = 0.

This completes the proof.
Similarly, we can conduct the stochastic anal-

ysis of NCS without random cryptographic protec-
tion under random zero-measurement attacks as a
special case of Theorem 1, to understand the impact
of random zero-measurement attacks on NCS. The
NCS under random zero-measurement attacks with-
out random cryptographic protection is formulated
as



1104 Gao and Feng / Front Inform Technol Electron Eng 2018 19(9):1098-1111

ρ =
√
ᾱ(1− β̄ + ᾱβ̄),

Λ1 =(1 − 2ᾱ+ 2ᾱβ̄ − β̄ − ᾱ2β̄)(A+B1KC)TP1(A+B1KC) + (β̄ − ᾱβ̄)ĀTP1Ā

+ ᾱ(A+B1KC −B3KC)TP1(A+B1KC −B3KC)

− ᾱ(1 − β̄ + ᾱβ̄)(B3KC)TP1(B3KC) + P2 − P1,

Λ2 =− ᾱ(1 − β̄ + ᾱβ̄)(B3KC)TP1(B3KC)− P2.

(18)

E{Vk+1|xk,xk−1, · · · ,x0} − Vk

= E{xT
k+1P1xk+1}+ xT

k (P2 − P1)xk − xT
k−1P2xk−1

= E{αk(1− βk−1)}[(A+B1KC)xk +B3KCxk−1]
TP1[(A+B1KC)xk +B3KCxk−1]

+ E{αk(1− βk−1)}(B3KCxk −B3KCxk−1)
TP1(B3KCxk −B3KCxk−1)

+ E{βk}(Axk)
TP1Axk + E{αk}[(A+B1KC −B3KC)xk]

TP1[(A+B1KC −B3KC)xk]

− E{αk(1− βk−1)}{[(B3KC)xk]
TP1[(B3KC)xk] + [(B3KC)xk−1]

TP1[(B3KC)xk−1]}
+ (1− E{αk} − E{βk} − E{αk(1 − βk−1)})[(A +B1KC)xk]

TP1[(A+B1KC)xk]

+ xT
k (P2 − P1)xk − xT

k−1P2xk−1.

(19)

E{Vk+1|xk,xk−1, · · · ,x0} − Vk

= ᾱ(1− β̄ + ᾱβ̄)[(A+B1KC)xk +B3KCxk−1]
TP1[(A+B1KC)xk +B3KCxk−1]

+ ᾱ(1− β̄ + ᾱβ̄)(B3KCxk −B3KCxk−1)
TP1(B3KCxk −B3KCxk−1)

+ (1 − ᾱ)β̄(Axk)
TP1Axk + ᾱ[(A+B1KC −B3KC)xk]

TP1[(A+B1KC −B3KC)xk]

− ᾱ(1− β̄ + ᾱβ̄){[(B3KC)xk]
TP1[(B3KC)xk] + [(B3KC)xk−1]

TP1[(B3KC)xk−1]}
+ [1− 2ᾱ+ 2ᾱβ̄ − β̄ − ᾱ2β̄)][(A +B1KC)xk]

TP1[(A+B1KC)xk]

+ xT
k (P2 − P1)xk − xT

k−1P2xk−1

= ηT
k Ληk.

(22)

xk+1 = Axk + (1− βk)B1KCxk. (27)

Theorem 2 For a given controller gain matrix
K, closed-loop system (27) without random cryp-
tographic protection is stochastically stable under
random zero-measurement attacks with probability
β̄, if there exists positive-definite matrix P satisfying

⎡
⎢⎣

− P ∗ ∗
ρ1P (Ā+ B̄1KC) − P ∗

ρ2PĀ 0 − P

⎤
⎥⎦ < 0, (28)

where ρ1 =
√
1− β̄, and ρ2 =

√
β̄.

Proof We define the following Lyapunov function
for system (27):

Vk = xT
kPxk,

and P is a positive-definite matrix. Then we can
derive

E{Vk+1|xk,xk−1, · · · ,x0} − Vk

= E{xT
k+1Pxk+1} − xT

kPxk

= E{(1− βk)}[(A+B1KC)xk]
T

· P [(A+B1KC)xk] + E{βk}(Axk)
TPAxk

− xT
kPxk

= (1− β̄)[(A +B1KC)xk]
TP [(A +B1KC)xk]

+ β̄(Axk)
TPAxk − xT

kPxk

= xT
kΛ1xk,

(29)
where

Λ1 =

[
A+B1KC

A

]T [
(1 − β̄)P 0

0 β̄P

]

·
[
A+B1KC

A

]
− P .

(30)

By Schur’s complement, inequality (28) implies
that Λ1 < 0. Thus, we have
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E{Vk+1|xk,xk−1, · · · ,x0} − Vk = xT
kΛ1xk

≤ −λmin(−Λ1)
T
kxk < −α1x

T
kxk,

(31)

where

0 < α1 < min{λmin(−Λ1), σ1}. (32)

Define σ1 := λ(P ). From inequality (31), we
have

E{Vk+1|xk,xk−1, · · · ,x0} − Vk

< −α1x
T
k xk < −α1

σ1
Vk := −ψ3Vk.

(33)

Therefore, by Definition 1, it can be veri-
fied from Lemma 1 that closed-loop system (27) is
stochastically stable by ψ2 = ψ3 and ψ1 = 0.

This completes the proof.

4 Simulation examples

The aim of random zero-measurement attacks
is to make the system unstable, whereas the goal
of random protection is to maintain stability. In
this section, we demonstrate the effectiveness and
applicability of the proposed method using a VTOL
aircraft system as an example. The robustness of
this method in the presence of measurement noise is
also shown. The following is the linearized dynamic
equation of the VTOL aircraft system (Keel et al.,
1988):

ẋ(t) =

⎡
⎢⎢⎣
−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.01 0.0024 −4.0208

0.1002 0.3681 −0.707 1.42

0 0 1 0

⎤
⎥⎥⎦x(t)

+

⎡
⎢⎢⎣
0.4422 0.1761

3.5446 −7.5922

−5.52 4.49

0 0

⎤
⎥⎥⎦u(t),

y(t) = [0, 1, 0, 0]x(t),

u(t) =

[−0.9963

1.8018

]
y(t),

(34)
where x = [x1, x2, x3, x4]

T and u = [u1, u2]
T.

Specifically, x1, x2, x3, and x4 denote the horizon-
tal velocity, vertical velocity, pitch rate, and pitch
angle, respectively. u1 and u2 denote the collective
and longitudinal cyclic pitch control, respectively.

4.1 Stability analysis of the networked control
system without random cryptographic protec-
tion under random zero-measurement attacks

In this case, the impact of random zero-
measurement attacks on stability is analyzed with-
out implementation of random cryptographic protec-
tion. Specifically, we can obtain the maximum at-
tack probability β̄ that NCS, without random cryp-
tographic protection, can maintain its stability by
solving the corresponding stability problem based
on Theorems 1 and 2 using the LMI toolbox. For
Theorem 1, this case is a special situation with
αk = 0. The results under various sampling periods
T ’s derived from Theorem 1 (with αk = 0, k ∈ Z)
and Theorem 2 are presented in Tables 2 and 3,
respectively.

Table 2 Maximum allowable attack probability for the
stochastic stability of the networked control system
without random cryptographic protection based on
Theorem 1

T (s) β̄ T (s) β̄

0.01 0.827 0.07 0.787
0.02 0.821 0.08 0.777
0.03 0.815 0.09 0.764
0.04 0.809 0.10 0.747
0.05 0.803 0.11 0.719
0.06 0.795 0.12 –

Table 3 Maximum allowable attack probability for the
stochastic stability of the networked control system
without random cryptographic protection based on
Theorem 2

T (s) β̄ T (s) β̄

0.01 0.826 0.07 0.787
0.02 0.821 0.08 0.777
0.03 0.815 0.09 0.764
0.04 0.809 0.10 0.748
0.05 0.803 0.11 0.719
0.06 0.795 0.12 0

According to Tables 2 and 3, we can deter-
mine that the maximum allowable attack probabil-
ity decreases as the sampling period increases. It
means that NCS is more resistant against random
zero-measurement attacks with a lower sampling pe-
riod without random cryptographic protection. The
reason could be that a system that samples more
frequently may have less dependence on every dis-
cretely updated control and be more tolerant of
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attacked measurements of the same attack prob-
ability β̄, while a system that has a larger sam-
pling period may rely more on individual measure-
ments. Therefore, for the NCS without random
cryptographic protection, a smaller sampling period
is recommended to protect against random zero-
measurement attacks of the larger attack probability.

Moreover, as we can see, the results derived from
Theorem 1 are the same as those derived from The-
orem 2, except for the circumstances where the sam-
pling periods are equal to 0.01, 0.10, and 0.12 s, prov-
ing the effectiveness of Theorems 1 and 2. Based on
Theorem 1, we can see that the system without ran-
dom cryptographic protection is unstable when T >
0.12 s, even if random zero-measurement attacks are
not implemented. Based on Theorem 2, the system
without random cryptographic protection is stochas-
tically stable only if random zero-measurement at-
tacks are not implemented (β̄ = 0) when T = 0.12 s,
and is not stochastically stable when T > 0.12 s.

There is little difference between the results de-
rived from Theorems 1 and 2. As for the difference
between the results derived from Theorems 1 and
2, larger differences are determined as the final re-
sult of the maximum allowable attack probability for
stochastic stability of the NCS without random cryp-
tographic protection, because Theorems 1 and 2 are
both sufficient but unnecessary conditions.

4.2 Stability analysis of the networked control
system with random cryptographic protection
under random zero-measurement attacks

In this case, assume that the probability of ran-
dom zero-measurement attacks is known to system
operators; this probability may be determined by
vulnerability analysis or quantification of the system
security state considering the attackers’ capability.
Following the proposed Theorem 1, the proper prob-
ability that random protection of the system main-
tains its stability against random zero-measurement
attacks can be derived. Let sampling time T be 0.10 s
and the time cost on security protection τ be 0.01 s.
The simulation results of the stability analysis are
shown in Fig. 2; the dot means that NCS with the
corresponding protection probability ᾱ and attack
probability β̄ is stable.

As shown in Fig. 2, the NCS without random
cryptographic protection (ᾱ = 0) can be deter-
mined as stable based on Theorem 1 when attack
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Fig. 2 Stability analysis of the networked control
system with random cryptographic protection of var-
ious protection probabilities ᾱ’s under random zero-
measurement attacks of various attack probabilities
β̄’s

References to color refer to the online version of this figure

probability β̄ of random zero-measurement attacks
is in the range of [0, 0.748]. When β̄ > 0.748, the
NCS with random cryptographic protection of cer-
tain protection probability ᾱ can be determined as
stable based on Theorem 1, and the minimum re-
quired protection probability ᾱ for stability increases
with the increase of the attack probability. For ex-
ample, when β̄ = 1, NCS can be determined as sta-
ble for protection probability ᾱ ∈ [0.279, 1]. The
trajectories of the system states under random zero-
measurement attacks of probability β̄ = 1 with ran-
dom cryptographic protection of two different prob-
abilities ᾱ = 0 and 0.279 are provided in Figs. 3 and
4, respectively. Specifically, the trajectory is derived
as the mean values of the system states after 1000 in-
dividual trials. As shown in Fig. 3, the trajectory of
the system states diverges. This represents the insta-
bility of NCS under such circumstances and is consis-
tent with the result derived from Theorem 2 (Fig. 2).
In Fig. 4, the trajectory of system states converges
and NCS is stable under random cryptographic pro-
tection of probability ᾱ = 0.279. This agrees with
the result derived from Theorem 1 (Fig. 2). This is
consistent with the fact that random cryptographic
protection with a larger probability could decrease
the chance of random zero-measurement attacks with
the same β̄, which reduces the impact of the attack
on stability. Therefore, the results demonstrate that
random zero-measurement attacks with a certain at-
tack probability can determine the consequences of
instability and can be protected effectively by the
proposed random cryptographic protection. Also,
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the effectiveness of the proposed method in analyzing
the stability of NCS with both random cryptographic
protection and random zero-measurement attacks is
proved.

4.3 Robustness of random protection in the
presence of measurement noise

In this subsection, the robustness of random
protection in the presence of measurement noise is
studied based on simulations. Denote ω as the mea-
surement noise, which follows the Gaussian distribu-
tion N (0, σ2).

In the absence of measurement noise, the trajec-
tory of the system states with random cryptographic
protection of probability ᾱ = 0.279 under random
zero-measurement attacks of probability β̄ = 1 is
depicted in Fig. 4. Under the same protection and
attack conditions, the same system is used to study
the robustness of random protection in the presence
of measurement noise. After 100 individual trials,
the trajectories of the system states with the pres-
ence of different measurement noises are shown in

Fig. 5. Specifically, simulations are performed un-
der different values of σ2 as 0.001, 0.01, 0.1, and 1, as
shown in Figs. 5a–5d.

As we can see, the system has certain robust-
ness against measurement noise. In Fig. 5a, the sys-
tem with measurement noise ω ∼ N (0, 0.001) has
a good robustness against the measurement noise.
The fluctuations are small compared with the sys-
tem without measurement noise (Fig. 4). In Fig. 5b,
the fluctuation of the system with measurement noise
ω ∼ N (0, 0.01) is larger. In Fig. 5c, the system’s ro-
bustness against measurement noise ω ∼ N (0, 0.1)

becomes worse; however, the system can remain
stochastically stable. In Fig. 5d, the system with
measurement noise ω ∼ N (0, 1) tends to diverge,
representing loss of robustness against measurement
noise.

4.4 Impact of different delays for random pro-
tection on stability analysis

The time delay of random cryptographic pro-
tection is different with specific cryptographic
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Fig. 3 Trajectories of system states without random cryptographic protection under random zero-measurement
attacks of probability β̄ = 1
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Fig. 4 Trajectories of system states with random cryptographic protection of probability ᾱ = 0.279 under
random zero-measurement attacks of probability β̄ = 1
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Fig. 5 Robustness of random cryptographic protection when measurement noises are ω ∼ N (0, 0.001) (a),
ω ∼ N (0, 0.01) (b), ω ∼ N (0, 0.1) (c), and ω ∼ N (0, 1) (d)
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algorithms, implementation platforms, and other
factors. We analyzed the performance of random
cryptographic protection for stability maintenance
under different delays. Let sampling time T be
0.10 s. Simulations were performed for various cryp-
tographic protection delays, such as 0.01, 0.03, 0.04,
0.05, and 0.09 s.

For these different delays, the stability regions
of NCS with random cryptographic protection of
ᾱ ∈ [0, 1] under random zero-measurement attacks
of β̄ ∈ [0, 1] are depicted in Fig. 6. As we can
see, the region decreases as the time delay increases.
This is caused by random cryptographic protection.
When the time delay is small (e.g., τ=0.01 or 0.03
s), feasible solutions of Theorem 1 always exist, and
the system with random cryptographic protection of
a certain protection probability is always stochasti-
cally stable for random zero-measurement attacks of
any probability β̄ ∈ [0, 1]. However, note that the
minimum protection probability of random crypto-
graphic protection which is required for NCS sta-
bility under random zero-measurement attacks in-
creases as the time delay increases. Thus, The-
orems 1 and 2 determine the minimum required
protection probability under different attack prob-
abilities to protect stability sufficiently but not too
costly on energy consumption, computational over-
head, and time delays.
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Fig. 6 Stability analysis of the networked control sys-
tem with random zero-measurement attacks and ran-
dom cryptographic protection for various protection
delays τ

References to color refer to the online version of this figure

When the time delay becomes large, e.g., τ=0.05
or 0.09 s (Fig. 6), feasible stability analysis solutions
cannot be determined by Theorem 1 for the NCS

under random zero-measurement attacks of probabil-
ity β̄ > 0.748. As discussed before, the random zero-
measurement attacks of β̄ ≤ 0.748 do not destabilize
NCS. Thus, it is not guaranteed that random cryp-
tographic protection can maintain the stability of
NCS under random zero-measurement attacks when
τ is large. In addition, there is no feasible solution
for stochastic stability of NCS based on Theorem 1
under random zero-measurement attacks of a toler-
able attack probability (β̄ < 0.748) when protection
probability ᾱ is large. In other words, random cryp-
tographic protection might, in turn, aggravate the
instability of the system under attacks. Also, it is in-
teresting that the protection probability for the NCS
stability under a certain attack probability could be
piecewise. For example, when β̄ = 0.78, the sys-
tem cannot be determined as stable via Theorem 1,
with random cryptographic protection of probabil-
ity ᾱ ∈ [0, 0.16) and ᾱ > 0.40; however, it is stable
with random cryptographic protection of probabil-
ity ᾱ ∈ [0.16, 0.40]. These findings mean that the
added security protection can protect the stochastic
stability of NCS against random zero-measurement
attacks; however, it can also have harmful effects on
system stability and should, therefore, be designed
carefully based on our proposed method.

4.5 Impact of the sampling period for random
protection on stability analysis

In this subsection, the performance of random
cryptographic protection in maintaining the stabil-
ity of NCS with various sampling periods under
random zero-measurement attacks is analyzed. Let
τ=0.03 s and sampling period T be 0.03, 0.04, 0.06,
0.08, or 0.1 s. Fig. 7 shows the stability analysis
of NCS with various sampling periods under ran-
dom zero-measurement attacks and random crypto-
graphic protection.

We can see that the stability region of protec-
tion probability ᾱ and attack probability β̄ increases
with the increase of the sampling period. Specifi-
cally, when the NCS sampling period is small (e.g.,
T = 0.08, 0.06, 0.04, or 0.03 s), there is no feasible so-
lution that can be derived from Theorem 1 if attack
probability β̄ is too large. Also, if protection prob-
ability ᾱ is too large, the stochastic stability cannot
be determined based on Theorem 1. This may be
caused by the conservativeness of the proposed suf-
ficient theorem, especially for protection probability
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dom cryptographic protection for various sampling
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ᾱ on the region boundary. However, another major
reason could be that random cryptographic protec-
tion with a large protection probability ᾱ is too inten-
sive and may harm the NCS stability. This is obvious
for the NCS with a lower sampling period. There-
fore, the protection probability should be designed
with consideration of the system sampling period.
This could also be suggestive and considered during
the design of the system’s sampling period to enlarge
the stability region of protection probability ᾱ and
attack probability β̄, so that the protection can help
NCS resist attacks with a large attack probability.

5 Conclusions

In this paper, random zero-measurement at-
tacks have been introduced and formulated. To
maintain stability of NCS under such attacks, ran-
dom cryptographic protection was proposed, which
requires less energy consumption, less computational
overhead, and smaller time delays, compared with
persistent cryptographic protection. Considering
the attack and protection probabilities as two corre-
lated Bernoulli distributed stochastic variables, suf-
ficient conditions for the stochastic stability analy-
sis were proposed and mathematically demonstrated.
Based on the proposed theorem, the proper proba-
bility of random cryptographic protection for main-
taining the stability of NCS under random zero-
measurement attacks of certain attack probabili-
ties can be determined by solving LMI. Finally,

simulations were performed in a VTOL aircraft sys-
tem. The results proved the effectiveness of our
proposed method in determining the proper protec-
tion probability and robustness against measurement
noise. The effects of the system sampling period and
cryptographic delay on the stability analysis were
provided.

This paper is useful in securing real-time NCSs
with limited energy and computation resources. The
proposed theorem is helpful in determining the
proper time delay of the protection and the proper
system sampling period to increase the system ro-
bustness against attacks, and can be considered as
one corresponding factor of choosing the protection
mechanism and designing the system sampling mech-
anism. In the future, the effect of random crypto-
graphic protection on the dynamic performance of
NCS will be studied, and a tradeoff model between
security and energy cost, computation cost, and sys-
tem dynamic performance will be analyzed.
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