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Abstract: After a composite service is deployed, user privacy requirements and trust levels of component services
are subject to variation. When the changes occur, it is critical to preserve privacy information flow security. We
propose an approach to preserve privacy information flow security in composite service evolution. First, a privacy
data item dependency analysis method based on a Petri net model is presented. Then the set of privacy data items
collected by each component service is derived through a privacy data item dependency graph, and the security scope
of each component service is calculated. Finally, the evolution operations that preserve privacy information flow
security are defined. By applying these evolution operations, the re-verification process is avoided and the evolution
efficiency is improved. To illustrate the effectiveness of our approach, a case study is presented. The experimental
results indicate that our approach has high evolution efficiency and can greatly reduce the cost of evolution compared
with re-verifying the entire composite service.
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1 Introduction

Service-oriented architecture (SOA) has become
an effective approach to implement loosely coupled,
flexible, and interoperable service-oriented systems.
Initially, researchers were concerned with the earlier
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phases in the service life cycle, especially the related
issues of service composition, such as formal mod-
eling of composite services, analysis, and validation
of the related properties. Services are subject to
changes with respect to the changing organizational
and regulatory policies (Wang and Wang, 2013). In
recent years, studies concerning the challenge issues
in service evolution have increased in number (An-
drikopoulos et al., 2012).

In traditional software applications, users have
full control over their privacy data. However, when
the privacy data are collected by composite services,
the internal operations usually become transparent
for users (Liu et al., 2011). Recently, many stud-
ies have been devoted to controlling the propaga-
tion of privacy information with the information flow
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control (IFC) technology in the domain of service
computing. The usage of the IFC technology by
composite service providers will increase users’ con-
fidence so that their privacy data are used correctly
(Bacon et al., 2014). However, the control flow, data
flow, user privacy requirement, and trust levels of
component services may change after a composite
service is deployed. Preserving privacy information
flow security in a composite service becomes an im-
portant evolutionary requirement.

In this study, we focus on how to preserve pri-
vacy information flow security in a composite service
when user privacy requirements and trust levels of
component services change. To address this issue, a
possible approach is to re-verify the entire composite
service. However, this approach incurs great evolu-
tionary cost. To avoid the complex re-verification
process and decrease the evolutionary cost, a bet-
ter approach is to first identify the impact of the
changes, and then enforce the evolution according to
the impact identified. However, existing studies gave
little attention to the evolution issues involved in pri-
vacy information flow control mechanisms. Based
on the above discussion, we propose an evolution
approach to preserve privacy information flow secu-
rity in composite services. To give support to the
subsequent evolution, when we initially verify the
privacy information flow security, the privacy data
dependencies are analyzed. Then for each compo-
nent service, the privacy dataset it collects is derived
from a privacy data item dependency graph, and its
security scope is calculated. Finally, evolution oper-
ations are proposed for the changes of user privacy
requirements and trust levels of component services.
By applying these evolution operations, the complex
re-verification process is avoided and the evolution
efficiency is improved.

2 Related work

In this section, we discuss related studies on in-
formation security verification, change impact analy-
sis, and approaches that preserve relevant properties
during the process of evolution.

Since the IFC technology can control the le-
gal propagation of information according to secu-
rity policies such as the no-read-up and no-write-
down rules of the Bell-LaPadual model (Bell and La-
Padula, 1973), it has been considered as a promising

approach to ensure information security. Knorr
(2001) used a workflow net to model the information
and control flow of business processes, and verified
information security through a coverability graph
augmented with objects’ security levels. However,
the coverability graphs will grow rapidly with the
number of places and transitions in workflow net
models. Zeng et al. (2016) proposed a dynamic
flow-sensitive security model containing the Bell-
Lapadula rules and cloud security rule for federated
cloud systems. Colored Petri nets were used to repre-
sent the security model, and information security was
verified by using existing Petri net techniques. Ac-
corsi et al. (2015) used Petri net reachability to ver-
ify information security in business processes based
on the concept of place-based non-interference and
declassification. A lattice model was employed to
describe a security policy, and the verification work
could be performed automatically. Note that Accorsi
et al. (2015) focused on the examination of whether
there was any information leakage between the mul-
tiple instances of a business process. Xi et al. (2015)
proposed a distributed secure service composition
approach to comply with a security policy formal-
ized by a security lattice. This can reduce the cost
of verification compared with the global verification
approach. However, this study focused only on a ser-
vice chain, and more complicated composite services
with the conditional and loop structure were not con-
sidered. In brief, the studies mentioned above did not
consider user privacy requirements. Users may de-
fine release constraints on the combination of privacy
data items in their privacy requirements. Therefore,
the privacy information flows in a composite service
are necessarily required to comply with both secu-
rity policies and user privacy requirements. To ad-
dress this issue, we propose a static analysis method
for securing privacy information flows in composite
services according to the characteristics of privacy
protection in our previous study (Peng et al., 2017).

Impact analysis is one of the key topics in the
field of service evolution, which evaluates the change
effects and provides evolution strategies to reduce
risks and maintenance costs (Alam et al., 2015).
Fokaefs et al. (2011) performed an empirical study
on the evolution of services and discussed how the
changes of the web services description language
(WSDL) files could potentially affect client applica-
tions. By analyzing the changes in different versions
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of five real-world services, they draw the conclusion
that services are usually expanded rather than be-
ing changed or having their elements removed. Qi
et al. (2012) proposed a set of evolution operations
and analyzed the trust impact of these operations by
a trust dependency graph and a control flow graph.
Three metrics were proposed to quantify the impact
degree on the trust of component services and the
composite service. Wang and Capretz (2011) pro-
posed an approach to evaluate the change effects on
a service-oriented system based on dependency anal-
ysis and information entropy. Dependency analysis
was first used to measure the relative importance of
each component service. Then the change effects
were evaluated by combining information entropy
with dependency analysis, which could facilitate de-
cisions for service-oriented system evolution. Wang
et al. (2012) focused on the analysis of dependencies
between services and their supporting business pro-
cesses. A set of change impact patterns was defined
to analyze the change propagations. The proposed
algorithms could determine the impact scopes af-
fected by the service and process changes. Wang and
Capretz (2009) proposed an impact analysis model
by constructing the intra-service and inter-service re-
lation matrices. Thus, the dependencies and impact
effects could be measured. The above-mentioned
studies on impact analysis focused mainly on the
interface, behavior, and non-function changes (e.g.,
trust and quality of service (QoS)). However, change
impact analysis for privacy information flow security
has not been addressed in existing studies.

How to ensure the relevant properties during
evolution is a more challenging research issue. van
der Aalst (1997) proposed eight basic transformation
rules to modify a sound process. The resulting pro-
cess kept soundness by applying these rules, which
could make the modification more efficient than re-
verifying the entire process. Similarly, Zeng et al.
(2010) proposed a set of change operations including
replacement, addition, deletion, and process struc-
tural adjustments, and the soundness of a new pro-
cess could be satisfied after applying these change op-
erations. Song et al. (2010) focused on the problem
of how to preserve data flow correctness for process
adaptation, and proposed three criteria for process
adaptation operations. Data flow correctness of the
adapted process could be preserved with these crite-
ria. However, this study assumed that each task has

one output at most, which limits practical applica-
tions. In brief, an important feature of the existing
studies is that these approaches were proposed to
meet a specific property of systems. However, the
studies on evolution approaches for preserving infor-
mation security are generally neglected.

The challenging issues in service evolution have
been studied actively in recent years. However, exist-
ing studies focused mainly on the interface, behavior,
and non-function (e.g., trust and QoS) changes. In
this study, we pay special attention to the issue of
how to preserve privacy information flow security in
composite service evolution, which is generally ne-
glected in the existing studies.

3 Preliminaries

To clearly present our approach, we introduce
a lattice model and privacy workflow nets used to
analyze data dependencies in composite services.

3.1 A lattice for secure information flow

Information security is generally related to the
important aspects of confidentiality, integrity, and
availability (Bishop, 2002). In the domain of service
computing, privacy protection focuses mainly on the
confidentiality of user privacy information. We can
formalize a privacy information flow security policy
with a lattice proposed by Denning (1976).
Definition 1 (Lattice) A lattice is defined by a
tuple (SC,→), where SC denotes the finite set of
security classes and → represents the partial order
relation defined on pairs of security classes.

In what follows, we assume SC =

{N,L,M,H,TH}. For all sc, sc′ ∈ SC, there
exist a least upper bound operator ⊕ and a greatest
lower bound operator ⊗. (SC,→) formalizes a
security policy of privacy information flows from
the perspective of confidentiality, which allows
the no-read-up and no-write-down rules to be
implemented.

Let P denote the set of privacy data items and
O denote the power set of P . The set of component
services is denoted by S. Note that s ∈ S and o ∈ O

are assigned security classes in SC by a trust level
map Ltl : S → SC and a sensitivity level map Lsl :

O → SC.
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3.2 Privacy workflow net

The Petri net, a graphical language for mod-
eling and validating the concurrent and distributed
systems, provides rich analysis techniques and tools.
By using Petri nets as a formalism, Tan et al. (2009)
analyzed the compatibility and mediation issues in
service composition. Yu et al. (2014) validated
the rationality and the transaction consistency of
e-commerce business processes. Yu et al. (2016) de-
tected malicious behaviors in the online shopping
business processes.

To ensure privacy information security, we need
to analyze data dependencies. For dependency anal-
ysis in service-based systems, formal dependency
modeling, especially Petri nets based formalism, is
more effective compared with directed graph based
dependency analysis (Alam et al., 2015). Workflow
nets (WF-nets) as a class of Petri nets have become
one of the standard ways to model and analyze busi-
ness processes (Liu C et al., 2016; Liu G et al., 2016).
Compared with other formalisms such as automata
and process algebra, there exists an open source tool
BPEL2oWFN (Lohmann et al., 2006), which pro-
vides a feature-complete mapping of the BPEL (a
standard language for web service orchestration) pro-
cess’s control flow to WF-nets. We can extend this
tool to make it support modeling data flow. By ex-
tending the classical WF-net with data places (read
arcs and write arcs), Peng et al. (2017) proposed a
privacy workflow net (PWF-net) that had the capa-
bility to model both control and data flows in com-
posite services. Therefore, we use PWF-nets as a
formalism to analyze data dependencies in compos-
ite services.
Definition 2 (PWF-net) A tuple (Pc, T , F , Pd,
R, W , TS, TA) is a PWF-net if and only if:

1. (Pc, T , F ) is a WF-net, with the set of control
places Pc, the set of transitions T , and the set of arcs
F ⊆ Pc × T ∪ T × Pc;

2. Pd is a set of data places;
3. Pc ∪ Pd ∪ T �= ∅ ∧ Pc ∩ Pd = ∅ ∧ Pc ∩ T =

∅ ∧ Pd ∩ T = ∅;
4. R ⊆ Pd × T is a set of read arcs used only in

connecting data places and transitions;
5. W ⊆ T × Pd is a set of write arcs used only

in connecting transitions and data places;
6. TS: T → SUBJECT is the subject labeling

function. SUBJECT denotes the set of subjects

involved in a composite service such as component
services, the composite service, and the user;

7. TA: T →ACTION is the action labeling func-
tion. ACTION = {RECV, SND, ASGN, STRC},
where the first three elements denote message re-
ceiving, message sending, and assign activity, respec-
tively, and STRC denotes auxiliary transitions used
to model the structural activities.

The read set of t is denoted by r(t) = {d|(d, t) ∈
R}, and the write set of t is denoted by w(t) =

{d|(t, d) ∈ W}.
Definition 3 (Control view) Given a PWF-net
PN = (Pc, T , F , Pd, R, W , TS, TA), the control view
of PN is defined by PNcv = (Pc, T |Pc , F ), where T |Pc

is the set of transitions connecting the control places.
Definition 4 (Data view) Given a PWF-net
PN = (Pc, T , F , Pd, R, W , TS, TA), the data view
of PN is defined by PNdv = (Pd, T |Pd , R,W ), where
T |Pd is the set of transitions connecting the data
places.
Definition 5 (Path) Let Mi

σ−→ Mo denote that
the firing sequence σ = {t1, t2, . . . , tn} leads from
initial state Mi to end state Mo, where σ is called
one path from Mi to Mo.

4 Underlying data acquisition method

To give support to the subsequent evolution,
when we initially verify the privacy information flow
security, the underlying data for evolution should be
recorded. In this section, we present the underlying
data acquisition method.

4.1 Privacy requirement description

Privacy data items can be divided into two cat-
egories. The privacy data item provided by users in
the interactions with a composite service is referred
to as a direct privacy data item. The data item newly
generated during the execution of a composite service
is referred to as an indirect privacy data item, which
can indirectly expose user privacy information.

In the enforcement of the privacy information
security policy, the sensitivity levels of direct privacy
data items are specified in user privacy requirements.
Definition 6 (Privacy rule) A privacy rule is de-
fined by r = (Ds, sc), where Ds is a finite set of direct
privacy data items, and Lsl(Ds) = sc, sc ∈ SC.

One rule specifies the sensitivity level of single
or multiple direct privacy data items. In general, for
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Ds, the stricter the usage constraint is, the higher the
sensitivity level is. Moreover, when users release mul-
tiple privacy data items together, they worry more
about privacy information leakage than releasing a
single data item. Therefore, the usage constraint
on the combination of privacy data items will be
stricter. For example, a user defines privacy rules
r1 = ({name}, H), r2 = ({phone}, H) for the sin-
gle release of name and phone, and r3 = ({name,
phone}, TH) for releasing name and phone together.
Definition 7 (Privacy requirement) The user pri-
vacy requirement is defined by PR = {r1, r2, . . . , rn},
which is a finite set of privacy rules.

4.2 Declassification policy

Definition 8 (Component service) A component
service is defined by s = (name, sc).

The element name uniquely identifies one com-
ponent service, and sc is the trust level stated by s.
Ltl(s) can be statically bounded to s.sc. However,
to comply with the security policy, the sensitivity
level of output data d will be s.sc, even if s has never
collected any privacy data. Let s.Hds denote the
set of privacy data items s has ever collected. In
fact, Lsl(d) is determined by s.Hds. Therefore, when
Lsl(d) is calculated, Ltl(s) should be dynamically
bounded to Lsl(s.Hds). This can be regarded as a
declassification policy for component services. If s

has never collected any privacy data, Ltl(s) is N . As
long as the operations of services comply with the
security policy, Lsl(s.Hds) is equal to or lower than
s.sc. Note that when the operations that release pri-
vacy data to s are checked, Ltl(s) is still s.sc.

4.3 Dependency analysis rule

The sensitivity levels of direct privacy data
items are specified in user privacy requirements,
while the sensitivity level of an indirect privacy data
item is determined by the direct ones on which it de-
pends. Many information flow analysis mechanisms
can be used to derive data dependencies (She et al.,
2011; Xi et al., 2015). However, most of the existing
mechanisms are insufficient when they are used for
the privacy protection scenario on which this study
focuses. Let d denote an indirect privacy data item
newly generated or updated during the execution of
a composite service and Dep(d) denote the set of pri-
vacy data items on which d depends. We present our

dependency analysis rules as follows:
DAR1: TA(t) = ASGN ⇒ Dep(d) = r(t), with

w(t) = {d};
DAR2: TA(t) = RECV ⇒ ∀ d ∈ w(t), Dep(d) =

TS(t).Hds;
DAR3: TA(t) = SND ⇒ TS(t).Hds = TS(t).Hds

∪ r(t);
DAR4: ∀ di, dj , ∃ dk, dk ∈ Dep(di) ∧ dj ∈

Dep(dk) ⇒ Dep(di) = Dep(di) ∪ {dj}.
Rule DAR1 is used to analyze the transitions

of type ASGN which correspond to assign activi-
ties. For fine-grained analysis of privacy informa-
tion flows, one assign activity should be transformed
to multiple transitions; i.e., each transition outputs
only one indirect privacy data item. Therefore,
Dep(d) = r(t) and w(t) = {d}, where r(t) and w(t)

denote the read and write sets of t, respectively.
Rule DAR2 is used to analyze the transitions of

type RECV which correspond to receive activities.
According to the declassification policy, ∀ d ∈ w(t),
Dep(d) = TS(t).Hds, where TS(t) denotes the com-
ponent service corresponding to t, and TS(t).Hds de-
notes the privacy data items TS(t) has ever collected.
We assume that users do not generate indirect pri-
vacy data items. Thus, if a composite service receives
data from users (i.e., TS(t) = user), there is no need
to apply rule DAR2.

Rule DAR3 is used to analyze the transitions
of type SND which correspond to reply and one-way
invoke activities. Both reply(s, v) and invoke(s, v) es-
sentially send the content of variable v to component
service s. Thus, we need to update the set of privacy
data items s has ever collected, i.e., TS(t).Hds =

TS(t).Hds ∪ r(t). Since users are trusted entities,
there is no need to analyze t using rule DAR3 when
TS(t) = user. For request-response invoke(s, v1, v2),
it first sends the content of variable v1 to s, and
then outputs variable v2. It can be modeled with two
sequential transitions of type SND and RECV, and
rules DAR3 and DAR2 are applied, respectively.

Rule DAR4 derives the dependencies caused by
transitivity. If di is dependent on dk and dk is in
turn dependent on dj , di is also dependent on dj .

Let DDep(d) denote the set of direct privacy
data items on which d depends. According to rule
DAR4, DDep(d) can be derived from Dep(d). Fur-
thermore, we can easily draw the conclusion that
Lsl(d) = Lsl(Dep(d)) = Lsl(DDep(d)).
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4.4 Dataset acquisition

To give support to the subsequent evolution, we
need to obtain the set of direct privacy data items
each component service collects when verifying pri-
vacy information flow security.
Definition 9 (Direct dependency) A direct depen-
dency dDep is a tuple (d,Ds, t), where d is an indirect
privacy data item, Ds is a finite set of privacy data
items, and t is called associated transition with its
input Ds and output d. A direct dependency can be
denoted by d

t−→ Ds.
Definition 10 (Dependency chain) Let chainD =
{dDep1, dDep2, . . . , dDepn} be a sequence of direct
dependencies. For any two adjacent dependencies
dDepi and dDepi+1 (1 ≤ i ≤ n − 1), if di+1 ∈ Dsi,
chainD forms a dependency chain.
Definition 11 (Indirect dependency) Let chainD =
{dDep1, dDep2, . . . , dDepn} be a dependency chain.
For any two direct dependencies dDepi and dDepj

(i < j), we can say that di indirectly depends on
Dsj , which can be denoted by di

∗−→ Dsj .
A privacy data item dependency graph

(PDIDG) can be constructed through the depen-
dency analysis rules proposed in Section 4.3.
Definition 12 (PDIDG) A privacy data item de-
pendency graph is a tuple (V,E, L), where

1. V is a set of vertices;
2. E is a set of edges;
3. L : E → T is the transition labeling function,

where T is the set of transitions in a PWF-net.
The vertices with zero outdegree represent di-

rect privacy data items, while the vertices with
nonzero outdegree represent indirect privacy data
items. The edge can be denoted by (vi, vj , tm),
vi, vj ∈ V , tm ∈ T . This means that vi depends
on vj through transition tm. Fig. 1 shows an exam-
ple of a PDIDG, where d1, d2, d3, and d4 represent
direct privacy data items, and d5, d6, and d7 repre-
sent indirect ones. The dependency relationships are
as follows:

Direct dependencies: d6
t2−→ {d5, d3}, d5

t1−→ {d1,
d2}, d7

t3−→ {d3, d4};
Dependency chains: d6

t2−→ {d5, d3}, d5
t1−→ {d1,

d2};
Indirect dependencies: d6

∗−→ {d1, d2}.
When we initially verify the privacy information

flow security statically, all possible paths of a com-
posite service should be analyzed. Let D(s), Dp(s),

t2

t2

d1

t1 t1

t3 t3

d2 d3 d4

d5

d6 d7

Fig. 1 An example of a privacy data item dependency
graph

and Dp,t(s) denote the sets of direct privacy data
items that are collected by component service s, path
p, and transition t, respectively. Then the calcula-
tion of Dp(s) and D(s) can be respectively expressed
as follows:

Dp(s) =

n⋃

i=1

Dp,ti(s), (1)

D(s) =

n⋃

i=1

Dpi(s). (2)

The steps of calculating Dp(s) are listed below:
Step 1: The privacy data item dependency graph

G is initialized based on the user privacy require-
ment. G contains only direct privacy data item ver-
tices after initialization.

Step 2: ∀ s ∈ S, Dp(s) = ∅ ∧ s.Hds = ∅.
Step 3: Let V denote the set of vertices in current

G and d denote the indirect privacy data item newly
generated or updated. Each transition t in path p

needs to be processed in turn.
1. As mentioned in Section 4.3, if the type of t

is ASGN (i.e., TA(t) = ASGN), the write set w(t)

contains only one indirect privacy data item.
(1) If d /∈ V , the corresponding vertex and de-

pendency edges (d, di, t), ∀ di ∈ r(t) are created.
(2) If d ∈ V , the firing of transition t redefines d,

and the relevant dependencies need to be updated.
Suppose transition t′ has defined d before t. All ex-
isting dependency edges (d, dj , t′), ∀ dj ∈ r(t′) should
be removed first, and then new dependencies should
be created.

For example, the dependency d6
t2−→ {d5, d3}

already exists in Fig. 1. There exist two dependency
edges: (d6, d5, t2) and (d6, d3, t2). This shows that
the indirect privacy data item d6 has been defined
by transition t2. Now d6 is redefined by t. The
edges (d6, d5, t2) and (d6, d3, t2) need to be removed,
and the new edge (d6, d4, t) needs to be added. The
updated graph is shown in Fig. 2.
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d1

t1 t1

t3 t3

d2 d3 d4

d5

d6 d7

t

Fig. 2 An updated privacy data item dependency
graph

2. If the type of t is RECV (i.e., TA(t) = RECV),
the write set w(t) may contain multiple indirect pri-
vacy data items. The read set r(t) is TS(t).Hds. In
this case, each indirect privacy data item in w(t)

should be processed as described above.
3. If the type of t is SND (i.e., TA(t) = SND),

TS(t).Hds needs to be updated, i.e., TS(t).Hds =
TS(t).Hds ∪ r(t). Let DDep(r(t)) denote the set
of direct privacy data items on which r(t) depends.
Dp,t(TS(t)) is equal to DDep(r(t)), which can be de-
rived from the dependency analysis rules and current
G. Then Dp(TS(t)) can be updated by Dp(TS(t)) =
Dp(TS(t)) ∪ Dp,t(TS(t)) according to Eq. (1).

Repeat step 3 until all the transitions in path p

have been processed.
For each component service s, the resulting

Dp(s) is the set of direct privacy data items s collects
through path p. Finally, we can obtain D(s) accord-
ing to Eq. (2) after processing every path. D(s) needs
to be calculated and recorded as the underlying data
for the subsequent evolution when the privacy infor-
mation flow security is initially verified.

4.5 Path reduction

The paths can be derived from the control view
of a PWF-net. However, concurrency of transitions
may lead to the issue of path explosion. To address
this issue, we propose a path reduction method in
this subsection.

Fig. 3 shows an example of the control view of
a PWF-net and Fig. 4 shows the corresponding cov-
erability graph. In Fig. 3, t3, t4, and t5 are con-
current transitions. Then there exist six paths: p1 =
t1t2t3t4t5t6, p2 = t1t2t3t5t4t6, p3 = t1t2t4t3t5t6, p4 =
t1t2t4t5t3t6, p5 = t1t2t5t3t4t6, and p6 = t1t2t5t4t3t6.

Let p.T denote the set of transitions in p and
PE denote the set of paths including the same tran-
sitions. For all pi, pj ∈ PE, pi.T = pj .T . The
set of paths derived from a coverability graph is de-
noted by P = PE1 ∪PE2 ∪ · · · ∪PEn, where ∀ i �= j,

RECV
Flow
spilt

SND

SND

SND

Flow
join

Fig. 3 An example of the control view of a PWF-net

s2 s3 s5

s4

s6

s8

s7

s9

s10 s11
t2 t 4

t3

t5

t4

t 5

t 3
t 5

t 4

t3

t5

t 4 t6

t 3

s1
t1

Fig. 4 An example of a coverability graph

PEi ∩ PEj = ∅. As shown in Fig. 4, all paths in
P have the same set of transitions. Then PE1 =
{p1, p2, p3, p4, p5, p6}, P = PE1. The paths in PE
have the following property if any two concurrent
transitions do not correspond to the same compo-
nent service.
Property 1 The paths in PE are equivalent for the
security verification of privacy information flows.
Proof When verifying the privacy information
flow security, we need to analyze the data depen-
dencies according to the security policy proposed in
Section 3.1. Because the control and data flow in a
composite service are determined, we need only to
prove that the data dependencies in the paths of PE
are consistent. Let pi and pj be two arbitrary paths
in PE. The set of concurrent transitions in pi and pj
is denoted by CT and the set of non-concurrent tran-
sitions is denoted by NT. Obviously, the transitions
in NT do not lead to inconsistent data dependencies.
Let ti and tj be two arbitrary concurrent transitions
in CT. We assume that ti and tj do not correspond
to the same component service. The operations on
privacy data items can be summarized as follows:

(1) ti and tj read or write different privacy data
items;

(2) ti and tj read the same privacy data item d;
(3) ti writes privacy data item d, while tj reads

privacy data item d;
(4) ti and tj write the same privacy data item d.
Obviously, (1) and (2) will not lead to inconsis-

tent data dependencies in pi and pj, while (3) and (4)
may lead to data access exception, which should be
avoided by establishing a synchronous relationship
between ti and tj . Note that if ti and tj correspond
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to the same component service s, the concurrent ex-
ecution of ti and tj may result in inconsistent data
dependencies according to rules DAR2 and DAR3.
Therefore, the paths in PE are equivalent for the
security verification of privacy information flows if
two arbitrary concurrent transitions correspond to
different component services.
Definition 13 (Independent path) An arbitrary
path selected from PE is called an independent path.
Definition 14 (Independent path set) An inde-
pendent path set is defined by PI = {pi | pi ∈ PEi,

1 ≤ i ≤ n}, where pi is the independent path of PEi,
P = PE1∪PE2∪· · ·∪PEn, and P is the set of paths
derived from a coverability graph.

According to Property 1, we can select an ar-
bitrary path from PE as an independent path, and
need only to analyze the paths in PI. Thus, the num-
ber of paths that need to be analyzed can be greatly
reduced, when two arbitrary concurrent transitions
do not correspond to the same component service.

5 Evolution operations

5.1 Sensitivity level binding

Let DS denote a set of direct privacy data
items. Because users may specify the sensitivity
level for the combination of direct privacy data items,
the calculation of Lsl(DS) should comply with user
privacy requirements. For example, suppose that
the user privacy requirement is as follows: r1 =
({email}, M), r2 = ({name}, M), and r3 = ({email,
name}, H). Given a set of direct privacy data
items DS = {email, name}, Lsl(DS) should not be
Lsl({email}) ⊕ Lsl({name}) = M ⊕M = M . Since
there exists rule r3 in the user requirement, Lsl(DS)
should be Lsl({email, name}) = H .

The calculation of Lsl(DS) can be expressed as

Lsl(DS) = Lsl(Ds1)⊕Lsl(Ds2)⊕· · ·⊕Lsl(Dsn), (3)

where Dsi ∈ 2DS ∧ Dsi ∈ PR_DSet (1 ≤ i ≤ n),
2DS denotes the power set of DS, PR_DSet =

{rk.Ds | rk ∈ PR, 1 ≤ k ≤ |PR|}, and |PR| is
the number of elements in PR, which denotes the
user privacy requirement. Lsl(Dsi) = rk.sc, where
Dsi = rk.Ds.

5.2 Evolution operations for the trust level
changes

The trust levels of component services may
change after the deployment of a composite ser-
vice. To avoid the re-verification process, the se-
curity scope of each component service should be
identified. As long as the new trust level belongs to
the security scope, the security of privacy informa-
tion flows in a composite service can be preserved.
Theorem 1 For each s ∈ S, if Lsl(D

p(s))→Ltl(s),
the privacy information flows in path p are secure.
Proof There are four categories of transitions:
ASGN, SND, RECV, and STRC. Note that we do
not consider the information leakage caused by the
control flow in this study. As long as the transitions
of type ASGN, SND, and RECV are secure, the pri-
vacy information flows in p are secure.

1. Transition t of type ASGN is secure, if
Lsl(r(t)) → Lsl(d). From rule DAR1, Dep(d) = r(t).
Hence, Lsl(d) = Lsl(r(t)) so that Lsl(r(t)) → Lsl(d).
Therefore, t is always secure.

2. Transition t of type RECV is secure, if
Lsl(TS(t).Hds) → Lsl(d), ∀ d ∈ w(t), where
TS(t).Hds denotes the set of privacy data items that
component service TS(t) has ever collected. From
rule DAR2, Dep(d) = TS(t).Hds, ∀ d ∈ w(t). Hence,
Lsl(TS(t).Hds)=Lsl(d) and Lsl(TS(t).Hds)→Lsl(d).
Therefore, t is always secure.

3. Transition t of type SND is secure, ifLsl(r(t)∪
TS(t).Hds) → Ltl(s). Let D(r(t)∪TS(t).Hds) denote
the set of direct privacy data items on which r(t) ∪
TS(t).Hds depends. Then Lsl(r(t) ∪ TS(t).Hds) =
Lsl(D(r(t) ∪ TS(t).Hds)). D(r(t) ∪ TS(t).Hds) ⊆
Dp(s) ∧ Lsl(D

p(s)) → Ltl(s) so that Lsl(D(r(t) ∪
TS(t).Hds)) → Ltl(s). Therefore, t is secure.

Let SCp
s denote the security scope of s in path p.

The calculation of SCp
s can be expressed as follows:

SCp
s = {sc |Lsl(D

p(s)) → sc ∧ sc ∈ SC}. (4)

According to Theorem 1, as long as Ltl(s)∈SCp
s,

the privacy information flows in path p are secure.
Theorem 2 For each s ∈ S, if Lsl(D(s)) → Ltl(s),
the privacy information flows in a composite service
are secure.
Proof ∀ p ∈ P, ∀ s ∈ S, Lsl(D(s)) → Ltl(s)∧Dp(s)

⊆ D(s) such that Lsl(D
p(s)) → Ltl(s). Therefore,

from Theorem 1, we know that the privacy informa-
tion flows in a composite service are secure.
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Let SCs denote the security scope of s. The
calculation of SCs can be expressed as follows:

SCs = {sc |Lsl(D(s)) → sc ∧ sc ∈ SC}. (5)

According to Theorem 2, as long as Ltl(s) ∈
SCs, the privacy information flows in a composite
service are secure.
Evolution operation 1 When the trust level of
component service s changes, to preserve privacy
information flow security, the new trust level of s

should belong to SCs.
For example, suppose Lsl(D(s)) = H ; thus, SCs

= {H , TH}. To preserve privacy information flow
security, the new trust level of s should be H or TH.

When we initially verify privacy information
flow security, D(s) and SCs of each component ser-
vice s need to be calculated and recorded. We assume
that the control flow, data flow, and user privacy re-
quirements remain unchanged. As long as the new
trust level of s belongs to its security scope, the pri-
vacy information flows in a composite service are still
secure.

5.3 Evolution operations for the requirement
changes

Assuming that the set of direct privacy data
items remains unchanged, the changes in user pri-
vacy requirements can be summarized as follows:

(1) Modifying privacy rule r = (Ds, sc): Ds does
not change, and its sensitivity level sc is downgraded;

(2) Modifying privacy rule r = (Ds, sc): Ds does
not change, and its sensitivity level sc is upgraded;

(3) Modifying privacy rule r = (Ds, sc): Ds
changes, and its security class sc also changes;

(4) Modifying privacy rule r = (Ds, sc): Ds
changes, and its security class sc remains unchanged;

(5) Adding privacy rule r = (Ds, sc);
(6) Deleting privacy rule r = (Ds, sc).
Since the privacy information flows are secure

before the user requirements change, (1) and (6)
do not undermine privacy information flow security.
When (2)–(5) happen, we can recalculate Lsl(D(s))

and SCs for all component services, and then verify
whether Ltl(s) belongs to SCs.
Evolution operation 2.1 For each s ∈ S,
Lsl(D(s)) and SCs are recalculated. If Lsl(D(s)) →
Ltl(s) does not hold, to preserve privacy informa-
tion flow security, Ltl(s) should be upgraded to sc,
sc ∈ {sc | Lsl(D(s)) → sc ∧ sc ∈ SC}.

According to Theorem 2, the privacy informa-
tion flow security can be preserved through Evolu-
tion operation 2.1. In fact, the changes in user pri-
vacy requirements may affect only part of the compo-
nent services, so we need only to evolve the compo-
nent services involved in the changes. Let Rc denote
the privacy rules in (2)–(5) and Dc denote the set of
direct privacy data items involved. The calculation
of Dc can be expressed as follows:

Dc =

|Rc|⋃

i=1

ri.Ds, ∀ ri ∈ Rc. (6)

Let Sc denote the set of component services in-
volved in the changes; thus, Sc = {s |D(s) ∩ Dc �=
∅ ∧ s ∈ S}.
Theorem 3 For each s ∈ Sc, ifLsl(D(s)) → Ltl(s),
the privacy information flows in a composite service
are still secure.
Proof Let Snc denote the set of component ser-
vices that are not affected by the changes in user re-
quirements. Thus, Snc = {s |D(s)∩Dc = ∅∧s ∈ S}
and S = Sc ∪ Snc ∧ Sc ∩ Snc = ∅. The privacy in-
formation flows are secure before changes such that
∀ s ∈ Snc, Lsl(D(s)) → Ltl(s). Therefore, ∀ s ∈ S,
Lsl(D(s)) → Ltl(s). From Theorem 2, the privacy
information flows are still secure.
Evolution operation 2.2 For each s ∈ Sc,
Lsl(D(s)) and SCs are recalculated. If Lsl(D(s)) →
Ltl(s) does not hold, to preserve privacy informa-
tion flow security, Ltl(s) should be upgraded to sc,
sc ∈ {sc |Lsl(D(s)) → sc ∧ sc ∈ SC}.

According to Theorem 3, the privacy informa-
tion flow security can be preserved through Evolu-
tion operation 2.2.

5.4 Discussion

In this study, we propose a set of evolution op-
erations that preserve privacy information flow se-
curity. By applying these evolution operations, we
can avoid the re-verification process and improve the
evolutionary efficiency. When the trust levels of com-
ponent services change, we can use Evolution opera-
tion 1. When the user privacy requirements change,
we can use Evolution operation 2.1 or Evolution op-
eration 2.2. For Evolution operation 2.1, we need
to recalculate Lsl(D(s)) and SCs for all component
services, and its time cost is the highest among these
operations. For Evolution operation 2.2, we need
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only to recalculate Lsl(D(s)) and SCs for the com-
ponent services involved in the changes. Obviously,
Evolution operation 2.2 is more suitable than Evolu-
tion operation 2.1 if the user requirements have small
changes. If the trust levels of component services and
user privacy requirements change at the same time,
we can use Evolution operation 2.1 to deal with this
case.

Users may interact with a composite service
multiple times, and each time a different path is ex-
ecuted. For example, users release name and phone
to component service s through paths p1 and p2,
respectively, and the result of interactions is that
s collects D(s) = {name, phone}. Suppose the user
privacy requirement is as follows: r1 = ({name},M),
r2 = ({phone},M), r3 = ({name, phone}, H), and
the trust level of s is Ltl(s) = M . Although
Lsl({name}) → Ltl(s) ∧ Lsl({phone}) → Ltl(s)

holds, Lsl({name, phone}) → Ltl(s) does not hold,
which violates privacy rule r3. Therefore, privacy
information leakage can be prevented more strictly
in our approach.

6 Case study and performance analysis

6.1 Case study

In this subsection, a travel agent (TA) is used to
illustrate our evolution approach. Through combin-
ing three existing and independent services, flight,
hotel, and pay, TA can provide one-stop service ac-
cording to a user’s travel plan. Suppose user Bob
regards name, phone, id-number, and credit-card-
info as direct privacy data items, and the privacy
requirement is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r1 = ({name},M),

r2 = ({phone},M),

r3 = ({id-number}, H),

r4 = ({credit-card-info}, H),

r5 = ({name, id-number, credit-card-info}, TH).
Furthermore, suppose the trust levels of hotel,

flight, and pay are M , H , and TH, respectively.
Fig. 5 shows the control view of TA’s PWF-net
model. To simplify the presentation, we assume that
the payments are processed together after the com-
pletion of flight and hotel booking. We skip the
assign activities and the process of querying flight
and hotel information in Fig. 5.
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Fig. 5 Control view of the travel agent

{t3, t4} and {t5, t6} correspond to hotel and
flight booking operations, respectively, and the tran-
sitions will execute concurrently with the ones in
another group. Since any two concurrent transi-
tions do not correspond to the same component ser-
vice, the paths that need to be analyzed can be re-
duced. In this case, we need only to verify p1 =
t1t2t3t4t5t6t7t8t9t10 according to the path reduction
method proposed in Section 4. Table 1 shows the
analysis process of path p1.

During the static verification of privacy informa-
tion flow security, we need to record the underlying
data for the subsequent evolution. Table 2 shows the
underlying data.

According to our approach, D(hotel) =

Dp1(hotel)= {name, phone}, D(flight) =Dp1(flight)
= {name, id-number}, and D(pay) = Dp1(pay) =
{name, phone, id-number, credit-card-info}. From
Eq. (5), SChotel = {M,H,TH}, SCflight = {H,TH},
and SCpay = {TH}. The current trust levels of hotel,
flight, and pay are M , H , and TH, respectively. In
this case, the privacy information flows in the TA are
secure because M ∈ SChotel ∧ H ∈ SCflight ∧ TH ∈
SCpay. The privacy information flows remain secure,
as long as the new trust level of each component ser-
vice belongs to its security scope according to Evo-
lution operation 1.

Suppose that Bob updates the third privacy rule
to r3 = ({id-number}, TH). The change set of pri-
vacy rules is Rc = {r3}, the set of direct privacy
data items involved is Dc = {id-number}, and the
set of component services involved is Sc = {flight,
pay}. For service flight, Lsl(D(flight)) = Lsl({name,
id-number}) = TH and Ltl(flight) = H such that
Lsl(D(flight)) → Ltl(flight) does not hold. The new
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Table 1 Analysis process of path p1

Transition Type
Corresponding Set of input privacy Set of output privacy

Subject Subject.Hds
operation data items data items

t1 RECV Travel booking None {name, id-number, User N/A
credit-card-info, phone}

t2 Flow split N/A None None TA N/A
t3 SND Hotel booking {name, phone} None Hotel {name, phone}
t4 RECV Response to hotel {name, phone} {hotel-booking-info} Hotel {name, phone}

booking
t5 SND Flight booking {name, id-number} None Flight {name, id-number}
t6 RECV Response to flight {name, id-number} {flight-booking-info} Flight {name, id-number}

booking
t7 Flow join N/A None None TA N/A
t8 SND Payment request {hotel-booking-info, None Pay {hotel-booking-info,

flight-booking-info, flight-booking-info,
credit-card-info} credit-card-info}

t9 RECV Response to {hotel-booking-info, {pay-result} Pay {hotel-booking-info,
payment flight-booking-info, flight-booking-info,

credit-card-info} credit-card-info}
t10 SND Response to travel {hotel-booking-info, None User N/A

booking flight-booking-info,
credit-card-info}

Subject.Hds: set of privacy data items a subject has ever collected; N/A: not available

Table 2 Underlying data for evolution

Service Dp1(s) D(s) SCs

Hotel {name, phone} {name, phone} {M, H, TH}
Flight {name, id-number} {name, id-number} {H, TH}
Pay {name, phone, id-number, credit-card-info} {name, phone, id-number, credit-card-info} {TH}

D(s) and Dp(s) denote the sets of direct privacy data items collected by component service s and path p, respectively;
SCs: the security scope of s

security scope is SCflight = {TH}. To preserve pri-
vacy information flow security, the new trust level of
service flight should be TH according to Evolution
operation 2.2. For service pay, since Ltl(pay) = TH

and Lsl(D(pay)) = Lsl({name, phone, id-number,
credit-card-info}) = TH, the changes do not under-
mine the security of privacy information flows to it.
Because service hotel is not affected by the changes,
the privacy information flows to it are still secure.

6.2 Performance analysis

Since the time cost of Evolution operation 2.1
is the highest among the three evolution operations,
we evaluate it through simulations. The simulation
program is developed with JDK1.7 and runs in a PC
(Intel Core i3 CPU @ 2.4 GHz, 4 GB memory, and
Windows 7 Professional). Let n denote the number
of direct privacy data items and m denote the num-
ber of component services. Suppose the number of
privacy rules is 2n. The number of privacy rules for

the combination (including n/2 data items) of pri-
vacy data items is n. The number of direct privacy
data items collected by each component service is
n/2. Fig. 6 shows the execution time of Evolution
operation 2.1.
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Fig. 6 Time cost of Evolution operation 2.1

According to Eq. (3), the time complexity of the
calculation of Lsl(D(s)) is O(n3). Because Evolution
operation 2.1 needs to verify Lsl(D(s)) → Ltl(s)
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for all component services, its time complexity is
O(mn3). As shown in Fig. 6, the execution time
of Evolution operation 2.1 does not grow drastically
as m and n increase. In practical applications, the
numbers of direct privacy data items and compo-
nent services are usually small. The simulation re-
sults show that the evolution operations have high
evolution efficiency.

Now, we investigate the time cost of our ap-
proach compared to that of re-verifying the entire
composite service. We still choose Evolution opera-
tion 2.1 for comparative analysis. Suppose that there
is only one path that needs to be verified. The num-
ber of transitions is 2m and the number of privacy
data items processed by each transition is n/2. Fig. 7
shows the time costs of different approaches when m

is 10.
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Fig. 7 Time cost by Evolution operation 2.1 and
complete re-verification (m = 10)

As shown in Fig. 7, compared with re-verifying
the entire composite service, our approach is supe-
rior in terms of time cost. The underlying data for
the subsequent evolution have already been recorded
when we initially verify the privacy information flow
security. Therefore, the time cost of our approach
is irrelevant to the number of paths in a compos-
ite service, and this can greatly reduce the cost of
evolution.

7 Conclusions and future work

In this study, we have investigated how to pre-
serve privacy information flow security in a compos-
ite service, when the trust levels of component ser-
vices and user requirements change. Based on the
underlying data recorded during static verification,
evolution operations that preserve privacy informa-
tion flow security have been proposed. Furthermore,

we have illustrated the effectiveness of our approach
through a case study. Compared with re-verifying
the entire composite service, we have shown through
simulations that our approach can reduce the evolu-
tion cost more effectively. In the scenario of online
evolution, too long verification time is generally un-
acceptable. Through our approach, the complicated
re-verification process can be avoided, and the evo-
lution efficiency can be improved greatly. However,
our approach does not consider privacy information
leakage caused by control flow. In the future, we will
intend to extend our work to address this issue.
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