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Abstract: Classification of intertidal area in synthetic aperture radar (SAR) images is an important yet challenging issue when 
considering the complicatedly and dramatically changing features of tidal fluctuation. The difficulty of intertidal area classifica-
tion is compounded because a high proportion of this area is frequently flooded by water, making statistical modeling methods 
with spatial contextual information often ineffective. Because polarimetric entropy and anisotropy play significant roles in char-
acterizing intertidal areas, in this paper we propose a novel unsupervised contextual classification algorithm. The key point of the 
method is to combine the generalized extreme value (GEV) statistical model of the polarization features and the Markov random 
field (MRF) for contextual smoothing. A goodness-of-fit test is added to determine the significance of the components of the 
statistical model. The final classification results are obtained by effectively combining the results of polarimetric entropy and 
anisotropy. Experimental results of the polarimetric data obtained by the Chinese Gaofen-3 SAR satellite demonstrate the feasi-
bility and superiority of the proposed classification algorithm. 
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1  Introduction 
 

The intertidal area is a special kind of coastal 
area due to its rapidly and dramatically changing 
features caused by the regularly changing water levels 
and the ebb and flood of tidal water (Lee et al., 2011). 
Because of their unique properties, intertidal areas 
possess a high application value, and can be used in 
underwater cultivation, coastal defense, economic 

exploitation, etc. For this reason, much attention has 
been paid by authorities and satellite-based industries 
globally on monitoring and studying the intertidal 
area (Inglada and Garello, 2000; Li, 2009; Kim et al., 
2011; Won et al., 2013). One of the most important 
tasks is to classify different regions in the intertidal 
area with a high accuracy based on remote sensing 
images. Synthetic aperture radar (SAR) has been 
proven powerful in intertidal area related studies. 
Among all the SAR modes, polarimetric SAR (Pol-
SAR) has attracted enormous research effort in satel-
lite-based real-world applications, because it can 
provide detailed information on the observed target, 
compared with other SAR modes (Kim et al., 2009; 
Park et al., 2009; Li et al., 2014). 
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Nowadays, there are two types of classification 
method for the intertidal area in PolSAR images. One 
type is based on multi-polarization features, and the 
other is based on statistical properties. Multi- 
polarization features can provide a new perspective 
for using PolSAR data because the PolSAR system 
can simultaneously obtain four-channel data of the 
observed region by transmitting and receiving linear 
polarization pulses in pairs of four combinations of 
linear horizontal (H) and vertical (V) polarizations 
(Boerner, 1990). From the four-channel PolSAR data, 
multi-polarization features describing physicochem-
ical properties and scattering behavior of the target 
surface can be extracted using scattering decomposi-
tion and eigenvalue analysis (Cloude and Pottier, 
1996). Hence, a series of methods based on multi- 
polarization features have been proposed and verified 
in recent years. These methods, such as the Cloude 
decomposition-based framework proposed by Cloude 
and Poitter (1996) and the polarimetric entropy- 
based target extraction method proposed by Cloude 
(1995), have been applied in terrain classification  
and target extraction. The second type of method  
is based on the statistical properties of the PolSAR 
data in dealing with terrain classification. These 
methods are based mainly on the finite mixture  
model (FMM) theory. FMMs, including the tradi-
tional Wishart mixture model (Wu et al., 2008)  
and some non-Gaussian mixture models (Doulgeris  
et al., 2012), are widely used in urban area classifi-
cation, sea-land segmentation, and farmland  
monitoring. 

However, classification of the intertidal area in 
PolSAR images is not a simple task, because there are 
similar electromagnetic scatter mechanisms between 
the sea surface and the intertidal area, which are 
composed mainly of underwater cultivation, remnant 
water bodies, aquatic farms, etc. Moreover, compo-
nents of the intertidal area, such as underwater culti-
vation and remnant water bodies, have similar scatter 
intensities in the SAR image, and are thus difficult to 
distinguish. Therefore, most state-of-the-art classifi-
cation methods cannot be used in classifying inter-
tidal areas. Existing studies of the intertidal area focus 
mainly on applications such as topographic change 
detection (Li et al., 2012, 2013), soil moisture anal-
yses (Kim et al., 2009), and scattering mechanism 
analyses for some special targets (van del Wal et al., 

2005; Won et al., 2013; Geng et al., 2016), but pay 
little attention to the classification work. She (2017) 
proposed a novel classification method by combining 
the generalized extreme value mixture models 
(GEVMMs) and the expectation–maximization (EM) 
algorithm. This approach can obtain good classifica-
tion performance for the intertidal areas, which have 
distinct boundaries. However, a small margin of noise 
will arise without smoothing filtering when the area is 
more complicated. 

In this paper, we propose an integrated classifi-
cation approach for the intertidal area combining 
GEVMM and Markov random fields (MRF). First, 
through careful inspection of intertidal area PolSAR 
data, we select the two most powerful multi- 
polarization features, i.e., polarimetric entropy and 
polarimetric anisotropy, to fully characterize the 
scattering mechanism. Then, based on the extreme 
value theory, the generalized extreme value (GEV) 
distribution is adopted to describe the statistical 
properties of the selected features (She et al., 2017). 
Then, a novel classification method is developed for 
the intertidal area by combining GEVMM and GEV 
distribution based MRF. When building GEVMM, we 
use an effective approach to determine whether one of 
its components is significant. Specifically, the image 
field of MRF is set by the GEV distribution. Finally, 
the proposed algorithm is verified using polarimetric 
data acquired by the Chinese Gaofen-3 satellite. The 
proposed classification approach has a better dis-
crimination ability for the intertidal area compared 
with traditional ones. 

 
 

2  Algorithm description 
 

In this section, we describe the proposed inte-
grated classification approach for the intertidal area. 
This method has three steps. The first step is selecting 
the most promising features, i.e., polarimetric entropy 
and anisotropy, to fully characterize the intertidal area. 
Then, we propose an automatic classification algo-
rithm that includes building mixture models and the 
MRF model based on statistical analysis of the se-
lected features. The final classification result is 
achieved by combining the results of different fea-
tures. The flowchart of the proposed method is given 
in Fig. 1. 
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2.1  Synthetic aperture radar polarimetry and 
multi-polarization feature analysis 

 
PolSAR data can offer a different way to 

describe the observed scene surface by methods that 
exploit the combined information of the back- 
scattering coefficients, among which the most famous 
is H/A/α decomposition. The definition of H/A/α 
decomposition is based on the polarimetric coherency 
T3 matrix (Pottier, 1998): 
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where real numbers λi (i=1, 2, 3) are the eigenvalues 
of T3, representing statistical weights for the ith nor-
malized component target T3i, occurring with pseu-
do-probabilities Pi, given by 
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Polarimetric entropy H and anisotropy A can be 

calculated by eigenvalues λi and their corresponding  
pseudo-probabilities Pi (Pottier, 1998): 
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The mean scatter angle α is an important multi- 

polarization feature. It can be computed from the 
eigenvectors as 
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where the mean scatter angle α varies between 0° and 
90°, and ui(1) is the eigenvector. 

Among the multi-polarization features extracted 
from the combined information of the four-channel 
PolSAR images, Span is an efficient parameter to 
describe all information related to the total power: 

 
2 2 22

HH HV VH VVSpan .= + + +S S S S          (6) 
 

Span contains all the details in the four-channel 
POLSAR images. 

Fig. 2 gives examples of the above four features 
of the intertidal area. According to their definitions, 
the range of polarimetric entropy and anisotropy is 0 
and 1, and the mean scatter angle α is normalized as 
0°–90°. To obtain a fair comparison, the total power 
of Span is also normalized between 0 and 1. In the 
intertidal area, flooded aquatic farms, i.e., shallow 
water area, mudflats, aquatic farms exposed to air, 
and other types of objects, form a complex environ-
ment. Among them, the mudflats and shallow water 
area have a relatively smooth surface. Therefore, 
some parts of the intertidal area have a similar mag-
nitude value in the PolSAR amplitude images com-
pared with the sea surface. Consequently, the total 
power of Span (Fig. 2a) cannot clearly distinguish the 
sea from the intertidal area. 

The complex environment of the intertidal area 
leads to a complicated polarization-dependent texture 
distribution. This distribution is closely correlated to 
scatter randomness, which can be measured by po-
larimetric entropy H and its complementary feature, 

Multi-polarization 
feature extraction

PolSAR data

Feature selection

Classification 
result

Intertidal area

Polarimetric 
entropy

Polarimetric 
anisotropy

Statistical 
modeling by the 
GEV distribution

Contextual smoothing 
and classification by 

MRF

Statistical 
modeling by the 
GEV distribution

  Integration  

Feature selection module Multi-polarization feature based classification

Contextual smoothing 
and classification by 

MRF

 
Fig. 1  Flowchart of the proposed method (GEV: generalized extreme value; MRF: Markov random field) 
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polarimetric anisotropy A. Examples of polarimetric 
entropy and anisotropy are given in Figs. 2b and 2c. 
Compared with Span (Fig. 2a), polarimetric entropy 
can distinguish the sea surface and different types of 
land covers in the intertidal area, and polarimetric 
anisotropy can distinguish regions with high entropy. 
Therefore, using these two features, we can fully 
characterize the intertidal area. 

The mean scatter angle α describes the under- 
lying average physical scattering mechanism directly. 
The lower value occurs over targets with smooth 
surfaces, while the higher value represents targets 
with volume scattering and double bounce scattering 
as the value increases. The mean scatter angle α can 
measure the surface roughness of the intertidal area. 
Targets such as mudflats and water bodies differ in α 
due to different surface roughness (Fig. 2d). However, 
the tidal force results in a relatively smooth 
appearance of the intertidal area, representing a 
surface scattering mechanism. Therefore, there is 
difficulty in classifying the intertidal area that has the 
mean scatter angle α. 

From the analysis above, polarimetric entropy 
and anisotropy are selected from the four-polarization 
features to describe the intertidal area. 

2.2  Statistical modeling by the generalized ex-
treme value distribution 

Generally, most parts of the intertidal area have 
relatively low entropy values, although extreme cases 

may occur in regions such as the mudflats and some 
parts of the aquatic farm area, where some branches 
of underwater vegetation may be exposed to air. 
These high entropy values lead to a “long-tail” phe-
nomenon in the histogram. The long-tail phenomenon 
is also significant in the polarimetric anisotropy im-
age, because it easily reaches an extremely high value 
when the polarimetric entropy value increases. The 
long-tail phenomenon plays an important role in 
studies of extreme events such as risk prediction and 
disaster warning. There are two forms of the long-tail 
phenomenon, i.e., the left tail and the right tail. Cur-
rent models, including the Gaussian and Gamma 
models, cannot provide satisfactory fitting results for 
histograms with the long-tail phenomenon (Ding et al., 
2015). Models used commonly to describe the long- 
tail phenomenon, such as the generalized Gamma 
distribution and the K-distribution, can describe the 
right tail well; however, they cannot adapt to the left 
tail. Moreover, the K-distribution, which is proposed 
based on the multiplicative noise model, is used 
mainly to describe relatively homogeneous regions 
and may not be suitable for images with complicated 
textures such as polarimetric entropy images and 
polarimetric anisotropy images (Li et al., 2007). 

Based on the extreme value theory, the GEV 
distribution is helpful in describing the long-tail 
phenomenon and has been used widely in SAR  
image-based applications (Won et al., 2013). There-
fore, the GEV distribution is adopted to model the 
polarimetric entropy and anisotropy images of the 
intertidal area in this study. The probability density 
function (PDF) of the GEV distribution is defined as 
(Ding et al., 2015) 
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where ξ, σ, and μ are the three parameters that char-
acterize the GEV distribution, which are the shape, 
scale, and location, respectively. The shapes of  
the GEV distributions change depending on the posi-
tive or negative of ξ. Fig. 3 shows the shapes of  
the GEV distribution with three types of shape pa-
rameter ξ. 
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Fig. 2  Examples of the features of the intertidal area:  
(a) total power of Span; (b) polarimetric entropy; (c) po-
larimetric anisotropy; (d) mean scattering angle 
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Through the above analysis, the GEV model has 

been proven effective in describing the statistical 
properties of the polarimetric entropy and anisotropy 
image over the intertidal area. Considering the com-
plexity of the intertidal area, we propose a novel 
GEVMM to fully characterize the intertidal area 
based on the FMM theory: 
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where n indicates the class of the intertidal area, and 
fi(·) represents the ith GEV model. Based on Eq. (8), 
we build the GEVMM for the polarimetric entropy 
and anisotropy separately. 

When building the GEVMM for polarimetric 
entropy and anisotropy, the most crucial step is the 
calculation of parameters of every component. In this 
study, the calculation of GEVMM is based on the EM 
algorithm. 

The EM algorithm is a maximum likelihood es-
timation (MLE) algorithm, which can estimate FMM 
in an iterative way. Each iteration of the algorithm is 
made up of the E step (calculation of the expectation) 
and the M step (maximization of the expectation). 
First, the number of components of GEVMM is  
initialized. Then in the E step we calculate responses 
ˆ jiγ  from the ith GEV model for the jth pixel as 
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where j∈{0, 1, …} is the label for the pixel, i is the 
class label, and θi indicates the ith class. Afterwards, in 
the M step, pixels are labeled as i by the maximum 
response ˆ ,jiγ  and new parameters are estimated by 

MLE. In our experiment, the estimation was achieved 
by MATLAB function gevfit. The iterative process 
continued until the parameters converged around a 
constant value. 

On the other hand, the fixed number of compo-
nents of the traditional FMM makes it difficult to 
describe the complex environment of the intertidal 
area. Therefore, an adaptive estimation method is 
proposed in this study to determine whether a com-
ponent of GEVMM is significant. In the iteration, the 
significance of each component is determined by the 
number of pixels contained. If the number is lower 
than a given threshold, it indicates that the pixels are 
insufficient to build a significant GEV model, and 
should be removed. In our experiment, the threshold 
was set at 50. 

After the iterative process converged, GEVMM 
was built. Based on the GEVMM, each pixel of the 
image can be classified to a specific component, and a 
label map was obtained. 

2.3  Markov random fields 

In this subsection, we introduce MRF to con-
textually smooth the label map from GEVMM. MRF 
modeling takes the class memberships of spatially 
neighboring classes into account using an isotropic 
second-order neighborhood system (Li, 2009). When 
building MRF, we use the GEV mixture models to 
calculate the prior probabilities along with the Potts 
model. For the jth pixel, the prior probabilities of the 
ith class can be given by 
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where ( )j
im  is the number of pixels in the neighbor-

hood of xi, and β is a positive constant measuring the 
correlation of the pixels in current neighborhoods. β 

 
Fig. 3  Probability densities of the three types of general-
ized extreme value distribution (References to color refer 
to the online version of this figure) 
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was set as 1 in our experiments. 
The workflow integrating GEVMM and MRF is 

given in Fig. 4 with detailed descriptions. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4  Combining the classification results  

Based on the workflow (Fig. 4), two classifica-
tion results can be obtained for polarimetric entropy 
and anisotropy. To obtain a better final result, the two 
classification results are combined. Assuming that the 
classification result of the polarimetric entropy con-
taining M classes is {A1, A2, …, AM}, and that of the 
polarimetric anisotropy containing N classes is {B1, 
B2, …, BN}, their intersection can be given as 
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This method aims to determine the ownership of 

an element of their intersection. For every pixel x in C, 
the attribution for classes Ai and Bj can be defined as 
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where H(x) is the value in the polarimetric entropy for 
pixel x, and 

iAx  is the mean value of the pixels that 

belong to class Ai, i.e., the class center. Similarly, A(x) 
is the value in the polarimetric anisotropy for pixel x, 
and 

jBx  is the mean value of the pixels that belong to 

class Bj. When ( ) ( ),x i x j
x C x C

m A m B
∈ ∈

>∑ ∑  C belongs to 

class Ai; otherwise, C belongs to Bj. By combining the 
two classification maps in this way, the final classi-
fication result is achieved. 
 
 
3  Experiments and analysis 
 

The proposed classification method was evalu-
ated and validated by the Gaofen-3 quad-polarization 
data over the intertidal area in Rudong, Jiangsu 
Province, China. The resolution of the experimental 
data was 8 m. The acquisition time was December 31, 
2016 at the ebb tide. Fig. 5 shows the Pauli image of 
the PolSAR data, where the study area is marked as 
the yellow frame and measures 12 km×8 km. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Our experiment was made up of three steps: (1) 

The multi-polarization features analyzed in Section 
2.1 were validated visually and quantitatively; (2) The 
study area was classified based on the flowchart 
shown in Fig. 1; (3) A comparison experiment was 
carried out with the Wishart-H/A/α method. 
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Fig. 4  Workflow of the integration of GEVMM and MRF 
GEV: generalized extreme value; GEVMM: GEV mixture 
model; MRF: Markov random field 
 
 
 

 

 
Fig. 5  The Pauli image of the quad-polarization data over 
the intertidal area in Rudong, Jiangsu Province, China 
The yellow box contains the region used in the experiment. 
References to color refer to the online version of this figure 
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3.1  Feature selection 

Fig. 6 demonstrates the four multi-polarization 
features of the study area selected in the yellow box 
shown in Fig. 5. Based on the Pauli image, we ana-
lyzed these four features visually. In the Span image 
given in Fig. 6a, the contour of the intertidal area can 
be obtained, but the details are indistinguishable. In 
addition, the edges between the intertidal area and the 
sea are not clear in the Span image. The polarimetric 
entropy (Fig. 6b) can discriminate the mudflats and 
both the flooded and exposed parts of the aquatic 
farms in the intertidal area that is visible. In the po-
larimetric entropy image, the contrast between the sea 
surface and the intertidal area is also obvious. Fig. 6c 
shows the polarimetric anisotropy image, in which we 
can clearly recognize the mudflats, although the mean 
scattering angle α (Fig. 6d) has relatively poor dis-
crimination ability for the study area. Among these 
four figures, it can be seen that polarimetric entropy 
has the best visual discrimination ability and polari-
metric anisotropy plays a complementary role. 
Therefore, the combination of polarimetric entropy 
and anisotropy can offer the best interpretation result 
for the area of interest. 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

We evaluate these features by between-region 
contrasts using the Michelson contrast. The  
Michelson contrast has been used widely in evaluat-
ing SAR images (Peli, 1990), given as  

 
max min

max min

,
F FC
F F

−
=

+
                        (15) 

where Fmax and Fmin are the maximum and minimum 
feature values, respectively, and C indicates the con-
trast value between 0 and 1. The increasing C values 
indicate better discrimination abilities. Table 1 shows 
the contrast values of the four features. Among them, 
polarimetric entropy has the highest contrast value 
and polarimetric anisotropy follows. According to the 
analysis in Section 2.1, polarimetric anisotropy is 
valuable in describing the regions with high entropy 
values in the intertidal area, for instance, the mudflats, 
as described in Fig. 6c. Polarimetric entropy can de-
scribe the details of the intertidal area and offers the 
best discrimination capability. The mean scatter angle 
α fails in the intertidal area with relatively low con-
trast areas. Span, however, has the poorest discrimi-
nation ability. 
 

 

 

 

 
 

 

3.2  Statistical modeling and fitting test 

Based on the workflow given in Fig. 4, we built 
the GEVMM for polarimetric entropy and anisotropy. 
Initially, there were five components for the polari-
metric entropy GEVMM and two for the polarimetric 
anisotropy GEVMM. After iterations, the final num-
ber of the components was three and two, respectively. 
Fig. 7 demonstrates the viability of GEVMM for 
polarimetric entropy. To ensure the superiority of 
GEVMM, the Gamma and log-normal distributions 
were also used to fit the histogram of each component 
of GEVMM. Figs. 7a–7c show the fitting results. 
Compared with the Gamma distribution and the log- 
normal distribution, the GEV distribution demon-
strates a better fitting result in Fig. 7a, especially for 
the left-tail phenomenon. The component in Fig. 7b 
describes mainly the underwater cultivation area, i.e., 
the shallow water area. This area is relatively small 
and not obvious in the statistical characteristics, so 
deviations exist in the fitting results. In Fig. 7d, 
GEVMM has a good consistency with the histogram 
of polarimetric entropy. 

Table 1  The Michelson contrast measure for different 
features 

Feature Michelson contrast value 
Span 0.6721 
Polarimeric entropy 0.9585 
Polarimetric anisotropy 0.9176 
Mean scattering angle α 0.8216 

 

(a) (b) 

(c) (d) 

0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

10
20
30
40
50
60
70

Total power of Span Polarimetric entropy

Polarimetric anisotropy Mean scattering angle α (°)

 
Fig. 6  Multi-polarization features of the study area: (a) 
total power of Span; (b) polarimetric entropy; (c) polari-
metric anisotropy; (d) mean scattering angle 
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Similarly, the number of components is initial-
ized as two when building the polarimetric anisotropy 
GEVMM. After the iteration, the final number of the 
components is two. The final results are illustrated in 
Fig. 8, which shows that the GEV distribution out-
performs the Gamma and log-normal distributions. 
Moreover, GEVMM agrees well with the histogram 
of polarimetric anisotropy. To further measure the 
fitness, the Akaike information criterion (AIC) was 
employed to validate the GEVMM we obtained 
(Akaike, 1973). The definition of AIC is given as 

 
2 2AIC ,−

=
k L

n
                        (16) 

 
where k is the number of parameters, n is the number 

of samples, and L is the log-likelihood. The log- 
likelihood is defined by 
 

sseln(2π) ln ,
2 2 2
n n nL

n
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         (17) 

 
where sse is the sum of the squared residuals between 
PDFs and histograms. The smaller the k or the larger 
the L, the smaller the AIC. This means that the smaller 
the k, the more concise the model, and the larger the L, 
the more accurate the model. AIC values of the three 
distributions shown in Figs. 7 and 8 are given in Ta-
bles 2 and 3, respectively, where we can see that the 
GEV distribution is superior to the other two distri-
butions. Combining Figs. 7 and 8 and Tables 2 and 3, 
we can conclude that the GEV distribution has the  

 
Fig. 7  Fitness comparison among the GEV, Gamma, and log-normal distributions of components 1 (a), 2 (b), and 3 (c) in 
the polarimetric entropy GEVMM, and the distribution results obtained by different models (d) 
GEV: generalized extreme value; GEVMM: GEV mixture model. References to color refer to the online version of this figure  
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best fitting ability. In addition, the final GEVMMs of 
the polarimetric entropy and anisotropy are validated 
by the AIC values 4.9701 and 4.8023, respectively. 

3.3  Classification results 

Based on the GEVMMs of polarimetric entropy 
and anisotropy, we applied the MRF introduced in 
Section 2.3 to obtain their classification results; the 
final result was obtained by combining the two clas-
sification results, as given in Fig. 9. Fig. 9a illustrates 
the Pauli image of the study area. The classification 
results from polarimetric entropy and anisotropy are 
given in Figs. 9b and 9c, where the study area is 
classified into three classes based on polarimetric 
entropy, and into two classes based on polarimetric 
anisotropy. Compared with the ground truth given in 
Fig. 9f, the classification results derived from po-
larimetric entropy discriminate the sea area and the 
aquatic farm area well, but are incapable of distin-
guishing the aquatic farm area from the mudflats. 
Meanwhile, the results based on polarimetric anisot-
ropy can extract the mudflats well. The proposed 
method was applied with the two classification results 
in Figs. 9b and 9c to obtain the final classification 
result. 

The three classes from polarimetric entropy can 
be given as {A1, A2, A3}, and the two classes from 
polarimetric anisotropy can be given as {B1, B2}. 

Table 2  The AIC values of the fitting results among the 
GEV, Gamma, and log-normal distributions for the three 
classes of polarimetric entropy 

Distribution 
AIC value 

Case 1 Case 2 Case 3 
GEV   5.3846 5.2856 4.5271 
Gamma 10.3163 6.1584 8.1451 
Log-normal 10.3162 6.1557 8.1454 

AIC: Akaike information criterion; GEV: generalized extreme value; 
GEVMM: GEV mixture model 

Table 3  The AIC values of the fitting results among the 
GEV, Gamma, and log-normal distributions for the two 
classes of polarimetric anisotropy 

Distribution 
AIC value 

Case 1 Case 2 
GEV   6.1658 4.2192 
Gamma 10.6635 7.2673 
Log-normal 10.6633 7.2689 

AIC: Akaike information criterion; GEV: generalized extreme value; 
GEVMM: GEV mixture model 

 
Fig. 8  Fitness comparison among the GEV distribution, 
Gamma distribution, and log-normal distribution of 
components 1 (a) and 2 (b) in the polarimetric anisotropy 
GEVMM, and the distribution results obtained by differ-
ent models (c) 
GEV: generalized extreme value; GEVMM: GEV mixture 
model. References to color refer to the online version of this 
figure 
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Then their intersections can be given as C={Ai∩Bj, 
Ai∩Bj≠Φ, i∈{1, 2, 3}, j∈{1, 2}}. In this experiment, 
the two classification results have six intersections, 
given as C={Ck, k∈{1, 2, …, 6}}. Based on the inte-
gration process given in Fig. 4, every Ck can be la-
beled by Ai or Bj, considering the attributions of the 
pixels in it. When all the intersections are labelled, the 
final classification result is achieved. Fig. 9d shows 
the final classification result, which contains four 
classes, i.e., sea area, flooded aquatic farm, exposed 
aquatic farms, and mudflats. Compared with Fig. 9f, 
the final classification result shows a good visual 
consistency with the ground truth, whereas the com-
parative result obtained using the Wishart-H/A/α 
method (Fig. 9e) can discriminate only mudflats and 
fails to identify other land cover types of the intertidal 
area. Therefore, our classification algorithm outper-
forms the Wishart-H/A/α method with a better dis-
crimination ability. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

For further validation, we used the Kappa coef-
ficient and the overall accuracy (OA) of classification 
to evaluate our method (Uebersax, 1982). The results 
are given in Table 4. The proposed method performed 
better for these two measurements. Therefore, the 
proposed approach outperformed the Wishart-H/A/α 
method both visually and quantitatively. 

 
 
 
 
 
 
 
 
 
4  Discussion 

 
In this section, we discuss the reasons for the 

above experimental results. The main problem of 
intertidal area classification is the similar scattering 
mechanism of the objects in the intertidal area and the 
sea surface. Therefore, it is difficult to label different 
classes in this area in the four-channel PolSAR im-
ages and most of the multi-polarization features. The 
Wishart-H/A/α method makes full use of the original 
PolSAR data and the information of three multi- 
polarization features, i.e., polarimetric entropy, po-
larimetric anisotropy, and mean scattering angle α. 
Hence, it is used widely as a strong baseline in Pol-
SAR data based classifications. Although we estab-
lished in Section 2.1 that polarimetric entropy and 
anisotropy are the main distinguishing features of 
intertidal areas in PolSAR imagery due to their sen-
sitivity to scattering randomness, the poor discrimi-
natory ability of the mean scattering angle α and the 
PolSAR data prevents the Wishart-H/A/α method 
from achieving satisfactory classification results for 
intertidal areas. 

By employing the FMM theory and MRF, the 
proposed classification method takes full advantage 
of the distinguishing features and achieves better 
classification results. 

 
 

5  Conclusions 
 

We proposed a novel classification approach for 
the intertidal area that combines GEV mixture models 
and the MRF model in PolSAR images. In our study, 
polarimetric entropy and anisotropy were introduced 
to fully characterize the intertidal area. An automatic 
unsupervised contextual classification framework 
was developed to address the classification problems 
of the intertidal area using the GEV distribution, 
which was proven appropriate to describe the  

Table 4  The Kappa coefficient and OA values of the two 
methods 

Method Kappa coefficient OA of 
classification 

Proposed  0.9333 0.9254 
Wishart-H/A/α  0.6532 0.6576 
OA: overall accuracy 

 

Sea area

Flooded aquatic 
farms

Aquatic farms  
exposed to the air

Mudflats

(a) (b)

(c) (d)

(e) (f)

 

Fig. 9  Comparison of different methods: (a) Pauli image of 
the study area; (b) classification results with entropy; (c) 
classification results with anisotropy; (d) results with the 
proposed approach; (e) results with the Wishart-H/A/α 
method; (f) ground truth  
References to color refer to the online version of this figure 
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statistical properties of the polarimetric and anisot-
ropy images in that area. Specifically, by introducing 
the FMM theory, two GEVMMs were built based on 
the GEV distribution to fit the histograms of polari-
metric entropy and anisotropy. Furthermore, by using 
the GEV distribution based MRF, the contextual 
smoothing work was achieved and two classification 
maps were obtained. Finally, experiments were con-
ducted with the PolSAR data acquired by the Chinese 
Gaofen-r3 satellite over the intertidal area in Rudong, 
Jiangsu Province, China. The proposed approach 
outperformed the traditional ones in classification 
considering the ground truth, and thus verified the 
effectiveness of the proposed method. 

The proposed approach has prospects for geo-
graphic mapping and land-use classification of inter-
tidal areas. When more influential features are de-
veloped to describe intertidal areas, additional adap-
tive modifications can also be made to improve the 
performance. 
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