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Abstract: Feature selection has attracted a great deal of interest over the past decades. By selecting meaningful
feature subsets, the performance of learning algorithms can be effectively improved. Because label information is
expensive to obtain, unsupervised feature selection methods are more widely used than the supervised ones. The key
to unsupervised feature selection is to find features that effectively reflect the underlying data distribution. However,
due to the inevitable redundancies and noise in a dataset, the intrinsic data distribution is not best revealed when
using all features. To address this issue, we propose a novel unsupervised feature selection algorithm via joint local
learning and group sparse regression (JLLGSR). JLLGSR incorporates local learning based clustering with group
sparsity regularized regression in a single formulation, and seeks features that respect both the manifold structure and
group sparse structure in the data space. An iterative optimization method is developed in which the weights finally
converge on the important features and the selected features are able to improve the clustering results. Experiments
on multiple real-world datasets (images, voices, and web pages) demonstrate the effectiveness of JLLGSR.
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1 Introduction

Nowadays, real-world applications are con-
fronted by big data of increasingly higher dimen-
sionalities. High-dimensional data not only contain
more information but also introduce extra redun-
dancies and noise. Furthermore, high-dimensional
data significantly increase the time and space re-
quirements. Learning algorithms excel in low-
dimensional data become completely impractical
in the high-dimensional space. This phenomenon,
known as “curse of dimensionality” (Bellman, 1961;
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Verleysen, 2003), has become a prevalent problem
for learning algorithms with high-dimensional data.
To address this issue, various dimensionality reduc-
tion techniques have been proposed. These methods
can be categorized mainly into two classes, feature
selection and feature extraction. Feature selection
methods, such as the Fisher score and Laplacian
score (LS) (He et al., 2005), choose a relevant fea-
ture subset to represent the original data. Feature
extraction methods, such as principal component
analysis (PCA) (Jolliffe, 2002), locally linear embed-
ding (LLE) (Roweis and Saul, 2000), locality pre-
serving projections (He and Niyogi, 2004), locality
minimizing globality maximizing projections (Nie
et al., 2009), and flexible manifold embedding (Nie
et al., 2010b), transform the original data into
reduced representations. Compared with feature
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extraction, feature selection does not change the rep-
resentation of the original data. Consequently, fea-
ture selection methods can better preserve the actual
meaning of features in the learning process and pro-
vide more interpretability for the learned results.

According to whether label information is used
or not, feature selection methods can be divided into
two categories, supervised and unsupervised. Super-
vised feature selection methods (Peng et al., 2005;
Nie et al., 2010a; Tan et al., 2010) select features
based on the correlation between features and labels.
In contrast, unsupervised feature selection methods
find the optimal feature subset that best preserves
the data distribution. Considering the difficulties
in obtaining labels, unsupervised feature selection
methods are more widely used in practice. How-
ever, the lack of label information has also brought
added challenges to the development of unsupervised
feature selection methods. Therefore, unsupervised
feature selection methods have attracted much more
research interest compared to supervised ones in re-
cent years.

Because existing studies have shown that data
spaces are often low-dimensional manifolds embed-
ded within high-dimensional ambient spaces (Roweis
and Saul, 2000; Tenenbaum et al., 2000; Belkin and
Niyogi, 2001), many feature selection methods that
take advantage of the manifold structures have been
proposed, including the Laplacian score (He et al.,
2005), trace ratio criterion for feature selection (Nie
et al., 2008), eigenvalue sensitive feature selection
(Jiang and Ren, 2011), multi-cluster feature selec-
tion (Cai et al., 2010), local kernel regression score
(Cheung and Zeng, 2009), and feature selection for
local learning based clustering (Zeng and Cheung,
2009, 2011). These methods either explicitly con-
sider the manifold structure in the model formula-
tions or incorporate regularizations or constraints in
the models to select features that respect the intrinsic
manifold structure in the data space. Consequently,
performances of the feature selection methods in im-
age and document spaces have been widely verified.

However, the methods mentioned above use all
of the features to reveal the intrinsic structures.
Thus, they are quite likely affected by the noisy and
redundant features in the dataset. The results ob-
tained may be unreliable and the feature subset se-
lected based on this structure may not be the best
candidate. To address this problem, we propose

a novel unsupervised feature selection method via
joint local learning and group sparse regression (JLL-
GSR), which combines local learning based cluster-
ing with group sparse regression to perform fea-
ture selection. By local learning based clustering,
the manifold structure of the original data space is
learned, while by group sparse regression, related
features are selected according to the clustering re-
sults. Jointly solving these two problems can simul-
taneously boost the structure learning process and
optimize the clustering results. As a result, the fea-
ture subset that best respects the manifold structure
and the group sparse structure in the data space is
selected.

JLLGSR is fundamentally based on our pre-
vious work in group sparse feature selection on lo-
cal learning based clustering (GSFS-llc) (Wu et al.,
2016) with major improvements in the model formu-
lation. In contrast to GSFS-llc, which performs lo-
cal learning based clustering and sparse regression in
two separate steps, JLLGSR combines clustering and
regression into one single objective function. The
omission of the intermediate steps can help JLLGSR
achieve better optimization in feature selection, and
JLLGSR consequently demonstrates better perfor-
mance. The main contributions of this study can be
summarized as follows:

1. To the best of our knowledge, JLLGSR is
the first algorithm that incorporates local learning
based clustering with group sparse regression in a
single model, which makes JLLGSR capable of cor-
recting the cluster structure with selected features
and reducing the impact of noise and redundancies.

2. Compared with multi-cluster feature selec-
tion (MCFS) (Cai et al., 2010), GSFS-llc (Wu et al.,
2016), and joint embedding learning and sparse re-
gression (JELSR) (Hou et al., 2014), a new bias term
is introduced in the sparse regression model to help
improve the generalization capability of JLLGSR.

3. An alternative and iterative optimization al-
gorithm is exploited to efficiently solve the proposed
method along with its convergence and computa-
tional complexity analysis.

2 Related work

Based on how a learning algorithm is incorpo-
rated into the evaluation and selection of features,
feature selection methods can be categorized into
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filter methods, wrapper methods, and embedded
methods (Guyon and Elisseeff, 2003). Filter meth-
ods aim to select features according to certain inner
statistical properties (variance, Pearson correlation,
and mutual information) of the data before running
the learning algorithm (He et al., 2005; Zhao and Liu,
2007; Jiang and Ren, 2011). Wrapper methods select
a feature subset based on the scores provided by a
specific predictive model trained with the candidate
subset (Guyon et al., 2002; Doquire and Verleysen,
2013). Embedded methods perform feature selection
with specific learning machines in the training pro-
cess (Cai et al., 2010; Tan et al., 2010; Yang et al.,
2011; Zeng and Cheung, 2011; Hou et al., 2014).

Many existing feature selection studies focus on
selecting feature subsets by respecting the intrinsic
geometric structure of the data space. Existing stud-
ies such as isometric feature mapping (Tenenbaum
et al., 2000) and LLE (Roweis and Saul, 2000) have
shown that data samples lie on a low-dimensional
manifold that is embedded in a high-dimensional am-
bient space. This manifold assumption has been
verified in many existing datasets such as USPS,
Yale, and COIL100. Nie et al. (2010b, 2011) pro-
posed locality-based algorithms to reveal the intrin-
sic manifold structure in the data space. Nie et al.
(2016a) proposed a parameter-free method called
the constrained Laplacian rank algorithm, which ex-
actly constructs a graph with x (equal to the num-
ber of clusters) connected components. Many re-
cent feature selection studies attempt to incorporate
manifold assumption by choosing features that re-
spect the manifold structure. The local kernel re-
gression (LKR) score (Cheung and Zeng, 2009) se-
lects features that not only minimize the within-
neighborhood estimation error but also maximize the
overall variance, which can efficiently deal with both
supervised and unsupervised scenarios using differ-
ent neighborhood graphs. A local learning based
feature selection method (Sun et al., 2010) decom-
poses an arbitrarily complex nonlinear problem into
a set of locally linear problems through local learn-
ing, and then learns feature relevance globally within
the large margin framework. The unsupervised fea-
ture selection method based on local learning based
clustering (LLC-fs) (Zeng and Cheung, 2009, 2011)
selects optimal features by incorporating a binary se-
lection vector into the local learning based clustering
objective function.

Another related research area exploring the im-
portant features in the data space is sparse regres-
sion, which is also widely used in many other ma-
chine learning applications, including image annota-
tion (Han et al., 2012) and video segmentation (Han
et al., 2015). By using different sparsity-inducing
regularizations such as least absolute shrinkage and
selection operator (LASSO) (Tibshirani, 1996) (us-
ing l1-norm) and elastic net (Zou and Hastie, 2005)
(using a combination of l1-norm and l2-norm), vari-
ous sparse bases can be retrieved through sparse re-
gression under different assumptions. Because vec-
tors use LASSO or elastic net to achieve sparsity,
the matrix gains group sparsity by incorporating
the l2,1-norm which first calculates the l2-norm for
each row of the matrix and then sums the results
to form an l1-norm. That is ‖M ∈ R

p×q‖2,1 =
∑p

i=1

√∑q
j=1 m

2
ij . Group sparsity exhibits more

stability in noisy datasets than LASSO because the
coefficients related to different labels tend to share
the same sparse pattern. The coefficients are more
likely to include or exclude as a whole group in
group sparse regression. Note that sparse regression
can efficiently compute the correlation between sam-
ples and their labels (or embedding results). This
characteristic of sparse regression makes it a desir-
able choice when feature selection is integrated with
learning methods. Cai et al. (2010) proposed a multi-
cluster feature selection (MCFS) which obtains the
cluster information using spectral embedding and
then solves the sparse coefficients through a series
of l1-norm regularized least squares regression prob-
lems. Wang et al. (2014) proposed an unsupervised
feature selection method using unsupervised trace
ratio formulation regularized by the l2,1-norm of the
projection matrix. Chang et al. (2016) proposed the
convex sparse PCA, which incorporates l2,1-norm
minimization into a low-rank regression optimiza-
tion problem and selects features based on the coef-
ficients under the PCA criteria. Wu et al. (2016)
proposed a group sparse regression based feature
selection method called group sparse feature selec-
tion on local learning based clustering (GSFS-llc). It
combines local learning based clustering (LLC) with
group sparse regression and achieves better feature
selection performance than MCFS.

Note that in most existing feature selection
methods, all of the features are used to analyze
the intrinsic data structure. However, this process
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is prone to noises and redundancies in the origi-
nal data and renders the results unreliable. Some
cutting-edge feature selection methods attempt to
overcome this problem by integrating feature selec-
tion in the structure learning process. Hou et al.
(2014) proposed JELSR, which integrates the merits
of embedding learning and sparse regression. Du and
Shen (2015) proposed an unsupervised feature selec-
tion with adaptive structure learning (FSASL). The
structures are adaptively learned from the results
of feature selection, while the informative features
are reselected to preserve the refined structures of
the data. Nie et al. (2016b) proposed an unsuper-
vised feature selection with structured graph opti-
mization (SOGFS), which also performs feature se-
lection and local structure learning simultaneously,
where the similarity matrix can thus be adaptively
determined and contains more accurate information
on the data structure. Luo et al. (2018) proposed
adaptive unsupervised feature selection with struc-
ture regularization, which simultaneously learns the
selective matrix with the optimal reconstruction. In-
spired by JELSR, we propose JLLGSR using local
learning based clustering instead of embedding learn-
ing to analyze the manifold structure of the data.
FSASL adaptively learns both the global and local
structures with the candidate feature subset, while
in JLLGSR, the candidate feature subset boosts the
structure learning process, improves the clustering
results obtained from all features, and reduces the
impact of noisy and redundant features. This dif-
ference makes JLLGSR more stable than FSASL,
because an unsupervised scenario directly using the
candidate feature subset to learn the intrinsic data
structure may mislead the structure learning process
and result in loss of information.

3 Unsupervised feature selection via
joint local learning and group sparse
regression

In this section, we describe how to formulate
and solve JLLGSR. Given a set of data points
X = [x1,x2, . . . ,xN ]T = [f1,f2, . . . ,fM ], N is the
number of samples, M is the total number of fea-
tures, xi ∈ R

M denotes a sample point, and fj ∈ R
N

denotes a feature. Ni represents the set of xi’s neigh-
bors and ni = |Ni| is its cardinality. C denotes the
number of clusters. Let K : X ×X → R be a positive

definite kernel function. The kernel matrix of xi’s
neighbors can be defined as Ki = [K(xu,xv)] ∈
R

ni×ni for xu,xv ∈ Ni, and ki = [K(xi,xj)] for all
xj ∈ Ni. Different kernel functions can be adopted,
such as the linear kernel K(xu,xv) = xT

uxv and heat
kernel K(xu,xv) = exp(− ‖xu−xv‖2

2

2σ2 ). Let d be the
number of features that we want to select.

3.1 Using local learning based clustering to
analyze data distribution

The data space can be regarded as linear in a
small neighborhood under the manifold assumption.
Therefore, using neighbors to learn a linear model to
approximate the label of a sample is quite reasonable.
Thus, we use kernel regression, and the lth element
of the sample’s cluster indicator can be estimated as

ŷli =
∑

xj∈Ni

βl
ijK(xi,xj). (1)

By introducing an l2-norm, Eq. (1) turns into
a kernel ridge regression problem. In addition, the
coefficient βl

ij can be easily obtained by solving the
following optimization problem:

argmin
βl

i∈R
ni

‖Kiβ
l
i − yl

i‖2 + λ(βl
i)

TKiβ
l
i, (2)

where βl
i = [βl

i1, β
l
i2, . . . , β

l
ini

]T ∈ R
ni is the coeffi-

cient vector, yl
i = [yl1, y

l
2, . . . , y

l
ni
]T ∈ R

ni . λ > 0 is
the parameter of regularization.

The solution to problem (2) is βl
i = (Ki +

λI)−1yl
i. Substituting it back into Eq. (1) can lead

to
ŷli = kT

i (Ki + λI)−1yl
i, (3)

αT
i = kT

i (Ki + λI)−1. (4)

αT
i is determined only by ki, Ki, and λ, and can

be easily calculated without the cluster indicator yl
i.

Then we can use a linear combination form to express
the estimated cluster indicator ŷli as

ŷli = αT
i y

l
i. (5)

Finally, the overall prediction error can be
calculated:

C∑

l=1

N∑

i=1

(yli − ŷli)
2 =

C∑

l=1

‖yl − ŷl‖2

=

C∑

l=1

‖yl −Ayl‖2

=tr
(
Y T(I −A)T(I −A)Y

)

=tr(Y TTY ),

(6)
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where C is the number of clusters. A = [aij ] is an
N × N sparse matrix; aij equals the corresponding
element ofαi in Eq. (4) if xj ∈ Ni, and otherwise it is
set to 0. T = (I−A)T(I−A). Y = [y1,y2, . . . ,yC ]

is the cluster indicator matrix which we want to
solve.

Eq. (6) captures the data distribution. By min-
imizing Eq. (6), we can obtain the partition matrix
Y of the data.

3.2 Using group sparse regression to analyze
the contribution of each feature

Suppose that the partition matrix Y is known.
A simple idea to retrieve important features is to use
regression.

Y = XŴ + 1b, (7)

where Ŵ are the regression coefficients which can be
used to measure the importance of each feature. b is
the bias. By adding a column vector 1 to the right
end of X, the bias term b can be merged into the
coefficient matrix W .

Y = [X,1]

[
Ŵ

b

]

= [X,1]W . (8)

For convenience, in the rest of the paper, symbol
X refers to the modified data matrix [X,1].

Eq. (8) can be easily solved by optimizing the
following least squares regression problem:

argmin
W

‖Y −XW ‖2F. (9)

By incorporating an l2,1-norm regularizer,
Eq.(9) turns into

argmin
W

‖Y −XW ‖2F + γ‖W ‖2,1. (10)

The l2,1-norm regularizer ‖W ‖2,1 =
∑M+1

i=1

√∑C
j=1 w

2
ij makes W smooth in the

rows and sparse in the columns, which makes it a
good choice for feature selection. The sparsity in
columns shows the importance of different features.
The smoothness in rows means that the correspond-
ing feature has good performance in discriminating
all the clusters from the others.

3.3 Combining local learning and group
sparse regression to formulate the unsuper-
vised feature selection method

From the two subsections above, we already
have a method to analyze the data distribution and

a method to evaluate the importance of each feature.
If we simply perform these two methods one after the
other, it will lead to good feature selection results,
such as the methods proposed in Cai et al. (2010)
and Wu et al. (2016). Nevertheless, this is not good
enough. Because the data distribution is calculated
using all of the features, within which irrelevant fea-
tures or various kinds of noise could exist. If we want
to reduce the influence of noise, the analysis of data
distribution and the selection of important features
should be simultaneously performed.

We combine Eqs. (6) and (10) and formulate the
following objective function:

argmin
W ,Y

tr(Y TTY ) + δ(‖Y −XW ‖2F + γ‖W ‖2,1)

s.t. Y TY = I. (11)

Note that it is hard to derive a close solution
to Eq. (11), so we use an alternative and iterative
method to solve Eq. (11) like the method proposed
in Hou et al. (2014) and Nie et al. (2010a).

Denote L(W ,Y ) = tr(Y TTY ) + δ(‖Y −
XW ‖2F + γ‖W ‖2,1). As we know, the deriva-
tive of ‖W ‖2,1 does not exist, if ‖wi‖2 = 0 (i =

1, 2, . . . ,M + 1) where wi is the row vector of W .
Thus, we add a small constraint to L(W ,Y ). When
‖wi‖2 �= 0 (i = 1, 2, . . . ,M + 1), the derivative of
L(W ,Y ) with respect to W is

∂L(W ,Y )

∂W
=2δXTXW−2δXTY+2γδUW , (12)

where U is an (M + 1) × (M + 1) diagonal matrix
whose ith diagonal element is

Uii =
1

2‖wi‖2 . (13)

Note that ∂tr(WTUW )
∂W = UW + UTW =

2UW , and it is reasonable using tr(WTUW ) to
approximate ‖W ‖2,1. Thus, Eq. (11) can be approx-
imated by

argmin
W ,Y

tr(Y TTY )+δ(‖Y −XW ‖2F+γtr(WTUW )).

(14)
To solve Eq. (14), we first fix U and Y to op-

timize W . Denote L(W ,Y ,U) = tr(Y TTY ) +

δ(‖Y −XW ‖2F+γtr(WTUW )). Let ∂L(W ,Y ,U)
∂W =

0. We can obtain

W = (XTX + γU)−1XTY . (15)
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Substituting W in Eq. (15) back into Eq. (14),
we have

tr(Y TTY ) + δ(‖Y −XW ‖2F + γtr(WTUW ))

=tr(Y TTY ) + δ(tr(Y TY )− 2tr(Y TXW )

+ tr(WTXTXW ) + γtr(WTUW ))

=tr(Y TTY ) + δ(tr(Y TY )− 2tr(Y TXW )

+ tr(WT(XTX + γU)W ))

=tr(Y TTY ) + δ(tr(Y TY )

− 2tr(Y TX(XTX + γU)−1XTY )

+ tr(Y TX(XTX + γU)−1XTY ))

=tr(Y T(T + δ(I −X(XTX + γU)−1XT))Y ).

(16)
Then objective function (14) is

argmin
Y

tr(Y T(T+δ(I−X(XTX+γU)−1XT))Y )

s.t. Y TY = I. (17)

If U is fixed, Eq. (17) can be easily solved
by eigen-decomposition of the matrix T + δ(I −
X(XTX+γU)−1XT). Since the number of clusters
C is usually unknown in an unsupervised scenario,
we introduce a preset parameter for the number of
used eigenvectors u instead. Then the solution of Y
is given by the eigenvectors corresponding to the top
u smallest eigenvalues and u is usually set close to
the number of clusters C in practice.

By iteratively optimizing/calculating Y , W ,

and U through Eqs. (17), (15), and (13), the op-
timization problem (14) will lead to a convergent
solution, which can also be regarded as the solution
to the original optimization problem (11).

After obtaining the coefficient matrix W , the
JLLGSR score for each feature can be defined by the
summation of its corresponding coefficients’ absolute
values:

ScoreJLLGSR(j) =
∑

i

|wji|. (18)

With the ranking score, the best candidate fea-
ture subset can be determined by choosing the top
d features according to their JLLGSR scores in de-
scending order. The complete JLLGSR is summa-
rized in Algorithm 1.

3.4 Convergence analysis

Because we have solved the objective function
of JLLGSR iteratively in the above section, it is nec-
essary to show its convergence. Let Y t and W t be

Algorithm 1 Joint local learning and group sparse
regression
1: Construct the k-nearest-neighbor graph
2: Compute the kernel matrix K

3: αT
i ← kT

i (Ki + λI)−1

4: Compute the sparse matrix A based on αi

5: T ← (I −A)T(I −A)

6: Initialize U ← I

7: loop
8: Fix U , and update Y by optimizing Eq. (17)
9: Fix U and Y , and update W by Eq. (15)

10: Fix W , and update U by Eq. (13)
11: if Eq. (11) converges then
12: break
13: end if
14: end loop
15: ScoreJLLGSR(j)←∑

i |wji|
16: Sort all features according to their JLLGSR scores

in descending order and return the top d features

the optimization results of the tth iteration, and U t

can be easily calculated according to W t. In the
(t+ 1)th iteration, Y t+1 and W t+1 can be obtained
from the optimization function with fixed U t. Since
Y t+1 and W t+1 are the optimum of the (t + 1)th

iteration, the following inequality holds:

tr((Y t+1)TTY t+1) + δ(‖Y t+1 −XW t+1‖2F
+ γtr((W t+1)TU tW t+1))

≤tr((Y t)TTY t) + δ(‖Y t −XW t‖2F
+ γtr((W t)TU tW t)).

(19)

Note that
⎧
⎪⎪⎨

⎪⎪⎩

tr((W t+1)TU tW t+1) =
∑

i
‖wt+1

i ‖2
2

2‖wt
i‖2

,

tr((W t)TU tW t) =
∑

i
‖wt

i‖2
2

2‖wt
i‖2

,

‖W ‖2,1 =
∑

i ‖wi‖2.
(20)

Eq. (19) turns into

tr((Y t+1)TTY t+1) + δ

(

‖Y t+1 −XW t+1‖2F

+ γ‖W t+1‖2,1 + γ
∑

i

(‖wt+1
i ‖22

2‖wt
i‖2

− ‖wt+1
i ‖2

))

≤tr((Y t)TTY t) + δ

(

‖Y t −XW t‖2F

+ γ‖W t‖2,1 + γ
∑

i

( ‖wt
i‖22

2‖wt
i‖2

− ‖wt
i‖2

))

. (21)

Because we know that for any nonzero vectors
a, b ∈ R

m, ‖a‖2
2

2‖b‖2
− ‖a‖2 ≥ ‖b‖2

2

2‖b‖2
− ‖b‖2, which was
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proven in Nie et al. (2010a), the following inequality
holds:

∑

i

(‖wt+1
i ‖22

2‖wt
i‖2

−‖wt+1
i ‖2

)

≥
∑

i

( ‖wt
i‖22

2‖wt
i‖2

−‖wt
i‖2

)

.

(22)
Considering inequalities (21) and (22), we can

easily obtain the following:

tr((Y t+1)TTY t+1) + δ(‖Y t+1 −XW t+1‖2F
+ γ‖W t+1‖2,1)

≤tr((Y t)TTY t) + δ(‖Y t −XW t‖2F + γ‖W t‖2,1).
(23)

This means that the objective function (11) is
monotonically decreasing in each iteration. Note
that tr(Y TTY ) = tr(Y T(I − A)T(I − A)Y ) ≥ 0

and ‖Y − XW ‖2F + γ‖W ‖2,1 ≥ 0. Thus, the ob-
jective function is also larger than or equal to zero.
Therefore, the iteration in JLLGSR can converge.

3.5 Computational complexity analysis

We present a brief analysis of the computational
complexities of JLLGSR (N , sample size; M , feature
size; k, number of nearest neighbors; u, number of
eigenvectors used):

1. Computing the kernel matrix K will incur a
cost of O(N2M).

2. Computing the sparse matrixA requires find-
ing the k nearest neighbors of xi and computing αi

in Eq. (4) for each xi, and the time complexity is
about O(N2k +Nk3).

3. The optimization problem (11) is solved iter-
atively, where fixing U and updating Y by optimiz-
ing Eq. (17) take about O(NM2+M3+N2M+N3),
fixing U and Y and updating W by Eq. (15)
take about O(NM2 + M3 + MNu), and fixing W

and updating U by Eq. (13) take about O(Mu).
Since the iteration converges very quickly (O(1) can
be omitted), the total time complexity is about
O(N3 +N2M +NM2 +M3 +MNu+Mu).

4. Computing the JLLGSR score requires
O(Mu) and sorting features by their JLLGSR scores
requires O(M logM).

Because k and u are usually very small con-
stants, the corresponding terms can be ignored.
Thus, JLLGSR’s computational complexity is about
O(N3 + N2M + NM2 + M3 + M logM), which is
comparable to those of other group sparsity based
feature selection methods.

4 Experiments

In this section, we conduct experiments on
various datasets to evaluate the performance of
JLLGSR. First, we use a small handwritten digit
dataset to show the effectiveness of JLLGSR. Then
we compare JLLGSR with state-of-the-art feature
selection algorithms on various real-world bench-
marks/datasets to demonstrate the superiority of
JLLGSR. Finally, experiments on varying parame-
ters are performed to study the influence of different
parameter selections.

4.1 Data sets and evaluation metrics

The experiments are conducted on six datasets,
including handwritten digits (USPS08), voices
(ISOLET4), human faces (YaleB), object images
(COIL100, CIFAR10), and web sites (WPAE).
USPS08 contains 2261 handwritten digit images of
16× 16 size of digit zero and digit eight chosen from
the famous handwritten digit database USPS (Hull,
1994). ISOLET4 is the fourth subset of the spo-
ken letter recognition dataset ISOLET (Fanty and
Cole, 1990), which contains 1558 samples with 617

features. YaleB is a combination of the Yale face
database B (Georghiades et al., 2001) and the ex-
tended Yale face database B, which contains 2414

near frontal images under different illuminations of
38 individuals and is cropped to a 32 × 32 size (Lee
et al., 2005). The Columbia object image library
of 100 objects is COIL100, which contains a total
of 7200 (72 images on each object) 32 × 32 images
taken five degrees apart as the object is rotated on a
turntable with 256 grey levels per pixel. CIFAR10 is
a dataset containing 60 000 color images of 32 × 32

size in 10 classes (Krizhevsky, 2009), where we ex-
tract a 512-dimensional gist feature vector to repre-
sent each image. WPAE is used in web accessibil-
ity evaluation, consisting of 4300 web pages crawled
from 43 web sites. Each sample contains 57 features,
which are the related HTML tags appearing in the
web page. All datasets used in the experiments are
summarized in Table 1.

Two evaluation metrics are used to quantita-
tively evaluate the clustering performance, cluster-
ing accuracy (AC), and normalized mutual informa-
tion (NMI). Let ti and li denote the cluster label
obtained and the true label of sample xi, respec-
tively, and map(·) the permutation mapping function
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Table 1 Statistics for the datasets

Dataset
Number of Number of Number of
samples features classes

USPS08 2261 256 2
ISOLET4 1558 617 26

YaleB 2414 1024 38
COIL100 7200 1024 100
CIFAR10 60 000 512 10
WPAE 4300 57 43

which uses the Hungarian algorithm (Kuhn, 1955;
Munkres, 1957) to find the optimal label mapping
that can produce the largest number of matching
pairs between the cluster labels obtained and the
true labels. AC is defined as

AC =
1

n

n∑

i=1

δ(map(ti), li), (24)

where n is the number of samples. δ(u, v) = 1 if
u = v; otherwise, δ(u, v) = 0. Let C denote the
ground truth set of clusters and C′ the set of clusters
obtained from the clustering algorithm. The mutual
information between C and C′ is then defined as

MI(C,C′) =
∑

c∈C,c′∈C′
p(c, c′) · log2

p(c, c′)
p(c) · p(c′) , (25)

where p(c) and p(c′) are the probabilities that a sam-
ple randomly selected from the data belongs to the
clusters c and c′, respectively, and p(c, c′) is the joint
probability that the arbitrarily selected sample be-
longs to clusters c and c′ simultaneously. Then we
can define NMI as

NMI(C,C′) =
MI(C,C′)

max(H(C),H(C′))
, (26)

where H(C) and H(C′) denote the entropies of C

and C′, respectively. It is quite straightforward to
see that NMI(C,C′) ∈ [0, 1]. NMI(C,C′) = 1 if C
and C′ are identical and NMI(C,C′) = 0 if C and C′

are independent.

4.2 Experiment setup

To validate the effectiveness of JLLGSR, we
compare JLLGSR with six state-of-the-art feature
selection algorithms:

1. LS (He et al., 2005) selects features that pre-
serve local similarities and maximize the variances.

2. LKR (Cheung and Zeng, 2009) seeks the
features that minimize the within-neighborhood es-
timation error and maximize the variance over all
the data samples.

3. MCFS (Cai et al., 2010) uses spectral embed-
ding to obtain the cluster structure in a dataset and
l1-norm regularized least squares regression to select
features that best preserve the cluster structure.

4. GSFS-llc (Wu et al., 2016) uses local learn-
ing based clustering to analyze data distribution and
then uses group sparse regression to select the can-
didate feature subset.

5. JELSR (Hou et al., 2014) combines embed-
ding learning with sparse regression to obtain the
best candidate feature subset.

6. FSASL (Du and Shen, 2015) performs struc-
ture learning and feature selection simultaneously,
and selects the features that best preserve the re-
fined structures which are adaptively learned from
the results of feature selection.

All the experiments are conducted on a 64-bit
Linux server with two 2.4 GHz 6-core 12-thread
CPUs and 256 GB memory. The parameters used
in the following experiments are set as follows. For
all these methods and all the datasets, we choose
five nearest neighbors to build the neighbor graph.
For LS, LKR, MCFS, GSFS-llc, and JLLGSR, the
similarity matrix is calculated based on the heat
kernel; for JELSR, the similarities are solved by
the locally linear embedding algorithm. The num-
ber of eigenvectors used or the dimensionality of
embedding in MCFS, GSFS-llc, JELSR, FSASL,
and JLLGSR is set to be equal to the number of
clusters. The regularization parameters γ and δ

in JLLGSR are determined by a grid search within
{0.001, 0.01, 0.1, 1, 10, 100, 1000}. After all the fea-
ture selection methods issue their candidate feature
subset, k-means is employed to cluster the data with
the selected features. Then AC and NMI are calcu-
lated based on the clustering results to evaluate the
performance of each feature selection method.

4.3 Experimental results

4.3.1 Results for handwritten digits

The first experiment is conducted on USPS08
to directly show the effectiveness of JLLGSR. The
visualized feature selection results from USPS08 are
shown in Fig. 1. Digit zero is obviously differenti-
ated from digit eight by the top 10 selected features.
Figs. 1a and 1b display the mean images of digit zero
and digit eight, respectively. Figs. 1c and 1d present
the top 10 selected features of digit zero and digit
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(a) (b)

(c) (d)

Fig. 1 Visualized feature selection results for
USPS08: (a) mean image of digit zero; (b) mean
image of digit eight; (c) top 10 features of zero; (d)
top 10 features of eight

eight, respectively. The pixels of the top 10 selected
features in the images show a clear contrast.

The clustering results for USPS08 are shown in
Fig. 2 and Table 2. The number of selected features
ranges from 10 to 50 and the best result of each row
in Table 2 is displayed in bold font. The clustering
results using all features are recorded in the last row
of the table. As we can see, JLLGSR outperforms the
other algorithms in terms of both clustering accuracy
and normalized mutual information. Another impor-
tant observation is that the clustering results from
JLLGSR beat the results with all the features. This
proves that JLLGSR is able to reduce the impact of
redundancies and noise in the data.

We conduct another experiment on USPS08 to
further evaluate the performance of JLLGSR in the
presence of noise. Fig. 3 shows the original images
and the images with salt & pepper noise in USPS08.
The clustering results for the top 10 selected fea-
tures with a noise density ranging from 0% to 30%
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Fig. 2 Clustering results using features ranging from 10 to 50 in USPS08: (a) clustering accuracy; (b)
normalized mutual information

Table 2 Clustering results for USPS08

d
Clustering accuracy (%) Normalized mutual information (%)

LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR

10 97.52 63.03 66.70 96.90 88.06 90.71 97.83 81.52 21.12 15.55 78.10 50.17 55.39 83.38
15 96.24 66.87 96.55 97.35 85.23 97.08 97.79 75.31 24.00 76.26 80.51 46.40 79.07 83.08
20 73.91 68.11 97.52 96.11 88.24 97.08 97.61 30.76 24.78 81.46 74.56 51.44 79.07 82.28
25 76.43 73.20 90.54 96.11 88.68 95.80 97.43 33.25 28.58 56.00 74.81 50.50 73.13 81.27
30 82.04 70.85 79.43 96.51 89.12 94.74 97.35 39.37 26.34 36.29 76.53 52.23 68.65 80.75
35 79.79 73.29 80.67 95.44 88.19 93.41 97.13 36.00 28.29 37.77 71.82 49.13 63.90 79.67
40 82.84 75.28 76.25 95.44 87.84 87.22 97.30 39.91 30.19 31.82 71.82 48.36 47.33 80.57
45 83.55 76.87 75.10 94.43 87.84 88.46 97.35 40.72 31.48 31.78 68.01 49.22 49.86 80.69
50 83.37 76.60 76.60 94.21 88.19 87.13 96.99 40.28 31.33 33.02 67.21 49.54 47.15 78.64

All 84.30 84.30 84.30 84.30 84.30 84.30 84.30 41.83 41.83 41.83 41.83 41.83 41.83 41.83

Parameter d denotes the number of selected features. Bold numbers denote the best results.
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Fig. 3 Original images and images with noise in
USPS08: (a) original images; (b) images with 10%
salt & pepper noise

are shown in Fig. 4 and Table 3. As noise density in-
creases, the clustering accuracy of JLLGSR slightly
decreases from 97.83% to 91.82%, while the clus-
tering accuracies of other methods fluctuate wildly.
Therefore, JLLGSR tends to have more robust per-
formance than any other feature selection method in
the presence of noise.

4.3.2 Clustering results for real-world benchmarks

In this section, JLLGSR is compared with
state-of-the-art feature selection algorithms on
various real-world benchmarks. The clustering re-
sults are explained briefly to show the superiority of

JLLGSR and to aid in understanding why it achieves
such results.

The clustering results for ISOLET4 are
presented in Fig. 5 and Table 4. Except for the
results from the selection of the top 30 features, JLL-
GSR outperforms all the other algorithms in terms
of both clustering accuracy and normalized mutual
information. Even when choosing the top 30 selected
features, the gap between the JLLGSR result and the
best result is quite small. Furthermore, JLLGSR re-
sults beat the clustering results with all the features
once again.

The clustering results from YaleB are shown in
Fig. 6 and Table 5. The clustering accuracy of JLL-
GSR is lower than that of JELSR when selecting a
small number of features (10–15), but the gap be-
tween them is quite small. When choosing a large
enough feature subset (d > 15), JLLGSR outper-
forms the other methods. For normalized mutual
information, JLLGSR is lower than JELSR only if
choosing 20 or 35 features, and the gap between
them is just 0.01, which can be ignored. The cluster-
ing results for JLLGSR beat the results with all the
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Fig. 4 Clustering results with noise density ranging from 0% to 30% for USPS08: (a) clustering accuracy; (b)
normalized mutual information

Table 3 Clustering results for USPS08 with noise

Noise
density

Clustering accuracy (%) Normalized mutual information (%)

LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR

0% 66.48 63.03 77.53 96.90 86.20 96.20 97.83 24.39 21.12 34.76 78.10 47.32 74.96 83.38
5% 69.92 77.22 95.18 96.90 88.85 84.87 96.95 25.51 31.73 69.86 78.12 50.26 42.84 78.37
10% 75.06 82.13 94.29 93.41 75.59 81.20 97.08 28.03 37.43 65.98 63.50 22.21 35.22 79.01
15% 94.34 79.92 94.29 95.44 90.09 85.14 96.42 39.90 33.81 65.76 70.71 54.44 42.73 75.47
20% 86.33 79.79 72.71 93.45 93.10 86.33 95.22 42.99 33.09 27.19 62.21 60.72 44.60 69.66
25% 78.46 77.89 80.58 92.79 90.80 87.57 94.29 30.34 29.49 34.07 60.24 53.36 47.93 65.79
30% 68.20 78.68 87.97 87.88 78.02 88.06 91.82 20.29 31.90 46.05 44.48 30.02 48.33 57.03

Bold numbers denote the best results
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Fig. 5 Clustering results using features ranging from 10 to 50 in ISOLET4: (a) clustering accuracy; (b)
normalized mutual information

Table 4 Clustering results for ISOLET4

d
Clustering accuracy (%) Normalized mutual information (%)

LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR

10 20.35 26.44 31.64 28.11 32.22 26.57 41.98 37.94 44.52 41.99 43.79 44.56 36.91 54.13
15 31.45 33.83 38.77 30.17 36.59 28.50 44.87 48.36 48.49 56.73 45.40 52.87 42.44 60.56
20 34.21 31.71 44.09 32.61 50.96 38.38 54.24 50.42 48.75 60.80 46.39 64.31 52.72 64.42
25 31.00 34.34 44.67 38.64 42.94 50.58 56.55 48.94 49.36 64.14 56.12 60.27 61.43 67.61
30 35.30 32.99 50.58 43.65 47.95 53.21 52.50 51.70 50.59 66.80 59.74 61.83 64.27 64.99
35 38.70 40.69 43.65 44.74 47.95 50.83 55.84 54.61 54.87 63.72 61.22 62.77 65.22 67.21
40 39.22 39.79 50.39 51.09 45.57 51.22 58.22 55.79 55.06 65.35 64.09 62.70 66.33 67.86
45 37.93 41.85 52.31 53.08 45.96 57.45 62.52 54.26 57.32 67.26 66.41 64.72 68.32 72.63
50 39.73 40.18 49.23 52.82 52.57 56.80 59.82 54.45 57.76 68.22 64.98 68.72 68.81 71.72

All 55.07 55.07 55.07 55.07 55.07 55.07 55.07 71.31 71.31 71.31 71.31 71.31 71.31 71.31

The parameter d denotes the number of selected features. Bold numbers denote the best results.
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Fig. 6 Clustering results using features ranging from 10 to 50 in YaleB: (a) clustering accuracy; (b) normalized
mutual information

features once again, demonstrating the advantage in
reducing the impact of noise and redundancies.

The clustering results for the COIL100 dataset
are displayed in Fig. 7 and Table 6. JLLGSR achieves
the best performance again in terms of both clus-
tering accuracy and normalized mutual information.

However, the clustering results of JLLGSR cannot
beat those with all the features. The reason is that
at most 50 selected features do not have enough dis-
criminating power and are not capable of dealing
with 100 clusters.

The clustering results for the CIFAR10 dataset
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Table 5 Clustering results for YaleB

d
Clustering accuracy (%) Normalized mutual information (%)

LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR

10 9.65 8.16 18.43 17.48 20.42 17.77 19.84 15.65 12.45 28.09 25.40 29.96 27.29 30.27
15 8.86 8.33 14.75 17.23 22.58 17.90 21.50 14.16 12.52 23.86 26.68 31.35 27.29 32.43
20 8.82 8.41 13.59 16.24 22.16 17.69 23.03 12.91 12.87 21.71 27.24 32.83 26.96 32.82
25 8.74 8.12 13.46 20.26 23.12 18.48 23.57 13.18 12.26 21.25 30.10 33.03 27.14 33.75
30 8.91 8.20 13.30 18.27 24.40 20.09 24.48 12.47 12.45 20.25 27.90 34.48 28.57 35.04
35 9.24 8.08 12.76 17.98 22.49 19.10 23.65 13.77 12.30 18.83 26.00 34.17 28.08 34.16
40 9.15 8.78 15.24 19.39 22.54 18.02 24.07 14.45 13.22 21.26 28.23 33.36 26.40 34.68
45 9.32 8.45 12.72 18.23 20.22 16.61 24.73 14.03 12.91 18.00 26.78 33.05 26.76 36.06
50 8.74 8.45 12.47 17.94 19.30 20.01 25.77 12.72 13.22 18.58 26.76 31.07 29.43 36.03

All 9.20 9.20 9.20 9.20 9.20 9.20 9.20 11.70 11.70 11.70 11.70 11.70 11.70 11.70

The parameter d denotes the number of selected features. Bold numbers denote the best results.
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Fig. 7 Clustering results using features ranging from 10 to 50 in COIL100: (a) clustering accuracy; (b)
normalized mutual information

Table 6 Clustering results for COIL100

d
Clustering accuracy (%) Normalized mutual information (%)

LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR

10 12.86 27.88 36.08 28.71 35.40 20.75 38.85 31.90 51.26 60.53 51.55 59.71 42.87 62.41
15 14.67 28.13 37.15 34.83 37.04 23.49 40.67 33.18 52.33 59.93 57.38 62.29 48.52 65.76
20 15.40 29.04 39.01 37.79 42.26 24.78 44.60 34.84 53.30 63.82 60.06 66.34 48.93 67.75
25 16.08 31.28 40.06 37.65 41.60 25.83 43.08 35.85 55.13 65.06 61.96 67.30 50.71 68.98
30 16.15 32.29 41.15 39.90 44.60 26.57 47.76 36.72 56.21 65.36 62.41 68.53 50.59 70.34
35 15.63 30.68 40.65 39.46 43.40 28.24 43.93 35.91 55.45 65.89 64.76 69.32 53.06 70.31
40 17.31 33.22 42.53 39.71 43.39 29.13 47.07 37.92 56.39 66.15 65.57 68.83 54.42 70.79
45 16.82 31.74 41.24 41.96 44.04 30.78 45.63 38.51 54.28 66.12 65.92 70.21 55.56 70.74
50 19.28 33.25 40.85 43.54 46.42 33.99 47.03 39.06 56.35 66.21 67.21 70.87 58.03 72.27

All 48.63 48.63 48.63 48.63 48.63 48.63 48.63 75.88 75.88 75.88 75.88 75.88 75.88 75.88

The parameter d denotes the number of selected features. Bold numbers denote the best results.

are shown in Fig. 8 and Table 7. FSASL needs more
than 256 GB memory to run, which goes beyond
our server’s capacity, so its results are not provided.
Compared with other methods, JLLGSR achieves
the best performance in terms of clustering accuracy
when selecting at least 30 features. In terms of nor-
malized mutual information, JLLGSR beats all the

other methods when selecting at least 25 features.
Therefore, we can say that JLLGSR outperforms
others when selecting a large enough feature subset.

All of the experimental results above show that
JLLGSR performs better than the state-of-the-art
feature selection algorithms. To further understand
the behavior of JLLGSR, we offer a comparison of
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Fig. 8 Clustering results using features ranging from 10 to 50 in CIFAR10: (a) clustering accuracy; (b)
normalized mutual information

Table 7 Clustering results for CIFAR10

d
Clustering accuracy (%) Normalized mutual information (%)

LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR

10 20.12 20.09 20.59 19.27 21.98 − 17.80 8.38 8.37 7.19 9.50 8.04 − 5.28
15 20.74 20.87 22.85 19.34 24.04 − 22.39 9.00 9.18 10.20 9.93 9.24 − 9.30
20 20.56 21.55 23.13 20.32 24.50 − 22.54 10.30 9.25 10.89 10.66 10.82 − 10.29
25 22.00 21.80 24.16 21.08 22.94 − 23.84 10.58 9.24 11.80 11.14 11.64 − 12.03
30 22.52 22.12 24.44 22.32 22.99 − 25.43 11.43 9.33 12.53 12.13 11.89 − 13.36
35 21.99 22.42 25.33 23.57 22.92 − 26.82 11.15 9.73 13.45 12.85 13.01 − 14.27
40 22.30 22.42 25.52 23.88 23.76 − 26.64 11.29 10.72 13.92 13.53 13.40 − 14.83
45 23.66 23.16 25.24 23.99 24.31 − 26.93 11.55 11.65 13.78 13.81 13.53 − 15.02
50 24.03 21.80 24.84 23.94 24.50 − 27.89 11.80 11.17 13.80 13.76 13.70 − 15.11

All 28.20 28.20 28.20 28.20 28.20 28.20 28.20 16.81 16.81 16.81 16.81 16.81 16.81 16.81

The parameter d denotes the number of selected features. Bold numbers denote the best results.
The results for FSASL are not provided because our server does not have enough memory (more than 256 GB).

JLLGSR, JELSR, and GSFS-llc. JLLGSR applies
local learning based clustering for data distribution
analysis, while JELSR uses locally linear embedding
to capture the data manifold structure, and they
both use group sparse regression to analyze the im-
portance of each feature. Locally linear embedding
assumes that one sample point can be approximated
by its neighbors and its low dimensional embedding
shares the same local linear approximation weights
as the original data. Its graph Laplacian matrix is
L = (I − S)T(I − S). The local linear approxima-
tion weight S is formed by si = 1TC−1, where C

is the local covariance matrix of xi’s neighbor. Lo-
cal learning based clustering uses xi’s neighbors to
train a linear regression model and obtain its low di-
mensional embedding, and its graph Laplacian ma-
trix T = (I − A)T(I − A), where A is calculated
by ai = kT

i (Ki + λI)−1. The Laplacian matrix of
JLLGSR, where the kernel method is used, is much
more complicated and may contain more information
than that used in JELSR. Moreover, local learning

based clustering is known to have a better clustering
performance than locally linear embedding. JLL-
GSR and GSFS-llc both use local learning based clus-
tering and group sparse regression to select the fea-
ture subset. The difference is that JLLGSR jointly
solves these two problems while GSFS-llc solves local
learning based clustering first and then group sparse
regression based on the results of LLC. The joint
optimization process enables the candidate feature
subset to improve the clustering results, so JLLGSR
performs better than GSFS-llc.

4.3.3 Clustering results for real-world datasets

Web pages from one web site usually share sim-
ilar templates and the templates can be revealed by
the structure of the HTML tags. Thus, in a web ac-
cessibility evaluation scenario, web pages are simpli-
fied to HTML tags to automatically carry out some
evaluation processes. Fig. 9 and Table 8 show the
clustering results for the WPAE dataset. JLLGSR
outperforms the other methods in terms of clustering
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Fig. 9 Clustering results using features ranging from 10 to 30 in WPAE: (a) clustering accuracy; (b) normalized
mutual information

Table 8 Clustering results for WPAE

d
Clustering accuracy (%) Normalized mutual information (%)

LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR LS LKR MCFS GSFS-llc JELSR FSASL JLLGSR

10 32.35 32.19 31.91 37.51 50.53 32.28 52.79 47.67 48.96 44.62 54.54 65.01 45.95 63.06
15 41.93 42.26 40.09 51.30 51.09 42.16 52.16 57.18 58.24 52.37 60.73 62.51 55.70 65.62
20 48.70 52.93 42.63 52.93 53.35 44.05 56.44 61.38 64.55 55.02 62.31 66.77 60.36 68.02
25 44.42 45.95 46.53 52.07 49.51 52.30 55.40 57.76 60.24 58.57 65.02 63.15 65.50 68.16
30 52.26 51.77 43.95 53.95 47.40 56.02 56.67 65.22 64.55 56.25 66.84 59.75 69.79 68.20

All 44.79 44.79 44.79 44.79 44.79 44.79 44.79 57.06 57.06 57.06 57.06 57.06 57.06 57.06

The parameter d denotes the number of selected features. Bold numbers denote the best results.

accuracy and achieves relatively stable results for
normalized mutual information. The clustering per-
formance for the selected feature subsets is higher
than that for all the features, which means the web
page template structure is more related to the se-
lected HTML tags. Therefore, these selected tags
will be more useful in the following web accessibility
evaluation process.

4.3.4 Parameter selection

JLLGSR has a total of four parameters to tune:
the number of neighbors k, the number of eigen-
vectors used u, and the regularization parameters γ
and δ. Under the manifold assumption, the similari-
ties between samples can be preserved only within a
small neighborhood in the original data space. Thus,
the parameter k should be set to a small enough num-
ber. Based on our experience, we use five neighbors
to calculate the kernel matrix. The parameter u is
used to determine the dimension of matrix Y , and Y

represents the clustering results. According to local
learning based clustering, the parameter u should be
set to equal to the number of clusters. Therefore, we

set the parameter u as the number of classes of each
dataset.

In previous experiments, the regularization pa-
rameters γ and δ are determined by a grid search.
Now, we conduct a series of experiments to inves-
tigate the influences of these parameters. Fig. 10
shows the clustering results using the top 30 features
with the regularization parameters γ and δ ranging
from 10−3 to 103 in ISOLET4, YaleB, and COIL100.
The best combination for each dataset is γ = 0.1,
δ = 0.01 in ISOLET4, γ = 10, δ = 0.001 in YaleB,
and γ = 0.001, δ = 1000 in COIL100. As seen from
these results, a relatively small γ is a good choice to
achieve a good result; for δ, however, the use of a grid
search may be the best way to tune the parameter.

5 Conclusions

In this study, we have proposed a novel unsu-
pervised feature selection method called JLLGSR,
which combines local learning and group sparse
regression in a single model. JLLGSR obtains
a clustering structure via local learning and the
group sparse structure using l2,1-norm regularized
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Fig. 10 Clustering accuracy and normalized mutual
information (NMI) with the regularization parame-
ters γ and δ ranging from 10−3 to 103 from ISOLET4,
YaleB, and COIL100: (a) accuracy in ISOLET4; (b)
NMI in ISOLET4; (c) accuracy in YaleB; (d) NMI in
YaleB; (e) accuracy in COIL100; (f) NMI in COIL100

regression. By jointly optimizing these two objec-
tives, the resulting feature subset not only explicitly
respects the manifold structure in the data space,
but also exhibits the noise-resistant characteristic of
a group sparsity structure. Extensive experiments
show that JLLGSR outperforms state-of-the-art fea-
ture selection algorithms on various datasets and is
particularly robust in the presence of noise.

In the future, we plan to further investigate the
property of group sparsity and accelerate the learn-
ing process, as well as integrate group sparsity with
other feature selection or feature learning algorithms
to improve the learning performance.
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