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Abstract: Co-residency of different tenants’ virtual machines (VMs) in cloud provides a good chance for side-channel attacks, 
which results in information leakage. However, most of current defense suffers from the generality or compatibility problem, thus 
failing in immediate real-world deployment. VM migration, an inherit mechanism of cloud systems, envisions a promising 
countermeasure, which limits co-residency by moving VMs between servers. Therefore, we first set up a unified practical ad-
versary model, where the attacker focuses on effective side channels. Then we propose Driftor, a new cloud system that contains 
VMs of a multi-executor structure where only one executor is active to provide service through a proxy, thus reducing possible 
information leakage. Active state is periodically switched between executors to simulate defensive effect of VM migration. To 
enhance the defense, real VM migration is enabled at the same time. Instead of solving the migration satisfiability problem with 
intractable CIRCUIT-SAT, a greedy-like heuristic algorithm is proposed to search for a viable solution by gradually expanding an 
initial has-to-migrate set of VMs. Experimental results show that Driftor can not only defend against practical fast side-channel 
attack, but also bring about reasonable impacts on real-world cloud applications. 
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1  Introduction 
 

In recent years, cloud computing has experi-
enced explosive development (Li et al., 2017, 2018; 
Wu et al., 2017, 2018) due to its advantages such as 
flexibility and cost-effectiveness, which occur as a 
result of resource sharing. While beneficial, shared 
resources are exposed to various threats, both con-
ventional and unconventional. Side-channel attack 
(Yarom and Falkner, 2014; Liu et al., 2015; Gruss et 
al., 2016), one of the major unconventional threats, 

benefits from shared resources in cloud, because it 
provides an easy way for attackers to observe other 
tenants’ behaviors and deduce private information (or 
secret) from them. Many countermeasures (Zhang 
and Reiter, 2013; Li et al., 2014; Liu and Lee, 2014; 
Pattuk et al., 2014) have been proposed at different 
levels of cloud-based virtualization structure; how-
ever, none of them are practical, because they either 
target specific side channels or require significant 
modifications to current cloud platforms. 

Fortunately, there is a promising method that 
prevents an adversary from achieving co-residency 
with victims, which is general and immediately de-
ployable. While the static version (Kwiat et al., 2015; 
Han et al., 2016, 2017; Ezhilchelvan and Mitrani, 
2017) that interferes with a virtual machine (VM) 
allocation process seems helpless once the adversary 
has achieved co-residency, a dynamic approach 
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(Zhang YL et al., 2012; Moon et al., 2015; Wang et al., 
2016) that periodically migrates VMs between serv-
ers becomes favorable. Among security-oriented VM 
migrations, some coarse-grained studies (Zhang YL 
et al., 2012; Wang et al., 2016) focused on whether a 
VM should be migrated. In contrast, Moon et al. 
(2015) first set up an information leakage model, and 
developed a scalable algorithm to calculate an opti-
mal strategy which shows new destinations for each 
VM. However, there are two major shortages: (1) the 
adversary model is impractical; (2) fast side channels 
fall beyond the defense. 

In this study, we draw two key observations: (1) 
the final goal of defense is mitigating valid attacks, 
where the adversary has stolen a certain percentage of 
secret which can be used to recover the whole content 
of that secret; (2) the number of VMs is one of the 
decisive factors that influence the efficiency of the 
defense algorithm. Therefore, we first establish a 
practical adversary model, and accordingly set our 
defense target. Then we propose Driftor, a system that 
realizes periodic VM migration by creating, switch-
ing, and migrating executors for each VM. An exec-
utor of a VM is a replica, which provides the same 
service and shares the same data with that VM. If we 
properly place different executors of a VM, VM mi-
gration can be simulated by periodically switching 
serving entity between executors, thus making the 
overhead of migration (actually switching) algorithm 
negligible. To enlarge the scope of VM migration, 
Driftor conducts real migration for executors between 
different servers. This global migration problem is 
initially solved by reducing it to CIRCUIT-SAT, 
whose unsatisfactory scalability is improved by a 
greedy-like algorithm. Experimental results show that 
Driftor can successfully defend against effective 
side-channel attacks, while the fast attacks described 
in Irazoqui et al. (2015) and Liu et al. (2015) can be 
mitigated with acceptable performance degradation. 
 
 

2  Background and related work 

2.1  Side-channel attacks in cloud 

Side-channel attack has long been a research 
point. When Ristenpart et al. (2009) carried out a real 
co-residency attack in Amazon EC2, side-channel 
attacks became a concern in cloud security. Existing 
research mostly focuses on constructing side channels 

through shared resources, such as cache (Yarom and 
Falkner, 2014; Liu et al., 2015; Gruss et al., 2016) and 
memory (Bosman et al., 2016), and this has been a 
trend in cloud security research. According to the way 
by which tenants co-reside in cloud, cloud-based 
side-channel attacks can be divided into two types: 
cross-process side channel (Zhang et al., 2014) and 
cross-VM side channel (Zhang YQ et al., 2012). 

The cross-process side channel is usually used in 
the Platform-as-a-Service (PaaS), where tasks of 
different tenants usually run in different Linux con-
tainers in a same VM. Computing resources and the 
operating system are shared by all tenants in the VM. 

The cross-VM side channel is usually used in the 
Infrastructure-as-a-Service (IaaS), where different 
users share the same hardware platform. 

In a cross-VM attack, the adversary usually 
launches VMs and tries to make the VMs co-locate 
with a victim VM on the same server. After verifying 
the target, the attacker constructs side channels and 
steals secrets from co-resident VMs by operations, 
such as Prime+Probe (Irazoqui et al., 2015; Liu et al., 
2015), Flush+Reload (Yarom and Falkner, 2014), or 
Flush+Flush (Gruss et al., 2016). Such side channels 
pose a serious threat on cloud clients who are 
equipped with encryption keys, and the attack might 
last 2–3 min (Liu et al., 2015). Most public clouds 
provide service through VMs and act as IaaS, such as 
Amazon EC2 (2018), Rackspace (2018), and Mi-
crosoft Azure (2018). They may all suffer from 
cross-VM attacks. Thus, we focus on the defense 
against cross-VM side-channel attacks. 

2.2  Countermeasures 

According to the virtualization layer where the 
defense is enforced, current proposed countermeas-
ures against side channels are divided mainly into 
four types. The hardware-based methods (Wang and 
Lee, 2007, 2008; Liu and Lee, 2014) are effective in 
theory yet very complex in practice, involving a lot of 
considerations, such as side effects, economic feasi-
bility, extensibility, and flexibility. Thus, it may take 
years to put into commercial use. The second type of 
defense works inside the operating system (OS) of a 
guest, such as that proposed by Zhang and Reiter 
(2013) to inject noise to L1 and L2 caches for protected 
processes. The third type of defense takes effect at the 
application level by periodically partitioning a cryp-
tographic key into multiple parts and distributing 
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them across multiple VMs (Pattuk et al., 2014).  
The last type defense is called the “hypervisor- 

based approach.” Vattikonda et al. (2011) and Al-
meida et al. (2016) adopted a method of hiding the 
program’s running time. Li et al. (2014) provided 
defense by alerting when timing was exposed to an 
external observer. All these might induce a side effect 
on cloud routine. Some isolation-based methods can 
provide defense, such as statistical multiplexing of 
shared resources and isolating VMs from each other 
as much as possible (Moscibroda and Mutlu, 2007; 
Raj et al., 2009; Feng et al., 2011; Kim et al., 2012). 
However, such defense would likely reduce the use of 
the memory and induce a waste of computing re-
source, which has a counter effect on cloud’s pro-
spects. Varadarajan et al. (2014) proposed a way by 
modifying the Xen scheduler and limiting the fre-
quency of central processing unit (CPU) preemption 
to defend against the side-channel attacks proposed 
by Zhang YQ et al. (2012), but for cross-core attacks 
which do not need CPU preemption, this defense 
method would fail. 

Migration-based defense (Moon et al., 2015), 
which limits the co-residency time of VMs between 
different tenants, is another approach to solve the 
problem. It works by periodically migrating 
co-located VMs onto different servers. The original 
ILP strategy to calculate the optimal placement at 
each epoch is time-consuming. Therefore, a greedy- 
like algorithm based approximation is promoted to 
improve scalability in the following three aspects:  

1. Incremental benefit computation 
Since re-computing a benefit occupies much run 

time of the baseline greedy, Nomad computed the 
change of the current value of the objective function 
by updating only information leakage for the set of 
dependent client pairs, whose leakage amount is af-
fected by moves.  

2. Search space reduction  
Aiming at reducing search space which consists 

of machines and moves, Nomad employed hierar-
chical methods which group clients into clusters. 
Besides, Nomad employed a pruning operation to 
wipe off some useless move sets.  

3. Lazy evaluation 
Since updating move sets generates all possible 

moves making the computation of benefit time- 
consuming, Nomad raised a lazy evaluation at the 

beginning of an epoch where the entire move table is 
populated, followed by the traversal of the move sets 
starting from the move that gives the largest benefit. If 
a move is feasible and its claimed benefit lies within 
95% of the current value, then that move will be 
adopted. Otherwise, the move is re-inserted with an 
updated benefit. 

Inspired by Nomad, we adopt a VM migration as 
a baseline defense mechanism. Driftor differs from 
Nomad from the following three aspects: 

1. Adversary model 
Nomad proposed an attack model to maximize 

the whole information leakage over cloud, while our 
model focuses on effective side channels; that is, the 
attacker aims at stealing enough portion of secret. 
Therefore, our model is definitely more practical. 

2. Form of VM 
Nomad migrated a normal VM, while Driftor 

sets up a multi-executor structure for each VM, which 
consists of several replicated VMs (called “execu-
tors”) and a proxy. To decrease the information 
leakage rate, only one of the executors can be acti-
vated at any time, while others are suspended and kept 
synchronized through the shared database. The proxy 
is responsible for forwarding data between users and 
any of the executers. 

3. Type of VM migration 
Instead of practically migrating VMs between 

servers, Driftor is equipped with a mechanism called 
an “executor switch,” which switches the active state 
between all VM’s executors. In this way, a VM that 
can be attacked for information leakage is migrated to 
the server of a different executor. Nevertheless, real 
VM migration is adopted to enlarge the scope of 
switch. 

2.3  Motivations 

Our work is motivated by a lot of previous re-
search. For example, StopWatch (Li et al., 2014) 
triplicated each VM in cloud and placed three replicas, 
so that they were co-resident with non-overlapping 
sets of other VMs. Then the timing of input/output 
(I/O) events at these replicas was collected to deter-
mine timings observed by each one or by an external 
observer, so that observable timing behaviors are 
similar. We set several replicas of each VM, but  
do not change their timing behaviors since we aim  
at defending against co-resident attacks, while  
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StopWatch focuses on defense against remote timing- 
based side channels. 

Another motivating work is mimic defense (Wu, 
2016; Hu et al., 2018), which features a mimic 
structure with several executors and a proxy. Execu-
tors, the same or different, provide the same service as 
that of the whole system. In their system, all executors 
were activated and used in parallel, while the proxy 
forwarded data between end users and executors, and 
conducted majority decisions on response data from 
all executors. Our work differs in that only one ex-
ecutor is used at any time, which saves a lot of cost. 
Besides, our proxy acts as not only a reverse proxy, 
but also an executor switch by forwarding data to a 
designated executor. 

 
 

3  Adversary model 
 

In this section, we describe a general and prac-
tical adversary model that captures the most of 
co-residency based side-channel attacks in cloud. 
First of all, we give some assumptions about tenants 
in cloud: 

1. Potential victims 
We assume that each client has some private 

information (called “secret,” such as encryption keys 
or private database records), which is interesting for 
attackers. Therefore, any VM of this client might be 
the targets of side-channel attacks. 

2. Potential attackers 
We assume that malicious clients cannot be fig-

ured out by any client or cloud provider. 
3. Information replication across VMs of a  

tenant 
Different VMs of the same tenant share the se-

cret of that tenant. While this condition might fail, we 
propose a powerful adversary model so that our de-
fense can be widely applicable. 

The goal of an adversary is to extract enough 
portion (more than δ) of secret (with its length de-
noted as L) which can be used to recover the whole 
content. For example, only enough leaked bits can 
make a brute-force attack of a long (e.g., 256 bits) 
encryption key possible. Some partitioned encoded 
information can be recovered only with enough 
blocks of secret (Pattuk et al., 2014); otherwise, the 
acquired portion of secret is meaningless. Some  

capabilities of the adversary are as follows: 
(1) Cross-VM side-channel attacks. The major-

ity of side channels in cloud are co-residency based 
cross-VM attacks, which are carried out based on 
various resources (e.g., CPU, memory, and network) 
shared between the attacker and its co-resident VMs. 
In fact, Driftor can be applied to defending against 
side channels on any movable entity in cloud with 
minor changes, such as container (Kämäräinen et al., 
2015). These side channels can be roughly divided 
into two types: slow side channels (Zhang YQ et al., 
2012) and fast side channels (Irazoqui et al., 2015; 
Liu et al., 2015). In fact, their boundary is not clearly 
defined, and an empirical value is half an hour. 

(2) Constant leakage rate. To simplify the for-
mulation of side channels, we assume a constant 
leakage rate of K bits per epoch (assuming that time is 
divided into epochs, denoted as ΔT) for any side 
channel without considering details of different at-
tacks. We admit that different attacks may have dif-
ferent leakage rates or different temporal properties 
(e.g., K may decrease or increase with time), which 
means that our model can be further improved as a 
future work. 

(3) Efficient information accumulation across 
time. We assume that the adversary can accumulate 
information from side channels across epochs under 
co-residency with a target VM. For example, if the 
adversary is co-resident with the victim at time T1 and 
T3, but not T2, the information gathered during T1 and 
T3 can be combined. Even though a real attacker 
might possibly derive duplicate/useless information 
across epochs, we prefer a more powerful adversary 
model for better applicability of Driftor. 

(4) Information replication across VMs of the 
victim. Information gathered by co-residency with all 
VMs of the same victim can be added up to a total 
amount of secret that an adversary’s VM gets from the 
victim. Despite duplicate information derived from 
different VMs, we are building this adversary model 
strong. 

(5) No collusion across adversaries. We assume 
that different clients do not collaborate because a new 
identifier (e.g., a verified credit card) is very costly, so 
that Sybil attacks for collusion (Douceur, 2002) are 
impossible. 

(6) Information collation across VMs of the  
adversary. A strong adversary model is established 
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when information derived by any adversary VM can 
be added up to a total amount of secret that the at-
tacker steals from the victim. 

Taking Fig. 1 as an example, the numbers of 
leakage epochs from the victim to the attacker after 
three epochs’ co-residency are shown in Tables 1–3. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
For the adversary, this side-channel attack is ef-

fective when δ×L<5K. Therefore, our defense aims at 
preventing leakage of more than δ percent of secret 
between client pairs, as shown in the next sections. 

 
 

4  System overview 
 
In this section, we present Driftor, a system 

which creates a multi-executor structure for each VM 
and periodically provides defense against side chan-
nels by switching and migrating executors. Fig. 2 
shows an overall system architecture of the Driftor. 

1. High-level idea 
For the practical and powerful adversary model, 

where information leakage between tenants is char-
acterized by information replication between victim’s 
VMs and by collaboration between attacker’s VMs in 

Section 3, we envision VM migration which limits 
co-residency between different clients’ VMs as a 
basic defense strategy. However, migration alone fails 
to defend against fast side-channel attacks, because 
the migration decision algorithm involving all VMs in 
cloud is of high computational complexity. Moreover, 
frequent migration leads to severe performance  
degradation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Therefore, we realize fast migration by creating 

and distributing multiple replicas of a VM which 
provide completely the same service as a VM, and 
switching between them to mitigate co-residency. 
Since this migration is limited in a few servers hosting 
executors, we enlarge the scope by real migration of 
executors, which, however, might fail to meet scala-
bility. Considering that the attacker’s target is an ef-
fective attack aiming to leak enough portion of a 
secret, we try to work out a minimum migration 
strategy by developing a greedy-like algorithm. Thus, 
Driftor is able to cope with any side channel in the 
adversary model at a reasonable cost. 

2. Multi-executor structure 
A fundamental element of Driftor is the multi- 

executor structure of VMs in cloud, which is shown in 
Fig. 3. It contains the following components: 

(1) Executors. Replicas of an original VM pro-
vide the same service as VM (the original VM is an 
executor). All of them share a common database, 
which stores both running states and data. To reduce 
co-residency, they are usually distributed onto dif-
ferent servers. Besides, there is only one running 
executor at any time providing service outwards, and 

Table 1  Across time 

 V-VM-1 V-VM-2 V-VM-3 

A-VM-1 1 2 0 

A-VM-2 1 0 1 

 

Fig. 1  Co-residency between an adversary and a victim

Table 2  Information replication of the victim 

 Victim 

A-VM-1 3 

A-VM-2 2 

Table 3  Information sharing across attacker’s VMs 

 Victim 

Adversary 5 

 

Fig. 2  System overview of the Driftor 
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other executors are kept suspended (not closed) to 
facilitate quick activation. 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
(2) Proxy. Another VM or a single process on a 

common VM is responsible for transmitting commu-
nication data between a user and an executor, and 
switching serves executor by transmitting data of the 
new session to a different executor. Since proxy does 
not have any secret, we can consider it as side-channel 
free. 

(3) Synchronization engine. A single module 
integrated in the cloud management system is re-
sponsible for synchronizing running states and data of 
all executors. It is implemented according to 
Thompson et al. (2014), using an additional database 
to store running states and data of all executors. The 
running executor keeps updating the database. When 
a suspended executor is activated, this engine updates 
its running state to the same as that of the newest state 
of the last running executor. 

(4) Defense decision engine. As another critical 
factor of Driftor, the defense decision engine consists 
of two parts: switching module and migration module. 
As shown in Fig. 4, the switching module (in the left) 
determines the running executor in the next epoch 
with the VM’s set of executors and the history of 
co-residency between clients. The result is used to 
guide the switching operation by the executor man-
agement engine and to change the history of the 
co-residency afterwards. When calculating migration 
decision in the migration module, sets of executors to 
be migrated (that is, co-residency of different tenants’ 
executors during the last epoch enables a new effec-
tive attack, so that co-resident VMs have to be mi-
grated) must be first worked out with the history of 
co-residency. Then the migration algorithm takes the 

data, current VM assignments, and server workloads 
as inputs to obtain a minimum migration solution, 
which is used to instruct the executor migration  
operation. 

 
 
 
 
 
 
 
 

 

 
3. End-to-end workflow 
Take VM-1 in Fig. 2 as an example. All com-

munication data from users of VM-1 will first be sent 
to VM-1 proxy, which redirects the stream to a current 
active executor (VM-1-1 or VM-1-2). Similarly, re-
sponses are returned to the user through the proxy. At 
the beginning of each defense interval, the executor 
management engine activates a new executor (or 
keeps the current active executor) for each VM ac-
cording to decisions from the switching algorithm. 
When a new executor becomes available, the old 
active executor should be immediately suspended 
after current sessions with this executor have ended. 
Then all new requests would be redirected to the new 
active executor by the proxy. During the same defense 
epoch, the migration algorithm computes a minimum 
migration solution, which drives the executor migra-
tion engine to work as desired. 

4. Security implications of Driftor 
The security is achieved by the executor switch 

and executor migration: 
(1) Executor switch simulates the effect of  

security-oriented migration by switching from one 
executor to another, and co-residency with an old 
active executor would no longer leak any secret. A 
new active executor on another server would not be 
co-resident with those VMs that are co-located with 
the old active executor in the previous defense inter-
val; thus, co-residency is limited. In addition, fast side 
channels can be handled in this way, because we can 
reduce our defense interval to be much smaller than 
the attack duration of the fast side channels (2–3 min). 
Because of the switch decision algorithm and switch 
operation results in minor overhead, security-oriented 
frequent switch is acceptable. 

 

User Proxy VM

ID: Executor 1
Status: Suspended

ID: Executor 2
Status: Running

ID: Executor 3
Status: Suspended

Functional VMs

Data ServerUser Proxy VM

Functional VMs

ID: executor 1
Status: suspended

ID: executor 2
Status: running

ID: executor 3
Status: suspended

Data server

 
 

Fig. 3  Multi-executor structure of virtual machine (VM)

 
 

Fig. 4  Main components of the defense decision engine
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(2) Executor migration improves the defense 
ability against side channels. Migration simulated by 
executor switch can achieve only static and restricted 
defense, because the scope of switch destinations is 
limited. Therefore, an effective attack will be finally 
fulfilled within a relatively small duration. When the 
switch range is enlarged by migration of executors, an 
effective attack can be delayed much longer time. 
Thus, the security level can be improved. 

 
 

5  Design of a reasonable defense scheme 
 

In this section, we will design a reasonable de-
fense scheme for Driftor. We first present a basic idea 
of the defense strategy, followed by the specifications 
of the switch algorithm and migration algorithm. 
Symbols and denotations used in this section are 
listed in Table 4. 

5.1  Basic idea 

Driftor periodically carries out both executor 
switch and executor migration. At the beginning of 
each defense interval, history pair-wise information 
leakage will first be updated according to 
co-residency of clients during the last interval. Then a 
new executor for each VM is activated to provide 
service, while the old active one would be suspended.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When the executor switch for all VMs has finished, 
we check the history pair-wise information leakage if 
there is any new client pair that has been co-resident 
for enough time to enable an effective attack. If there 
is no such client pair, defense engine stops until the 
next interval. Otherwise, it has to make a minimum 
migration decision, which at least separates new cli-
ent pairs that cannot co-exist on the same server. To 
decrease the pair-wise information leakage rate under 
the adversary model in Section 3, we regulate the 
co-residency pattern between tenants. These two dif-
ferent clients can co-locate only their VMs to form 
one VM pair (executor pair), so that the leakage rate 
between co-resident clients is no larger than the 
minimum value of K. 

Defense interval is designed as follows: Our 
defense should be able to handle target side channels, 
so the interval should be smaller than TATT (actually, it 
is δ×TATT since we focus on effective attacks). Switch 
decision and operation, as well as migration decision 
and operation, should be completed within one in-
terval. Since we consider a paralleled switch decision, 
a switch operation, and a migration operation, we 
have 

 
SW SW MIG MIG
DE OP DE OP ATT .t T t T t T              (1) 

For simplicity, we define the interval as 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4  Symbols and denotations 

Symbol Meaning Symbol Meaning 

δ Security threshold of  
information leakage attacks 

tar
,Loc( ) i jt t l    Placement of VMs at current epoch

Δt Defense interval NoCo(t)=|nci,j| Client pairs that cannot co-exist at 
the current epoch 

TATT Time to fulfill the target 
side-channel attack 

Co(t)=|ci,j| Number of co-resident executors 
between each pair of clients 

SW
DEt and SW

OPT  Time of a single switch  
operation and a switch  
decision, respectively 

NoMig(t)=|nmi| Activated executor for each VM 
which cannot be migrated in the 
case of service interruption 

MIG
DEt and MIG

OPT  Time of a migration operation  
and a migration decision,  
respectively 

up
up ,Co ( ) i jt c  Number of co-resident active VMs 

between each pair of clients 

NC and NS Numbers of clients and  
servers, respectively 

acc acc-up
up ,Co (0,  ) i jt c  History leakage between each pair 

of clients 
NEXE Number of executor for each  

VM 
 , , , ,

EXE 1 2 -exe,  ,  ...,  i j i j i j i j
nS e e e Executors of a VM 

Cap
SN  Capability of servers to host  

VMs 
 ,

EXE
i j
kS e  All VMs in cloud 

VM VM
C C,  [1,  ]iN n i N   Number of VMs for each client 

CoS  and Co
tS  All client-pairs and new client  

pairs that cannot co-exist 
Loc(t)=|li,j| Placement of VMs at the last 

epoch 
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ATT

ATT
SW SW MIG MIG
DE OP DE OP

,

2,  3,  ...,  ,

T
t

k
T

k
t T t T






 

 
     

  (2) 

 

where SW
DEt , SW

OPT , MIG
DEt , and MIG

OPT  should be assigned 

with their largest values with a reasonable normal size 
of cloud or a cluster (Moon et al., 2015). 

ATT
SW SW MIG MIG
DE OP DE OP

T

t T t T

 
    

 defines the defense ability 

against (especially fast) side-channel attacks: the 
larger, the better. As important parameters, δ and TATT 
can either be assigned with values offered by cloud 
providers or vary along with the fastest side-channel 
attack detected in cloud. As another critical parameter 
controlled by the cloud provider, we empirically set 
the value of k to three, since it provides Driftor a 
better defense capability than the case of two, while 
keeping a relatively low defense frequency to reduce 
defense overhead. 

It is necessary to discuss NEXE, which is ex-
pressed as 

 
Cap

EXE S2 .N N                             (3) 
 

The lower bound of NEXE is obvious. For the 
upper limit, we resort to the absurdity that if 

Cap
EXE SN N , executors of a single VM would occupy 

at least Cap
EXE SN N    servers. To decrease 

co-residency with other clients and to save server 

resource, Cap Cap
EXE S SN N N    executors among them 

would be placed on Cap
EXE SN N    exclusive servers 

in the best strategy. Then those Cap Cap
EXE S SN N N     

executors contribute nothing to defense against side 

channels. So, Cap
EXE SN N , and inequality (3) is 

proved to be correct. In this study, we assign NEXE 
with an empirical value of three, which is the same as 
that in Li et al. (2014). 

5.2  Switching algorithm 

To provide a satisfactory defense, executor 
switch should be fast and unpredictable, so Driftor 
enforces a random SwitchDecision algorithm (Algo-
rithm 1) on each VM in parallel: 

Algorithm 1    SwitchDecision that selects an active 
executor for the jth VM of the ith client in the current 
defense interval 

Input:  , , , ,
EXE 1 2 -exe{ ,  ,  ...,  }i j i j i j i j

nS e e e : executors of the jth VM of 

the ith client; acc acc-up
up ,Co (0,  ) i jt c : history co-residency time of 

different tenants; CoS : client pairs that cannot be co-resident 

in the current interval; Co
tS : new client pairs that cannot 

co-exist; ,
c
i je : current active executor 

Output:  ,i j
xe : an executor to be active in the current interval 

1    , ,
c cCoresidentVMs( )i j i js e  

2        flag←1 

3        for each VM x in ,
c
i js  do 

4           if x is active then 
5               p←MasterTenant(x) 
6               if p==i then: continue; end if 

7              acc-up acc-up
, , 1i p i pc c   

8               if acc-up
,i pc k t   then 

9                   flag←0; Co Co ,S S i p      

10                Co Co ,t tS S i p      

11             end if 
12         end if 
13      end for 

14     , ,
cand-EXE EXE
i j i jS S  

15     if flag==0 then: , , ,
cand-EXE cand-EXE c
i j i j i jS S e  ; end if 

16     for each VM x in ,
cand-EXE
i jS  do 

17         y←HostServer(x) 
18         if isServerExclusive(i, y) then 

19             ,
cand-EXE GetVMonServer( , , )i jS i j y ; return; 

20         end if 
21     end for 

22      , , ,
cand-EXE cand-EXErand sizeof( )i j i j i j

xe S S     

         

1. Updating pair-wise information leakage 
(line 7). After one defense interval, we identify client 
pairs that co-locate their active executors on the same 
server, and increase their mutual information leakage 
by one. 

2. Getting new client pairs that cannot co-exist 
(lines 8–11). According to refreshed pair-wise in-
formation leakage, we further identify new client 
pairs that have co-located for enough time to enable 
effective side-channel attacks. This is used for the 
migration decision algorithm. 

3. Selecting active executor (lines 16–22). First 
of all, we collect the distribution of all executors of 
the VM, each server of which is judged by whether 
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the executor’s client has exclusive occupation. If 
these servers are exclusive, any executor on this 
server can be chosen as a new active one; otherwise, a 
randomly selected executor will be activated. It 
should be noted that a current active executor cannot 
be a candidate if co-residency with other tenants has 
been increased to the upper limit time of effective side 
channels. 

5.3  Migration algorithm 

5.3.1  Modeling and solving a satisfiability problem 

Since Driftor aims at defending against effective 
side channels, our model makes migration decision as 
a satisfiability problem subject to some constraints, 
which are expressed as 
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1 2 1 21 2 C 1 2 , ,,  [0,  1],  ,  .i i i ii i N i i c nc                    (9) 

 

Here are the explanations of the above con-
straints: constraint (4) regulates the value range of the 
placement matrix; constraint (5) describes the fact 
that a VM should be placed on exactly one server, 
while constraint (6) presents another necessary con-
dition that capacities of servers that should not be 
exceeded; constraint (7), along with constraints (8) 
and (9), poses a constraint that different clients can 
exactly co-locate with one VM; constraint (9) implies 
that co-residency should be forbidden between client 
pairs in the case of effective side-channel attacks with 
further co-residency. 

We solve this satisfiability problem by reducing 
it to satisfiability for Boolean circuits (CIRCUIT-SAT) 
(Shyamasundar, 1996) with the intent of adopting an 
SAT solver as an oracle. However, since CIRCUIT- 
SAT is known to be NP-complete (Garey and Johnson, 
1983), we find that it is unsatisfying in large clouds, 
because inequality (1) has to be met to defend against 
fast side channels (Irazoqui et al., 2015; Liu et al., 
2015). Generally, we need to make sure that 

MIG
DE ATTt T  , which refers to values of seconds or 

tens of seconds. This motivates the need for heuristic 
approximations, which we will describe in the next 
subsection. 

5.3.2  Greedy-like heuristic 

The main bottleneck of CIRCUIT-SAT is the 
large number of migration candidates, which has been 
expanded to NEXE times the original scale, exponen-
tially increasing possible placement strategies. Be-
sides, sequential search in the solution space results in 
many useless efforts. Therefore, we propose a 
GreedyLikeHeuristic algorithm (Algorithm 2) that 
searches for potential minimum solutions. 

     
Algorithm 2    GreedyLikeHeuristic that tries to find 
minimum migration solutions in huge search space 
Input:  Loc(t)=|li,j|: placement strategy in the last defense 

interval; ,
EXE { }:i j

kS e  all executors in cloud; Co :S VM pairs 

that cannot be co-resident in the current interval; Co :tS new 

client pairs that cannot co-exist; ,
c :i je current active executor 

Output:  tar
,Loc( ) :i jt t l    new placement for the current 

defense interval; Error: no satisfactory solution is found 

1     det 1, 1 2, 2
1 2,  ,  i j i j

Co k kS e e s    ← 

getUncolPairs  Co ,  Loc( )tS t  

2      det 1, 1 2, 2
Co 1 2,  ,  S i j i j

k kS s e e
      ← 

groupByServer  det
CoS  

3       min , det
Mig Co,{{ }} calMinMigSetsS i j S

kS s e S 
     

4     Init min
Mig MignumPossibleMigSets SN S   

5     for p←1 to Init
MigN  do 

6           Init , min
Mig MigpickInitialMigSet ,  i j S

kS e S p   

7         Client Init- ,
Mig Mig, { ,{ }C i j

kN S i e   ← 

groupByClient  Init
MigS  
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8           Init- - , Init-
Mig Mig Co,{ } sortByClient ,C S i j C

kS i e S S     

9         nC←0 

10       while Client
C Mign N  do 

11            Init- -
Mig CclientId [ ].C SS n i  

12           SVM←getClientVMs(clientId); 
13           SEX-S←getExclusiveServers(clientId); 
14           if ¬host(SVM, SEX-S) then: break; end if 
15           nC←nC+1 
16       end while 

17       if Client
C Mign N  then: break; end if 

18       SEM-S←getEmptyServers() 

19       while Client
C Mign N  do 

20            Init- -
Mig CclientId [ ].C SS n i  

21           SVM←getClientVMs(clientId) 
22           if ¬host(SVM, SEX-S) then: break; end if 
23           nC←nC+1 
24       end while 

25       if Client
C Mign N  then: break; end if 

26       SRE-S←getRemainingServers() 
27       SFO-S←getFullyOcuppiedServers(SRE-S) 

28       while Client
C Mign N  do 

29            Init- -
Mig CclientId [ ].C SS n i  

30           SVM←getClientVMs(clientId) 
31           SOCE-S←getOtherClientExclusiveServers(SRE-S) 
32           SCCR-S←getCurrentClientResidentServers(SRE-S) 
33           SRE-S-C←SRE-S – (SFO-SSOCE-SSCCR-S) 
34           nVM←0 
35           while nVM <sizeof(SVM) do 
36               isHosted←0 
37               for each server in SRE-S-C do 
38                   SC←getResidentClients(server) 
39                   if canCoResident(clientId, SC) then 
40                       host(VM, server); isHosted←1 
41                   end if 
42               end for 
43               if isHosted==0 then: break; end if 
44               nVM←nVM+1 
45           end while 
46           if nVM<sizeof(SVM) then: break; end if 
47           update(SRE-S); update(SFO-S) 
48           nC←nC+1 
49       end while 

50       if Client
C Mign N  then: print Error; return 

51       Output ar
,Loc( ) t

i jt t l   ; return 

52     End for 

  

One important input to this algorithm is Co ,tS  

which consists of new client pairs that cannot co-exist 
in the coming defense interval. First of all, we will 
find co-resident active executors and their hosting 

server in the last placement for each client pair (line 1). 
Then all these clients with their last active executors 
will be grouped by servers (line 2), followed by 
computing different minimum sets of executors for 
each server (line 3). Such sets of a server consist of 
executors to be migrated, so that the remaining exec-
utors can still co-exist on this server at least for the 
next defense interval. 

The initial global migration set is picked from 
one of such sets on those servers. So, we compute the 
number of possible initial global migration sets 
(line 4), and traverse all of them to find if there is any 
satisfactory solution (line 5). The logic of the 
judgement is that for each initial global migration set 
(line 6), we regroup its elements by clients (line 7) 
and sort them by the number of the client’s 
non-coexistent tenants (line 8). Then we assign the 
destinations of executors from the first client to the 
last one by the following logic: for executors of each 
clientId, we first place as many of them as possible on 
client’s exclusive servers (lines 10–16); if there is any 
executor left (line 17), we resort to empty servers 
(lines 18–24). 

If some executors remain (line 25), we consider 
other servers if they are not fully occupied (lines 27 
and 33), nor exclusive for other clients (lines 31 and 
33). Besides, it should not host any executor of cli-
entId (lines 32–33), because we regulate that each 
client pair can co-locate at most one executor of each 
to control the information leakage rate between ten-
ants. Then for each VM of the current client (lines 34 
and 35), we test whether those remaining servers 
(lines 37 and 38) can host it by deciding if this VM’s 
owner client can co-resident with owners of all other 
VMs on servers (line 39). If any VM of the rest of 
clients cannot be hosted by any server (lines 43 and 
46), we jump out the loop, and the “Error” is returned 
(line 50). Otherwise, we have successfully derived the 
satisfactory new placement (line 51). This algorithm 
achieves a much better scalability than CIRCUIT- 
SAT. 

 
 

6  System implementation 
 

In this section, we introduce the implementation 
of Driftor on OpenStack (2018), which is an open- 
source cloud computing platform to deploy the IaaS 
solutions. It supports three types of VM migration, of 
which we choose non-live migration (OpenStack, 
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2018) for Driftor because it is migrating suspended 
VMs. Our system is built according to the architecture 
shown in Fig. 2, each of which is: 

1. Defense decision engine 
Decisions for switch and migration are periodi-

cally made in this module, which is implemented in 
Nova-Scheduler at the controller node with roughly 
800 lines of Python code. This is a natural imple-
mentation choice, since this engine needs a global 
view of all machines and VMs. We modify and ex-
pand the code to implement this engine as a service at 
the controller. 

The defense decision engine works as follows: 
At the beginning of each defense interval, this engine 
queries OpenStack’s database to obtain all necessary 
data, including mappings from the VM to host, and 
VMs belong to the same multi-executor structure. The 
latter information is initially stored by a synchroni-
zation engine, which creates a multi-executor struc-
ture for each newly coming VM. Both switch decision 
and migration decision are delivered to the defense 
operation engine. 

2. Defense operation engine 
This engine is responsible for enforcing defense 

decision from the defense decision engine. For switch 
operation, it first resumes the target VM through  
Nova-Compute. When it is fully operational, it sends 
a controlling message (consisting of switching order 
and destination) for the proxy process of current VM 
to switch the interaction with executors. Then it sus-
pends an old active executor through Nova-Compute. 
For migration operation, it migrates a VM as desired. 
This module is implemented with 104 lines of Python 
code, and is placed at the controller node. 

3. Proxy 
Proxy is a single process responsible for for-

warding communication data between users and 
serving executors. It is implemented by modifying 
Nginx (2018), which is stable and efficient. The 
modification consists of roughly 72 lines of C code. 
The additional logic attached to Nginx is mainly the 
communication with the defense operation engine. 
Upon receiving switch order from that engine, it uses 
an address included in the control message to modify 
the target to redirect users’ requests, and responds to 
inform whether the switch is successful or not. 

Since proxy would not process any privacy in-
formation, we consider it as side-channel free. So, we 

use common VMs to host the proxy code, and each 
such VM will launch a new process as proxy when a 
new VM is coming into the cloud. Each such process 
is bound with a public address, which enables the 
process to receive data originally sent to its corre-
sponding VM. Similarly, when a VM leaves, its proxy 
process will be terminated. 

4. Synchronization engine 
This engine is responsible for synchronizing 

states of different executors of the same VM. For 
simplicity, current implementation places a shared 
database which stores as much data of the executor as 
possible. We adopt MariaDB (2018), which is the 
default database used in OpenStack. We demand that 
a service on the running executor will proactively and 
frequently store and update new data into the database. 
Similarly, when a new executor is activated, it will 
first proactively update its own data inside a VM 
according to the content of the database. We admit 
that current implementation might affect the type of 
service that a VM can provide, and leave expanding 
generality of Driftor as future work. 

Another function of this engine is to create a 
multi-executor structure for a newly coming VM. 
This engine replicates this VM to create two new 
VMs that are totally the same as the coming one be-
fore launching it. Of course, a new proxy process is 
created, as stated above. The client ID, VM ID, and 
executor ID are all put into OpenStack’s database for 
future use. Then a random executor is selected to be 
first activated. This module is implemented at a con-
troller node with 283 lines of Python code. 

 
 

7  Evaluation 
 

We will answer the following questions here: 
1. Is the switch decision algorithm scalable to 

clouds of large deployment? How about the migration 
decision algorithm? 

2. How much does a single switch operation cost? 
How about migration of a single VM? What is the 
impact of these two operations on real-world cloud 
applications? 

3. How resilient is Driftor’s defense strategy 
against information leakage attacks? 

4. To what extent is Driftor effective in defend-
ing against practical side channels? 
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7.1  Performance analysis 

7.1.1  Scalability tests 

For scalability test, we set up workloads as fol-
lows: All clients’ VMs were assigned with the same 
resource consumption for convenience. Each client 
had two VMs, and each server, capable of hosting 
four VMs, was filled with occupancy of 50%. The 
number of clients was the same as that of servers, and 
the number was increasing to simulate different sizes 
of the problem. It should be noted that since a VM 
was changed to NEXE executors in Driftor, the problem 
size was enlarged to NEXE times, that is, NEXE timed 
the number of clients and NEXE timed the number of 
servers. 

Fig. 5 shows the results of scalability tests for the 
switch algorithm with different values of NEXE. To 
reduce the influence of randomness, each line is 
composed of average values of 100 samples. Fig. 5 
shows that the cost of the switch algorithm with the 
same NEXE almost remains unchanged with different 
problem sizes. It is reasonable, because this algorithm 
focuses on switching between executors, instead of 
servers or clients. Besides, by comparing cases with 
different NEXE, we find that there is no difference 
about the costs; that is to say, NEXE has little or even 
no impact on switch overhead. Nevertheless, even the 
highest cost in Fig. 5 is less than 90 ns, which is neg-
ligible in our defense. Therefore, the switch algorithm 
is quite scalable to large deployments. 

 
 
 
 
 
 
 
 
 

 
 

 

 
 

To test the scalability of the migration algorithm, 
we need to compare greedy-like heuristic, CIRCUIT- 
SAT, and Nomad in <R, C> mode, which is the same 
as Driftor. Our SAT solver is Lingeling (2018), which 
does not have native binaries for Windows. Therefore, 

we use Cygwin (Rackspace, 2018). Since Nomad’s 
scalability is possibly influenced by migration budget, 
we set it to 15%, which is the general setting of No-
mad. Fig. 6 shows the results of the scalability tests 
for the migration algorithm. Similarly, each test has 
been conducted five times, of which the average value 
is adopted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 
 

 
Fig. 6 shows that the proposed greedy-like heu-

ristic quite outperforms Nomad, which is much faster 
than CIRCUIT-SAT. Since CIRCUIT-SAT is proved 
to be NP-complete, adopting it as the migration deci-
sion algorithm is obviously intractable. The perfect 
scalability of greedy-like heuristic lies in the fact that 
its performance is influenced mainly by the number of 
servers, but not the number of clients; therefore, its 
size is only linear to the problem size. Besides, the 
greedy-like algorithm gradually expands minimum 
migration sets until a satisfactory migration strategy 
is found. Therefore, since even the largest duration 
(0.0235 s in Fig. 6) is negligible, Driftor’s migration 
algorithm has been proved to be quite scalable to 
large deployments. 
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Fig. 5  Scalability test of the switch decision algorithm 

 

Fig. 6  Scalability test of the migration decision algo-
rithm: (a) problem size ranging from 10 to 50; (b) prob-
lem size ranging from 10 to 2000 
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7.1.2  Real defense overhead 

To test the system in a real-world environment, 
Driftor was deployed in a local cloud which was or-
ganized with OpenStack Pike. There were 30 servers 
for Driftor tests, while 10 servers were enough for 
other tests, each of which was equipped with 
2.00-GHz 64-bit Intel® Xeon® CPU E5-2683 v3 
processor with 56 cores, 32-GB RAM, 1-TB disks, 
and four network interfaces with 1-Gb/s network 
speed. KVM was selected as a unified hypervisor 
which runs on Ubuntu 16.04 (Linux kernel v4.4.0). 

1. Overhead of switch operation 
Major overhead of switch operation lies in the 

time of activating a suspended VM. Therefore, we 
measure the duration of activation for three different 
instances, and present the results in the second col-
umn of Table 5, where each data is the average of 100 
tests. Experimental results show that the overhead of 
switch operation is almost negligible. It should be 
noted that the switch operation will not induce any 
service downtime, because a new executor will be 
activated to provide service before the old executor 
has been suspended. New requests will be seamlessly 
redirected to the new executor. 

 
Table 5  Time overhead for activation and migration of 
different types of instances 

Type of instance SW
OPT  (s) MIG

OPT  (s)

Ubuntu-cloud (512-MB RAM, 
1.5 GB) 

1.04 2.12 

Cirros (512-MB RAM, 132 MB) 0.77 0.41 

Ubuntu (2048-MB RAM, 7 GB) 1.26 8.09 

 
2. Overhead of migration operation 
A suspended VM should be migrated by cold 

migration, so the underlying network turns out to be a 
bottleneck. We configure 1-Gb/s cable with 40-Gb/s 
optical fiber connecting transmitting nodes (in our 
case, between switches), and migrate suspended VMs 
between servers. The third column in Table 5 shows 
that the overhead of migration operation is  
sustainable. 

So far, we have practically verified Driftor’s 
defense ability against information leakage, espe-
cially fast side-channel attacks (Liu et al., 2015) by 

proving SW SW MIG MIG
DE OP DE OP ATT ,t T t T T      which, 

however, cannot be satisfied in Moon et al. (2015). 
3. Impacts on cloud-based applications 

To evaluate the influence of deploying Driftor  
on real-world cloud workloads, we selected two  
representative cloud applications: web-server and 
MapReduce workloads. 

(1) Web-server evaluation. Web service was 
simulated with WikiBench (2018), a web hosting 
benchmark that facilitated stress testing of systems 
used to host web applications. Different from con-
ventional benchmarks which usually create a toy 
application to deal with synthetic workloads, 
WikiBench chose a real popular web application 
(MediaWiki) with real data that was actual database 
dumps of the Wikipedia website. In addition, it cre-
ated real web traffic by replaying recorded history 
traffic to Wikipedia. We have downloaded the trace 
file since September 2007, and modified it to make an 
access rate of approximately 10 to 15 HTTP requests 
per second. 

In this experiment, the capability of each server 
was fixed to four VMs, which was the same as that in 
the scalability tests. The difference was that there 
were four benign clients who had three server VMs 
running the same as the WikiBench backend, one 
proxy VM balancing the traffic between three servers, 
and one user VM sending HTTP GET requests fol-
lowing the pattern of WikiBench trace file. We run 
this experiment for 20 min (5 min per epoch) with 
three types of security configurations: (a) normal 
(without protection); (b) Nomad; (c) Driftor. Fig. 7 
shows the distribution of these four clients’ through-
put (i.e., the number of completed requests per 10 s) 
over the entire run, which is in the form of 
box-and-whiskers plots with the 25th, 50th, and 75th 
percentiles, as well as the minimum and 98th percen-
tile values. 

 
 
 
 
 
 
 
 
 
 

 

 
Fig. 7 shows that the distribution is almost 

identical in all four cases, indicating that both Driftor 

 
 

Fig. 7  Distribution of throughput for WikiBench 
workloads 
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and Nomad have limited impact on real cloud appli-
cations. Another observation is that Driftor performs 
worse than in the case without any security enforce-
ment, because the lower end of its throughput distri-
bution is obviously smaller, so does Nomad. It can 
also be observed that Driftor outperforms Nomad a bit 
by comparing the lower end of their distributions. At 
last, it can be found that all clients suffer from similar 
performance degradation due to the security defense 
operations (mainly switch and migration), indicating 
the fact that Driftor is fair across different clients. 

(2) MapReduce evaluation. To enforce the above 
conclusions, we set a different workload as sorting 
800-MB data using Hadoop Terasort. The experi-
mental setup was the same as that of webserver 
evaluation except that the epoch duration was reduced 
to 1 min and that each benign client was equipped 
with five VMs, of which one was master and four 
were slaves. This time we focused on the job com-
pletion time, which is collected and displayed in 
Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
By comparing completion time with different 

security setups in Fig. 8, we can derive almost the 
same observations as that in webserver evaluation: (1) 
Normal setup outperforms Driftor, which achieves 
better results than Nomad; (2) Two security configu-
rations bring about only a little influence on the 
cloud-based web application. 

To sum up, both tests on real-world applications 
have demonstrated that Driftor induces little impact 
on cloud-based applications. This is an advantage due 
to the multi-executor structure of the VM in Driftor, 
because switch operation happens in a way that the 
service provider will be seamlessly switched to a 

newly activated executor when it is fully activated 
before the old executor has been suspended. There-
fore, whether Driftor can be deployed in cloud de-
pends on its security improvements. 

7.2  Security analysis 

7.2.1  Information leakage 

To evaluate our defense against information 
leakage, we adopted the same setting as that of 
scalability tests in Section 7.1.1. Additional settings 
included the number of clients (and servers) being 20 
and the migration budget being 15%. We compared 
the per-client leakages of Driftor, CIRCUIT-SAT, and 
Nomad in <R, C> mode. Fig. 9 presents the cumula-
tive distribution function (CDF) of inter-client in-
formation leakage measured over five epochs with a 
randomly generated initial placement with three dif-
ferent defense strategies. Fig. 9 shows that Nomad 
slightly outperforms both Driftor and CIRCUIT-SAT, 
while the latter two achieve almost the same resili-
ence against information leakage. This is because 
Driftor focuses on defense against fast side-channel 

attacks, which requires a very small value of MIG
DE .t  

Therefore, optimization for overall information 
leakage is more or less sacrificed. Luckily, this dis-
advantage is limited, as shown in Fig. 9. With regard 
to the problem of fairness across different client pairs, 
we figure out that all defense strategies achieve sim-
ilar satisfactory fairness since even the 95th percentile 
of the distribution is relatively low (Fig. 9). 

 
 
 
 
 
 
 
 
 
 

 
 

 

7.2.2  Practical side-channel attacks 

To verify Driftor’s capability of defense against 
real-world side channels in cloud, we adopted the 

140

160

180

200

220

240

260 Normal Nomad Driftor

Client 
Client 1 Client 2 Client 3 Client 4

 

Fig. 8  Distribution of job completion time for Hadoop 
workloads with three different defense strategies 

 
 

Fig. 9  Cumulative distribution function of client-pair 
information leakage under different defense strategies 
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same experimental settings as that in Section 7.1.2. 
Attackers were simulated by randomly selected cli-
ents by conducting LLC-based Prime+Probe (Liu 
et al., 2015) and a practical fast side channel which 
had a wide scope of application. Corresponding vic-
tims were decrypting a short file encrypted with a 
3072-bit ElGamal public key, of which a 403-bit se-
cret was the real target. GnuPG 1.4.18 was used in the 
decryption. The sliding-window exponentiation al-
gorithm will be executed during decryption. This 
attack took about 12 min of online LLC-based 
Prime+Probe. 

To reduce the impacts of multiple types of noise, 
each selected client can act as only one of roles, and 
all of his/her executors in their live cycles were car-
rying out attacks or performing vulnerable operations 
according to the roles. We randomly selected attack-
ers and victims (Table 6). Numbers in the first row 
refer to attacker’s client ID, while the numbers in the 
first column refer to victim’s client ID. This experi-
ment lasted about 60 min, which was divided into 30 
epochs or defense intervals as 2 min per epoch; thus, 
Driftor allowed two clients to co-locate for at most 
five epochs. This time was selected to provide enough 
time for possible side channels. Each pair of attacker- 
victim corresponded to an entry consisting of two 
values. The left number is the (active) co-residency 
time of these two clients, and the right number is an 
indicator showing whether the corresponding attack is 
successful (that is, an effective side-channel attack 
has been completed). 

 
Table 6  Results of Driftor’s defense against real-world 
side-channel attacks 

Victim’s 
client ID 

Attacker’s client ID 

1 10 14 17 

3 1 0 4 0 5 0 0 0

8 0 0 0 0 2 0 3 0

16 3 0 0 0 0 0 0 0

18 2 0 4 0 0 0 1 0
 

 

From Table 6, we can observe that there is no 
successful attack between any pair of clients in 30 
epochs, because even the longest co-residency time 
that occurs between clients 3 and 10 is only five 
epochs, which equals 10 min. It is definitely less than 
the necessary time for a complete side channel. An-
other observation is that Table 6 resembles a sparse 
matrix with a lot of zeros, indicating a large margin of 

defense space. It shows that a lot of client pairs can be 
migrated to the same server to achieve co-residency 
even without single tenancy after 30 epochs. This 
benefit, that is, co-residency is slowly growing, is 
another advantage introduced by the multi-executor 
structure of VM and the regulation. To sum up, 
Driftor is capable of well defending against practical 
side channels. 

7.2.3  Pure switch vs. Driftor 

To demonstrate the necessity of executor migra-
tion in Driftor, we compared a strategy of pure switch 
with Driftor. We used totally the same experimental 
settings, including a same initial placement to make 
these two results comparable. 

Table 7 shows the experimental results of tenant 
oriented pair-wise co-residency epochs with a pure 
switch strategy. Although most of the co-residency 
time is zero, there are two special client pairs, of 
which client pairs <3, 14> co-exists for seven epochs, 
and <10, 18> co-exists for six epochs. They are both 
larger than five epochs, which is the threshold time 
for an effective attack. Besides, other non-zero pairs 
are relatively large compared with the most of the 
entries in Table 6, indicating that migration can help 
distribute the co-residency time over different client 
pairs. Therefore, migration is quite necessary to 
complement the defense ability of the executor 
switch. 

 
Table 7  Results of pure switch defense against real-
world side-channel attacks 

Victim’s 
client ID

Attacker’s client ID 

1 10 14 17 

3 0 0 4 0 7 0 0 0

8 0 0 0 0 0 0 4 0

16 3 0 0 0 0 0 0 0

18 3 0 6 0 0 0 0 0

 
 
8  Conclusions and future work 

 
In this study, we have proposed Driftor, a 

side-channel resistant cloud system which mitigates 
information leakage attacks by creating a multi- 
executor structure for each VM and switching and 
migrating those executors. First of all, we have set up 
a practical unified adversary model, which focuses on 
the concept of effective side-channel attacks. To  
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defend against fast side channels that are beyond the 
capability of current migration-based approaches, we 
have proposed a new cloud system where we set up a 
multi-executor structure for each VM and switch the 
only active state among executors on different servers 
to simulate the defensive effect which is similar to 
that of migration. Besides, real migration of executors 
was enabled to enlarge the scope of switch, thus in-
creasing the resilience against side channels. Instead 
of solving this satisfiability problem of migration 
with an intractable CIRCUIT-SAT, we have proposed 
a greedy-like algorithm which searches viable solu-
tions by gradually expanding the size of solutions 
from limited has-to-migrate executors. Experimental 
results showed that Driftor can not only defend 
against practical fast side-channel attacks, but also 
introduce reasonable impact on real-world cloud  
applications. 

Driftor has the following two limitations: (1) 
The number of necessary servers is proportional to 
that of executors per VM, thus making defense cost 
multiplied; (2) Synchronization between executors 
becomes difficult if there are too many running states 
generated during a defense interval. For the first lim-
itation, we have observed that a suspended VM con-
sumes only limited disk resource, which is the least 
influential factor when defining a server’s capability 
to host VMs. In other words, a suspended VM may 
not be counted as a resource-consuming entity which 
costs the server’s slot. Therefore, we can place many 
more VMs on a server than its defined capability; thus, 
the defense cost might be effectively reduced. The 
second limitation is quite tough since it exists even in 
synchronizing states between two running instances, 
let alone the VM being suspended in our case. Maybe 
we can resort to a new computing entity whose run-
ning states can be sliced to fine-grained granularity, 
so that each such slice can be used for an immediate 
state recovery, or the suspended VM can be periodi-
cally activated to keep its states up-to-date, thus re-
ducing the time to keep synchronization. 
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