
Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 731

Driftor: mitigating cloud-based side-channel attacks by

switching and migrating multi-executor virtual machines*

Chao YANG†, Yun-fei GUO, Hong-chao HU, Ya-wen WANG, Qing TONG, Ling-shu LI
National Digital Switching System Engineering & Technological Research Center, Zhengzhou 450003, China

†E-mail: 1989600235@qq.com

Received Aug. 31, 2018; Revision accepted Nov. 26, 2018; Crosschecked May 13, 2019

Abstract: Co-residency of different tenants’ virtual machines (VMs) in cloud provides a good chance for side-channel attacks,
which results in information leakage. However, most of current defense suffers from the generality or compatibility problem, thus
failing in immediate real-world deployment. VM migration, an inherit mechanism of cloud systems, envisions a promising
countermeasure, which limits co-residency by moving VMs between servers. Therefore, we first set up a unified practical ad-
versary model, where the attacker focuses on effective side channels. Then we propose Driftor, a new cloud system that contains
VMs of a multi-executor structure where only one executor is active to provide service through a proxy, thus reducing possible
information leakage. Active state is periodically switched between executors to simulate defensive effect of VM migration. To
enhance the defense, real VM migration is enabled at the same time. Instead of solving the migration satisfiability problem with
intractable CIRCUIT-SAT, a greedy-like heuristic algorithm is proposed to search for a viable solution by gradually expanding an
initial has-to-migrate set of VMs. Experimental results show that Driftor can not only defend against practical fast side-channel
attack, but also bring about reasonable impacts on real-world cloud applications.

Key words: Cloud computing; Side-channel attack; Information leakage; Multi-executor structure; Virtual machine switch;

Virtual machine migration
https://doi.org/10.1631/FITEE.1800526 CLC number: TP393

1 Introduction

In recent years, cloud computing has experi-
enced explosive development (Li et al., 2017, 2018;
Wu et al., 2017, 2018) due to its advantages such as
flexibility and cost-effectiveness, which occur as a
result of resource sharing. While beneficial, shared
resources are exposed to various threats, both con-
ventional and unconventional. Side-channel attack
(Yarom and Falkner, 2014; Liu et al., 2015; Gruss et
al., 2016), one of the major unconventional threats,

benefits from shared resources in cloud, because it
provides an easy way for attackers to observe other
tenants’ behaviors and deduce private information (or
secret) from them. Many countermeasures (Zhang
and Reiter, 2013; Li et al., 2014; Liu and Lee, 2014;
Pattuk et al., 2014) have been proposed at different
levels of cloud-based virtualization structure; how-
ever, none of them are practical, because they either
target specific side channels or require significant
modifications to current cloud platforms.

Fortunately, there is a promising method that
prevents an adversary from achieving co-residency
with victims, which is general and immediately de-
ployable. While the static version (Kwiat et al., 2015;
Han et al., 2016, 2017; Ezhilchelvan and Mitrani,
2017) that interferes with a virtual machine (VM)
allocation process seems helpless once the adversary
has achieved co-residency, a dynamic approach

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

* Project supported by the National Natural Science Foundation of
China (Nos. 61521003 and 61602509), the National Key Research and
Development Program of China (Nos. 2016YFB0800100 and
2016YFB0800101), and the Key Technologies Research and Devel-
opment Program of Henan Province of China (No. 172102210615)

 ORCID: Chao YANG, http://orcid.org/0000-0002-4796-7011
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2019

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 732

(Zhang YL et al., 2012; Moon et al., 2015; Wang et al.,
2016) that periodically migrates VMs between serv-
ers becomes favorable. Among security-oriented VM
migrations, some coarse-grained studies (Zhang YL
et al., 2012; Wang et al., 2016) focused on whether a
VM should be migrated. In contrast, Moon et al.
(2015) first set up an information leakage model, and
developed a scalable algorithm to calculate an opti-
mal strategy which shows new destinations for each
VM. However, there are two major shortages: (1) the
adversary model is impractical; (2) fast side channels
fall beyond the defense.

In this study, we draw two key observations: (1)
the final goal of defense is mitigating valid attacks,
where the adversary has stolen a certain percentage of
secret which can be used to recover the whole content
of that secret; (2) the number of VMs is one of the
decisive factors that influence the efficiency of the
defense algorithm. Therefore, we first establish a
practical adversary model, and accordingly set our
defense target. Then we propose Driftor, a system that
realizes periodic VM migration by creating, switch-
ing, and migrating executors for each VM. An exec-
utor of a VM is a replica, which provides the same
service and shares the same data with that VM. If we
properly place different executors of a VM, VM mi-
gration can be simulated by periodically switching
serving entity between executors, thus making the
overhead of migration (actually switching) algorithm
negligible. To enlarge the scope of VM migration,
Driftor conducts real migration for executors between
different servers. This global migration problem is
initially solved by reducing it to CIRCUIT-SAT,
whose unsatisfactory scalability is improved by a
greedy-like algorithm. Experimental results show that
Driftor can successfully defend against effective
side-channel attacks, while the fast attacks described
in Irazoqui et al. (2015) and Liu et al. (2015) can be
mitigated with acceptable performance degradation.

2 Background and related work

2.1 Side-channel attacks in cloud

Side-channel attack has long been a research
point. When Ristenpart et al. (2009) carried out a real
co-residency attack in Amazon EC2, side-channel
attacks became a concern in cloud security. Existing
research mostly focuses on constructing side channels

through shared resources, such as cache (Yarom and
Falkner, 2014; Liu et al., 2015; Gruss et al., 2016) and
memory (Bosman et al., 2016), and this has been a
trend in cloud security research. According to the way
by which tenants co-reside in cloud, cloud-based
side-channel attacks can be divided into two types:
cross-process side channel (Zhang et al., 2014) and
cross-VM side channel (Zhang YQ et al., 2012).

The cross-process side channel is usually used in
the Platform-as-a-Service (PaaS), where tasks of
different tenants usually run in different Linux con-
tainers in a same VM. Computing resources and the
operating system are shared by all tenants in the VM.

The cross-VM side channel is usually used in the
Infrastructure-as-a-Service (IaaS), where different
users share the same hardware platform.

In a cross-VM attack, the adversary usually
launches VMs and tries to make the VMs co-locate
with a victim VM on the same server. After verifying
the target, the attacker constructs side channels and
steals secrets from co-resident VMs by operations,
such as Prime+Probe (Irazoqui et al., 2015; Liu et al.,
2015), Flush+Reload (Yarom and Falkner, 2014), or
Flush+Flush (Gruss et al., 2016). Such side channels
pose a serious threat on cloud clients who are
equipped with encryption keys, and the attack might
last 2–3 min (Liu et al., 2015). Most public clouds
provide service through VMs and act as IaaS, such as
Amazon EC2 (2018), Rackspace (2018), and Mi-
crosoft Azure (2018). They may all suffer from
cross-VM attacks. Thus, we focus on the defense
against cross-VM side-channel attacks.

2.2 Countermeasures

According to the virtualization layer where the
defense is enforced, current proposed countermeas-
ures against side channels are divided mainly into
four types. The hardware-based methods (Wang and
Lee, 2007, 2008; Liu and Lee, 2014) are effective in
theory yet very complex in practice, involving a lot of
considerations, such as side effects, economic feasi-
bility, extensibility, and flexibility. Thus, it may take
years to put into commercial use. The second type of
defense works inside the operating system (OS) of a
guest, such as that proposed by Zhang and Reiter
(2013) to inject noise to L1 and L2 caches for protected
processes. The third type of defense takes effect at the
application level by periodically partitioning a cryp-
tographic key into multiple parts and distributing

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 733

them across multiple VMs (Pattuk et al., 2014).
The last type defense is called the “hypervisor-

based approach.” Vattikonda et al. (2011) and Al-
meida et al. (2016) adopted a method of hiding the
program’s running time. Li et al. (2014) provided
defense by alerting when timing was exposed to an
external observer. All these might induce a side effect
on cloud routine. Some isolation-based methods can
provide defense, such as statistical multiplexing of
shared resources and isolating VMs from each other
as much as possible (Moscibroda and Mutlu, 2007;
Raj et al., 2009; Feng et al., 2011; Kim et al., 2012).
However, such defense would likely reduce the use of
the memory and induce a waste of computing re-
source, which has a counter effect on cloud’s pro-
spects. Varadarajan et al. (2014) proposed a way by
modifying the Xen scheduler and limiting the fre-
quency of central processing unit (CPU) preemption
to defend against the side-channel attacks proposed
by Zhang YQ et al. (2012), but for cross-core attacks
which do not need CPU preemption, this defense
method would fail.

Migration-based defense (Moon et al., 2015),
which limits the co-residency time of VMs between
different tenants, is another approach to solve the
problem. It works by periodically migrating
co-located VMs onto different servers. The original
ILP strategy to calculate the optimal placement at
each epoch is time-consuming. Therefore, a greedy-
like algorithm based approximation is promoted to
improve scalability in the following three aspects:

1. Incremental benefit computation
Since re-computing a benefit occupies much run

time of the baseline greedy, Nomad computed the
change of the current value of the objective function
by updating only information leakage for the set of
dependent client pairs, whose leakage amount is af-
fected by moves.

2. Search space reduction
Aiming at reducing search space which consists

of machines and moves, Nomad employed hierar-
chical methods which group clients into clusters.
Besides, Nomad employed a pruning operation to
wipe off some useless move sets.

3. Lazy evaluation
Since updating move sets generates all possible

moves making the computation of benefit time-
consuming, Nomad raised a lazy evaluation at the

beginning of an epoch where the entire move table is
populated, followed by the traversal of the move sets
starting from the move that gives the largest benefit. If
a move is feasible and its claimed benefit lies within
95% of the current value, then that move will be
adopted. Otherwise, the move is re-inserted with an
updated benefit.

Inspired by Nomad, we adopt a VM migration as
a baseline defense mechanism. Driftor differs from
Nomad from the following three aspects:

1. Adversary model
Nomad proposed an attack model to maximize

the whole information leakage over cloud, while our
model focuses on effective side channels; that is, the
attacker aims at stealing enough portion of secret.
Therefore, our model is definitely more practical.

2. Form of VM
Nomad migrated a normal VM, while Driftor

sets up a multi-executor structure for each VM, which
consists of several replicated VMs (called “execu-
tors”) and a proxy. To decrease the information
leakage rate, only one of the executors can be acti-
vated at any time, while others are suspended and kept
synchronized through the shared database. The proxy
is responsible for forwarding data between users and
any of the executers.

3. Type of VM migration
Instead of practically migrating VMs between

servers, Driftor is equipped with a mechanism called
an “executor switch,” which switches the active state
between all VM’s executors. In this way, a VM that
can be attacked for information leakage is migrated to
the server of a different executor. Nevertheless, real
VM migration is adopted to enlarge the scope of
switch.

2.3 Motivations

Our work is motivated by a lot of previous re-
search. For example, StopWatch (Li et al., 2014)
triplicated each VM in cloud and placed three replicas,
so that they were co-resident with non-overlapping
sets of other VMs. Then the timing of input/output
(I/O) events at these replicas was collected to deter-
mine timings observed by each one or by an external
observer, so that observable timing behaviors are
similar. We set several replicas of each VM, but
do not change their timing behaviors since we aim
at defending against co-resident attacks, while

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 734

StopWatch focuses on defense against remote timing-
based side channels.

Another motivating work is mimic defense (Wu,
2016; Hu et al., 2018), which features a mimic
structure with several executors and a proxy. Execu-
tors, the same or different, provide the same service as
that of the whole system. In their system, all executors
were activated and used in parallel, while the proxy
forwarded data between end users and executors, and
conducted majority decisions on response data from
all executors. Our work differs in that only one ex-
ecutor is used at any time, which saves a lot of cost.
Besides, our proxy acts as not only a reverse proxy,
but also an executor switch by forwarding data to a
designated executor.

3 Adversary model

In this section, we describe a general and prac-
tical adversary model that captures the most of
co-residency based side-channel attacks in cloud.
First of all, we give some assumptions about tenants
in cloud:

1. Potential victims
We assume that each client has some private

information (called “secret,” such as encryption keys
or private database records), which is interesting for
attackers. Therefore, any VM of this client might be
the targets of side-channel attacks.

2. Potential attackers
We assume that malicious clients cannot be fig-

ured out by any client or cloud provider.
3. Information replication across VMs of a

tenant
Different VMs of the same tenant share the se-

cret of that tenant. While this condition might fail, we
propose a powerful adversary model so that our de-
fense can be widely applicable.

The goal of an adversary is to extract enough
portion (more than δ) of secret (with its length de-
noted as L) which can be used to recover the whole
content. For example, only enough leaked bits can
make a brute-force attack of a long (e.g., 256 bits)
encryption key possible. Some partitioned encoded
information can be recovered only with enough
blocks of secret (Pattuk et al., 2014); otherwise, the
acquired portion of secret is meaningless. Some

capabilities of the adversary are as follows:
(1) Cross-VM side-channel attacks. The major-

ity of side channels in cloud are co-residency based
cross-VM attacks, which are carried out based on
various resources (e.g., CPU, memory, and network)
shared between the attacker and its co-resident VMs.
In fact, Driftor can be applied to defending against
side channels on any movable entity in cloud with
minor changes, such as container (Kämäräinen et al.,
2015). These side channels can be roughly divided
into two types: slow side channels (Zhang YQ et al.,
2012) and fast side channels (Irazoqui et al., 2015;
Liu et al., 2015). In fact, their boundary is not clearly
defined, and an empirical value is half an hour.

(2) Constant leakage rate. To simplify the for-
mulation of side channels, we assume a constant
leakage rate of K bits per epoch (assuming that time is
divided into epochs, denoted as ΔT) for any side
channel without considering details of different at-
tacks. We admit that different attacks may have dif-
ferent leakage rates or different temporal properties
(e.g., K may decrease or increase with time), which
means that our model can be further improved as a
future work.

(3) Efficient information accumulation across
time. We assume that the adversary can accumulate
information from side channels across epochs under
co-residency with a target VM. For example, if the
adversary is co-resident with the victim at time T1 and
T3, but not T2, the information gathered during T1 and
T3 can be combined. Even though a real attacker
might possibly derive duplicate/useless information
across epochs, we prefer a more powerful adversary
model for better applicability of Driftor.

(4) Information replication across VMs of the
victim. Information gathered by co-residency with all
VMs of the same victim can be added up to a total
amount of secret that an adversary’s VM gets from the
victim. Despite duplicate information derived from
different VMs, we are building this adversary model
strong.

(5) No collusion across adversaries. We assume
that different clients do not collaborate because a new
identifier (e.g., a verified credit card) is very costly, so
that Sybil attacks for collusion (Douceur, 2002) are
impossible.

(6) Information collation across VMs of the
adversary. A strong adversary model is established

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 735

when information derived by any adversary VM can
be added up to a total amount of secret that the at-
tacker steals from the victim.

Taking Fig. 1 as an example, the numbers of
leakage epochs from the victim to the attacker after
three epochs’ co-residency are shown in Tables 1–3.

For the adversary, this side-channel attack is ef-

fective when δ×L<5K. Therefore, our defense aims at
preventing leakage of more than δ percent of secret
between client pairs, as shown in the next sections.

4 System overview

In this section, we present Driftor, a system

which creates a multi-executor structure for each VM
and periodically provides defense against side chan-
nels by switching and migrating executors. Fig. 2
shows an overall system architecture of the Driftor.

1. High-level idea
For the practical and powerful adversary model,

where information leakage between tenants is char-
acterized by information replication between victim’s
VMs and by collaboration between attacker’s VMs in

Section 3, we envision VM migration which limits
co-residency between different clients’ VMs as a
basic defense strategy. However, migration alone fails
to defend against fast side-channel attacks, because
the migration decision algorithm involving all VMs in
cloud is of high computational complexity. Moreover,
frequent migration leads to severe performance
degradation.

Therefore, we realize fast migration by creating

and distributing multiple replicas of a VM which
provide completely the same service as a VM, and
switching between them to mitigate co-residency.
Since this migration is limited in a few servers hosting
executors, we enlarge the scope by real migration of
executors, which, however, might fail to meet scala-
bility. Considering that the attacker’s target is an ef-
fective attack aiming to leak enough portion of a
secret, we try to work out a minimum migration
strategy by developing a greedy-like algorithm. Thus,
Driftor is able to cope with any side channel in the
adversary model at a reasonable cost.

2. Multi-executor structure
A fundamental element of Driftor is the multi-

executor structure of VMs in cloud, which is shown in
Fig. 3. It contains the following components:

(1) Executors. Replicas of an original VM pro-
vide the same service as VM (the original VM is an
executor). All of them share a common database,
which stores both running states and data. To reduce
co-residency, they are usually distributed onto dif-
ferent servers. Besides, there is only one running
executor at any time providing service outwards, and

Table 1 Across time

 V-VM-1 V-VM-2 V-VM-3

A-VM-1 1 2 0

A-VM-2 1 0 1

Fig. 1 Co-residency between an adversary and a victim

Table 2 Information replication of the victim

 Victim

A-VM-1 3

A-VM-2 2

Table 3 Information sharing across attacker’s VMs

 Victim

Adversary 5

Fig. 2 System overview of the Driftor

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 736

other executors are kept suspended (not closed) to
facilitate quick activation.

(2) Proxy. Another VM or a single process on a

common VM is responsible for transmitting commu-
nication data between a user and an executor, and
switching serves executor by transmitting data of the
new session to a different executor. Since proxy does
not have any secret, we can consider it as side-channel
free.

(3) Synchronization engine. A single module
integrated in the cloud management system is re-
sponsible for synchronizing running states and data of
all executors. It is implemented according to
Thompson et al. (2014), using an additional database
to store running states and data of all executors. The
running executor keeps updating the database. When
a suspended executor is activated, this engine updates
its running state to the same as that of the newest state
of the last running executor.

(4) Defense decision engine. As another critical
factor of Driftor, the defense decision engine consists
of two parts: switching module and migration module.
As shown in Fig. 4, the switching module (in the left)
determines the running executor in the next epoch
with the VM’s set of executors and the history of
co-residency between clients. The result is used to
guide the switching operation by the executor man-
agement engine and to change the history of the
co-residency afterwards. When calculating migration
decision in the migration module, sets of executors to
be migrated (that is, co-residency of different tenants’
executors during the last epoch enables a new effec-
tive attack, so that co-resident VMs have to be mi-
grated) must be first worked out with the history of
co-residency. Then the migration algorithm takes the

data, current VM assignments, and server workloads
as inputs to obtain a minimum migration solution,
which is used to instruct the executor migration
operation.

3. End-to-end workflow
Take VM-1 in Fig. 2 as an example. All com-

munication data from users of VM-1 will first be sent
to VM-1 proxy, which redirects the stream to a current
active executor (VM-1-1 or VM-1-2). Similarly, re-
sponses are returned to the user through the proxy. At
the beginning of each defense interval, the executor
management engine activates a new executor (or
keeps the current active executor) for each VM ac-
cording to decisions from the switching algorithm.
When a new executor becomes available, the old
active executor should be immediately suspended
after current sessions with this executor have ended.
Then all new requests would be redirected to the new
active executor by the proxy. During the same defense
epoch, the migration algorithm computes a minimum
migration solution, which drives the executor migra-
tion engine to work as desired.

4. Security implications of Driftor
The security is achieved by the executor switch

and executor migration:
(1) Executor switch simulates the effect of

security-oriented migration by switching from one
executor to another, and co-residency with an old
active executor would no longer leak any secret. A
new active executor on another server would not be
co-resident with those VMs that are co-located with
the old active executor in the previous defense inter-
val; thus, co-residency is limited. In addition, fast side
channels can be handled in this way, because we can
reduce our defense interval to be much smaller than
the attack duration of the fast side channels (2–3 min).
Because of the switch decision algorithm and switch
operation results in minor overhead, security-oriented
frequent switch is acceptable.

User Proxy VM

ID: Executor 1
Status: Suspended

ID: Executor 2
Status: Running

ID: Executor 3
Status: Suspended

Functional VMs

Data ServerUser Proxy VM

Functional VMs

ID: executor 1
Status: suspended

ID: executor 2
Status: running

ID: executor 3
Status: suspended

Data server

Fig. 3 Multi-executor structure of virtual machine (VM)

Fig. 4 Main components of the defense decision engine

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 737

(2) Executor migration improves the defense
ability against side channels. Migration simulated by
executor switch can achieve only static and restricted
defense, because the scope of switch destinations is
limited. Therefore, an effective attack will be finally
fulfilled within a relatively small duration. When the
switch range is enlarged by migration of executors, an
effective attack can be delayed much longer time.
Thus, the security level can be improved.

5 Design of a reasonable defense scheme

In this section, we will design a reasonable de-
fense scheme for Driftor. We first present a basic idea
of the defense strategy, followed by the specifications
of the switch algorithm and migration algorithm.
Symbols and denotations used in this section are
listed in Table 4.

5.1 Basic idea

Driftor periodically carries out both executor
switch and executor migration. At the beginning of
each defense interval, history pair-wise information
leakage will first be updated according to
co-residency of clients during the last interval. Then a
new executor for each VM is activated to provide
service, while the old active one would be suspended.

When the executor switch for all VMs has finished,
we check the history pair-wise information leakage if
there is any new client pair that has been co-resident
for enough time to enable an effective attack. If there
is no such client pair, defense engine stops until the
next interval. Otherwise, it has to make a minimum
migration decision, which at least separates new cli-
ent pairs that cannot co-exist on the same server. To
decrease the pair-wise information leakage rate under
the adversary model in Section 3, we regulate the
co-residency pattern between tenants. These two dif-
ferent clients can co-locate only their VMs to form
one VM pair (executor pair), so that the leakage rate
between co-resident clients is no larger than the
minimum value of K.

Defense interval is designed as follows: Our
defense should be able to handle target side channels,
so the interval should be smaller than TATT (actually, it
is δ×TATT since we focus on effective attacks). Switch
decision and operation, as well as migration decision
and operation, should be completed within one in-
terval. Since we consider a paralleled switch decision,
a switch operation, and a migration operation, we
have

SW SW MIG MIG
DE OP DE OP ATT .t T t T t T (1)

For simplicity, we define the interval as

Table 4 Symbols and denotations

Symbol Meaning Symbol Meaning

δ Security threshold of
information leakage attacks

tar
,Loc() i jt t l Placement of VMs at current epoch

Δt Defense interval NoCo(t)=|nci,j| Client pairs that cannot co-exist at
the current epoch

TATT Time to fulfill the target
side-channel attack

Co(t)=|ci,j| Number of co-resident executors
between each pair of clients

SW
DEt and SW

OPT Time of a single switch
operation and a switch
decision, respectively

NoMig(t)=|nmi| Activated executor for each VM
which cannot be migrated in the
case of service interruption

MIG
DEt and MIG

OPT Time of a migration operation
and a migration decision,
respectively

up
up ,Co () i jt c Number of co-resident active VMs

between each pair of clients

NC and NS Numbers of clients and
servers, respectively

acc acc-up
up ,Co (0,) i jt c History leakage between each pair

of clients
NEXE Number of executor for each

VM
 , , , ,

EXE 1 2 -exe, , ..., i j i j i j i j
nS e e e Executors of a VM

Cap
SN Capability of servers to host

VMs
 ,

EXE
i j
kS e All VMs in cloud

VM VM
C C, [1,]iN n i N Number of VMs for each client

CoS and Co
tS All client-pairs and new client

pairs that cannot co-exist
Loc(t)=|li,j| Placement of VMs at the last

epoch

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 738

ATT

ATT
SW SW MIG MIG
DE OP DE OP

,

2, 3, ..., ,

T
t

k
T

k
t T t T

 (2)

where SW
DEt , SW

OPT , MIG
DEt , and MIG

OPT should be assigned

with their largest values with a reasonable normal size
of cloud or a cluster (Moon et al., 2015).

ATT
SW SW MIG MIG
DE OP DE OP

T

t T t T

 defines the defense ability

against (especially fast) side-channel attacks: the
larger, the better. As important parameters, δ and TATT
can either be assigned with values offered by cloud
providers or vary along with the fastest side-channel
attack detected in cloud. As another critical parameter
controlled by the cloud provider, we empirically set
the value of k to three, since it provides Driftor a
better defense capability than the case of two, while
keeping a relatively low defense frequency to reduce
defense overhead.

It is necessary to discuss NEXE, which is ex-
pressed as

Cap

EXE S2 .N N (3)

The lower bound of NEXE is obvious. For the
upper limit, we resort to the absurdity that if

Cap
EXE SN N , executors of a single VM would occupy

at least Cap
EXE SN N servers. To decrease

co-residency with other clients and to save server

resource, Cap Cap
EXE S SN N N executors among them

would be placed on Cap
EXE SN N exclusive servers

in the best strategy. Then those Cap Cap
EXE S SN N N

executors contribute nothing to defense against side

channels. So, Cap
EXE SN N , and inequality (3) is

proved to be correct. In this study, we assign NEXE
with an empirical value of three, which is the same as
that in Li et al. (2014).

5.2 Switching algorithm

To provide a satisfactory defense, executor
switch should be fast and unpredictable, so Driftor
enforces a random SwitchDecision algorithm (Algo-
rithm 1) on each VM in parallel:

Algorithm 1 SwitchDecision that selects an active
executor for the jth VM of the ith client in the current
defense interval

Input: , , , ,
EXE 1 2 -exe{ , , ..., }i j i j i j i j

nS e e e : executors of the jth VM of

the ith client; acc acc-up
up ,Co (0,) i jt c : history co-residency time of

different tenants; CoS : client pairs that cannot be co-resident

in the current interval; Co
tS : new client pairs that cannot

co-exist; ,
c
i je : current active executor

Output: ,i j
xe : an executor to be active in the current interval

1 , ,
c cCoresidentVMs()i j i js e

2 flag←1

3 for each VM x in ,
c
i js do

4 if x is active then
5 p←MasterTenant(x)
6 if p==i then: continue; end if

7 acc-up acc-up
, , 1i p i pc c

8 if acc-up
,i pc k t then

9 flag←0; Co Co ,S S i p

10 Co Co ,t tS S i p

11 end if
12 end if
13 end for

14 , ,
cand-EXE EXE
i j i jS S

15 if flag==0 then: , , ,
cand-EXE cand-EXE c
i j i j i jS S e ; end if

16 for each VM x in ,
cand-EXE
i jS do

17 y←HostServer(x)
18 if isServerExclusive(i, y) then

19 ,
cand-EXE GetVMonServer(, ,)i jS i j y ; return;

20 end if
21 end for

22 , , ,
cand-EXE cand-EXErand sizeof()i j i j i j

xe S S

1. Updating pair-wise information leakage
(line 7). After one defense interval, we identify client
pairs that co-locate their active executors on the same
server, and increase their mutual information leakage
by one.

2. Getting new client pairs that cannot co-exist
(lines 8–11). According to refreshed pair-wise in-
formation leakage, we further identify new client
pairs that have co-located for enough time to enable
effective side-channel attacks. This is used for the
migration decision algorithm.

3. Selecting active executor (lines 16–22). First
of all, we collect the distribution of all executors of
the VM, each server of which is judged by whether

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 739

the executor’s client has exclusive occupation. If
these servers are exclusive, any executor on this
server can be chosen as a new active one; otherwise, a
randomly selected executor will be activated. It
should be noted that a current active executor cannot
be a candidate if co-residency with other tenants has
been increased to the upper limit time of effective side
channels.

5.3 Migration algorithm

5.3.1 Modeling and solving a satisfiability problem

Since Driftor aims at defending against effective
side channels, our model makes migration decision as
a satisfiability problem subject to some constraints,
which are expressed as

C

VM tar
EXE S ,

1

1, , [1,], {0,1},
N

i i j
i

i N n j N l

 (4)

C S
VM tar

EXE ,
1 1

1, , 1,
N N

i i j
i j

i N n l

 (5)

C
VM

EXE
1 tar

S , CAP1
[1,], ,

N

i
i

N n

i ji
j N l N

 (6)

1 2

1 1 2
VM VM VM

EXE 1 EXE 2 EXE 3
1 1 1

1 2 C 1 2

VM VM
1 2 EXE 3 EXE

1 2 S

tar tar tar

, , ,

, [0, 1], ,

, [1,], [1,],

, [1,],

0,i i i

i i i
i i i

i i

N n k j N n k j N n k j

i i N i i

k k n N k n N

k k j N

l l l

(7)

VM VM
EXE EXES 1 2

1 2 1 EXE 1 2 EXE 2

1 2

1 2 C 1 2

tar tar
, , ,

1 1 1

, [0, 1], ,

,
i in N n NN

i i i N k j i N k j
j k k

i i N i i

c l l

 (8)

1 2 1 21 2 C 1 2 , ,, [0, 1], , .i i i ii i N i i c nc (9)

Here are the explanations of the above con-
straints: constraint (4) regulates the value range of the
placement matrix; constraint (5) describes the fact
that a VM should be placed on exactly one server,
while constraint (6) presents another necessary con-
dition that capacities of servers that should not be
exceeded; constraint (7), along with constraints (8)
and (9), poses a constraint that different clients can
exactly co-locate with one VM; constraint (9) implies
that co-residency should be forbidden between client
pairs in the case of effective side-channel attacks with
further co-residency.

We solve this satisfiability problem by reducing
it to satisfiability for Boolean circuits (CIRCUIT-SAT)
(Shyamasundar, 1996) with the intent of adopting an
SAT solver as an oracle. However, since CIRCUIT-
SAT is known to be NP-complete (Garey and Johnson,
1983), we find that it is unsatisfying in large clouds,
because inequality (1) has to be met to defend against
fast side channels (Irazoqui et al., 2015; Liu et al.,
2015). Generally, we need to make sure that

MIG
DE ATTt T , which refers to values of seconds or

tens of seconds. This motivates the need for heuristic
approximations, which we will describe in the next
subsection.

5.3.2 Greedy-like heuristic

The main bottleneck of CIRCUIT-SAT is the
large number of migration candidates, which has been
expanded to NEXE times the original scale, exponen-
tially increasing possible placement strategies. Be-
sides, sequential search in the solution space results in
many useless efforts. Therefore, we propose a
GreedyLikeHeuristic algorithm (Algorithm 2) that
searches for potential minimum solutions.

Algorithm 2 GreedyLikeHeuristic that tries to find
minimum migration solutions in huge search space
Input: Loc(t)=|li,j|: placement strategy in the last defense

interval; ,
EXE { }:i j

kS e all executors in cloud; Co :S VM pairs

that cannot be co-resident in the current interval; Co :tS new

client pairs that cannot co-exist; ,
c :i je current active executor

Output: tar
,Loc() :i jt t l new placement for the current

defense interval; Error: no satisfactory solution is found

1 det 1, 1 2, 2
1 2, , i j i j

Co k kS e e s ←

getUncolPairs Co , Loc()tS t

2 det 1, 1 2, 2
Co 1 2, , S i j i j

k kS s e e
 ←

groupByServer det
CoS

3 min , det
Mig Co,{{ }} calMinMigSetsS i j S

kS s e S

4 Init min
Mig MignumPossibleMigSets SN S

5 for p←1 to Init
MigN do

6 Init , min
Mig MigpickInitialMigSet , i j S

kS e S p

7 Client Init- ,
Mig Mig, { ,{ }C i j

kN S i e ←

groupByClient Init
MigS

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 740

8 Init- - , Init-
Mig Mig Co,{ } sortByClient ,C S i j C

kS i e S S

9 nC←0

10 while Client
C Mign N do

11 Init- -
Mig CclientId [].C SS n i

12 SVM←getClientVMs(clientId);
13 SEX-S←getExclusiveServers(clientId);
14 if ¬host(SVM, SEX-S) then: break; end if
15 nC←nC+1
16 end while

17 if Client
C Mign N then: break; end if

18 SEM-S←getEmptyServers()

19 while Client
C Mign N do

20 Init- -
Mig CclientId [].C SS n i

21 SVM←getClientVMs(clientId)
22 if ¬host(SVM, SEX-S) then: break; end if
23 nC←nC+1
24 end while

25 if Client
C Mign N then: break; end if

26 SRE-S←getRemainingServers()
27 SFO-S←getFullyOcuppiedServers(SRE-S)

28 while Client
C Mign N do

29 Init- -
Mig CclientId [].C SS n i

30 SVM←getClientVMs(clientId)
31 SOCE-S←getOtherClientExclusiveServers(SRE-S)
32 SCCR-S←getCurrentClientResidentServers(SRE-S)
33 SRE-S-C←SRE-S – (SFO-SSOCE-SSCCR-S)
34 nVM←0
35 while nVM <sizeof(SVM) do
36 isHosted←0
37 for each server in SRE-S-C do
38 SC←getResidentClients(server)
39 if canCoResident(clientId, SC) then
40 host(VM, server); isHosted←1
41 end if
42 end for
43 if isHosted==0 then: break; end if
44 nVM←nVM+1
45 end while
46 if nVM<sizeof(SVM) then: break; end if
47 update(SRE-S); update(SFO-S)
48 nC←nC+1
49 end while

50 if Client
C Mign N then: print Error; return

51 Output ar
,Loc() t

i jt t l ; return

52 End for

One important input to this algorithm is Co ,tS

which consists of new client pairs that cannot co-exist
in the coming defense interval. First of all, we will
find co-resident active executors and their hosting

server in the last placement for each client pair (line 1).
Then all these clients with their last active executors
will be grouped by servers (line 2), followed by
computing different minimum sets of executors for
each server (line 3). Such sets of a server consist of
executors to be migrated, so that the remaining exec-
utors can still co-exist on this server at least for the
next defense interval.

The initial global migration set is picked from
one of such sets on those servers. So, we compute the
number of possible initial global migration sets
(line 4), and traverse all of them to find if there is any
satisfactory solution (line 5). The logic of the
judgement is that for each initial global migration set
(line 6), we regroup its elements by clients (line 7)
and sort them by the number of the client’s
non-coexistent tenants (line 8). Then we assign the
destinations of executors from the first client to the
last one by the following logic: for executors of each
clientId, we first place as many of them as possible on
client’s exclusive servers (lines 10–16); if there is any
executor left (line 17), we resort to empty servers
(lines 18–24).

If some executors remain (line 25), we consider
other servers if they are not fully occupied (lines 27
and 33), nor exclusive for other clients (lines 31 and
33). Besides, it should not host any executor of cli-
entId (lines 32–33), because we regulate that each
client pair can co-locate at most one executor of each
to control the information leakage rate between ten-
ants. Then for each VM of the current client (lines 34
and 35), we test whether those remaining servers
(lines 37 and 38) can host it by deciding if this VM’s
owner client can co-resident with owners of all other
VMs on servers (line 39). If any VM of the rest of
clients cannot be hosted by any server (lines 43 and
46), we jump out the loop, and the “Error” is returned
(line 50). Otherwise, we have successfully derived the
satisfactory new placement (line 51). This algorithm
achieves a much better scalability than CIRCUIT-
SAT.

6 System implementation

In this section, we introduce the implementation
of Driftor on OpenStack (2018), which is an open-
source cloud computing platform to deploy the IaaS
solutions. It supports three types of VM migration, of
which we choose non-live migration (OpenStack,

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 741

2018) for Driftor because it is migrating suspended
VMs. Our system is built according to the architecture
shown in Fig. 2, each of which is:

1. Defense decision engine
Decisions for switch and migration are periodi-

cally made in this module, which is implemented in
Nova-Scheduler at the controller node with roughly
800 lines of Python code. This is a natural imple-
mentation choice, since this engine needs a global
view of all machines and VMs. We modify and ex-
pand the code to implement this engine as a service at
the controller.

The defense decision engine works as follows:
At the beginning of each defense interval, this engine
queries OpenStack’s database to obtain all necessary
data, including mappings from the VM to host, and
VMs belong to the same multi-executor structure. The
latter information is initially stored by a synchroni-
zation engine, which creates a multi-executor struc-
ture for each newly coming VM. Both switch decision
and migration decision are delivered to the defense
operation engine.

2. Defense operation engine
This engine is responsible for enforcing defense

decision from the defense decision engine. For switch
operation, it first resumes the target VM through
Nova-Compute. When it is fully operational, it sends
a controlling message (consisting of switching order
and destination) for the proxy process of current VM
to switch the interaction with executors. Then it sus-
pends an old active executor through Nova-Compute.
For migration operation, it migrates a VM as desired.
This module is implemented with 104 lines of Python
code, and is placed at the controller node.

3. Proxy
Proxy is a single process responsible for for-

warding communication data between users and
serving executors. It is implemented by modifying
Nginx (2018), which is stable and efficient. The
modification consists of roughly 72 lines of C code.
The additional logic attached to Nginx is mainly the
communication with the defense operation engine.
Upon receiving switch order from that engine, it uses
an address included in the control message to modify
the target to redirect users’ requests, and responds to
inform whether the switch is successful or not.

Since proxy would not process any privacy in-
formation, we consider it as side-channel free. So, we

use common VMs to host the proxy code, and each
such VM will launch a new process as proxy when a
new VM is coming into the cloud. Each such process
is bound with a public address, which enables the
process to receive data originally sent to its corre-
sponding VM. Similarly, when a VM leaves, its proxy
process will be terminated.

4. Synchronization engine
This engine is responsible for synchronizing

states of different executors of the same VM. For
simplicity, current implementation places a shared
database which stores as much data of the executor as
possible. We adopt MariaDB (2018), which is the
default database used in OpenStack. We demand that
a service on the running executor will proactively and
frequently store and update new data into the database.
Similarly, when a new executor is activated, it will
first proactively update its own data inside a VM
according to the content of the database. We admit
that current implementation might affect the type of
service that a VM can provide, and leave expanding
generality of Driftor as future work.

Another function of this engine is to create a
multi-executor structure for a newly coming VM.
This engine replicates this VM to create two new
VMs that are totally the same as the coming one be-
fore launching it. Of course, a new proxy process is
created, as stated above. The client ID, VM ID, and
executor ID are all put into OpenStack’s database for
future use. Then a random executor is selected to be
first activated. This module is implemented at a con-
troller node with 283 lines of Python code.

7 Evaluation

We will answer the following questions here:
1. Is the switch decision algorithm scalable to

clouds of large deployment? How about the migration
decision algorithm?

2. How much does a single switch operation cost?
How about migration of a single VM? What is the
impact of these two operations on real-world cloud
applications?

3. How resilient is Driftor’s defense strategy
against information leakage attacks?

4. To what extent is Driftor effective in defend-
ing against practical side channels?

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 742

7.1 Performance analysis

7.1.1 Scalability tests

For scalability test, we set up workloads as fol-
lows: All clients’ VMs were assigned with the same
resource consumption for convenience. Each client
had two VMs, and each server, capable of hosting
four VMs, was filled with occupancy of 50%. The
number of clients was the same as that of servers, and
the number was increasing to simulate different sizes
of the problem. It should be noted that since a VM
was changed to NEXE executors in Driftor, the problem
size was enlarged to NEXE times, that is, NEXE timed
the number of clients and NEXE timed the number of
servers.

Fig. 5 shows the results of scalability tests for the
switch algorithm with different values of NEXE. To
reduce the influence of randomness, each line is
composed of average values of 100 samples. Fig. 5
shows that the cost of the switch algorithm with the
same NEXE almost remains unchanged with different
problem sizes. It is reasonable, because this algorithm
focuses on switching between executors, instead of
servers or clients. Besides, by comparing cases with
different NEXE, we find that there is no difference
about the costs; that is to say, NEXE has little or even
no impact on switch overhead. Nevertheless, even the
highest cost in Fig. 5 is less than 90 ns, which is neg-
ligible in our defense. Therefore, the switch algorithm
is quite scalable to large deployments.

To test the scalability of the migration algorithm,
we need to compare greedy-like heuristic, CIRCUIT-
SAT, and Nomad in <R, C> mode, which is the same
as Driftor. Our SAT solver is Lingeling (2018), which
does not have native binaries for Windows. Therefore,

we use Cygwin (Rackspace, 2018). Since Nomad’s
scalability is possibly influenced by migration budget,
we set it to 15%, which is the general setting of No-
mad. Fig. 6 shows the results of the scalability tests
for the migration algorithm. Similarly, each test has
been conducted five times, of which the average value
is adopted.

Fig. 6 shows that the proposed greedy-like heu-

ristic quite outperforms Nomad, which is much faster
than CIRCUIT-SAT. Since CIRCUIT-SAT is proved
to be NP-complete, adopting it as the migration deci-
sion algorithm is obviously intractable. The perfect
scalability of greedy-like heuristic lies in the fact that
its performance is influenced mainly by the number of
servers, but not the number of clients; therefore, its
size is only linear to the problem size. Besides, the
greedy-like algorithm gradually expands minimum
migration sets until a satisfactory migration strategy
is found. Therefore, since even the largest duration
(0.0235 s in Fig. 6) is negligible, Driftor’s migration
algorithm has been proved to be quite scalable to
large deployments.

A
ve

ra
ge

 r
un

tim
e

pe
r

ep
oc

h
(×

10
−

8
s)

Fig. 5 Scalability test of the switch decision algorithm

Fig. 6 Scalability test of the migration decision algo-
rithm: (a) problem size ranging from 10 to 50; (b) prob-
lem size ranging from 10 to 2000

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 743

7.1.2 Real defense overhead

To test the system in a real-world environment,
Driftor was deployed in a local cloud which was or-
ganized with OpenStack Pike. There were 30 servers
for Driftor tests, while 10 servers were enough for
other tests, each of which was equipped with
2.00-GHz 64-bit Intel® Xeon® CPU E5-2683 v3
processor with 56 cores, 32-GB RAM, 1-TB disks,
and four network interfaces with 1-Gb/s network
speed. KVM was selected as a unified hypervisor
which runs on Ubuntu 16.04 (Linux kernel v4.4.0).

1. Overhead of switch operation
Major overhead of switch operation lies in the

time of activating a suspended VM. Therefore, we
measure the duration of activation for three different
instances, and present the results in the second col-
umn of Table 5, where each data is the average of 100
tests. Experimental results show that the overhead of
switch operation is almost negligible. It should be
noted that the switch operation will not induce any
service downtime, because a new executor will be
activated to provide service before the old executor
has been suspended. New requests will be seamlessly
redirected to the new executor.

Table 5 Time overhead for activation and migration of
different types of instances

Type of instance SW
OPT (s) MIG

OPT (s)

Ubuntu-cloud (512-MB RAM,
1.5 GB)

1.04 2.12

Cirros (512-MB RAM, 132 MB) 0.77 0.41

Ubuntu (2048-MB RAM, 7 GB) 1.26 8.09

2. Overhead of migration operation
A suspended VM should be migrated by cold

migration, so the underlying network turns out to be a
bottleneck. We configure 1-Gb/s cable with 40-Gb/s
optical fiber connecting transmitting nodes (in our
case, between switches), and migrate suspended VMs
between servers. The third column in Table 5 shows
that the overhead of migration operation is
sustainable.

So far, we have practically verified Driftor’s
defense ability against information leakage, espe-
cially fast side-channel attacks (Liu et al., 2015) by

proving SW SW MIG MIG
DE OP DE OP ATT ,t T t T T which,

however, cannot be satisfied in Moon et al. (2015).
3. Impacts on cloud-based applications

To evaluate the influence of deploying Driftor
on real-world cloud workloads, we selected two
representative cloud applications: web-server and
MapReduce workloads.

(1) Web-server evaluation. Web service was
simulated with WikiBench (2018), a web hosting
benchmark that facilitated stress testing of systems
used to host web applications. Different from con-
ventional benchmarks which usually create a toy
application to deal with synthetic workloads,
WikiBench chose a real popular web application
(MediaWiki) with real data that was actual database
dumps of the Wikipedia website. In addition, it cre-
ated real web traffic by replaying recorded history
traffic to Wikipedia. We have downloaded the trace
file since September 2007, and modified it to make an
access rate of approximately 10 to 15 HTTP requests
per second.

In this experiment, the capability of each server
was fixed to four VMs, which was the same as that in
the scalability tests. The difference was that there
were four benign clients who had three server VMs
running the same as the WikiBench backend, one
proxy VM balancing the traffic between three servers,
and one user VM sending HTTP GET requests fol-
lowing the pattern of WikiBench trace file. We run
this experiment for 20 min (5 min per epoch) with
three types of security configurations: (a) normal
(without protection); (b) Nomad; (c) Driftor. Fig. 7
shows the distribution of these four clients’ through-
put (i.e., the number of completed requests per 10 s)
over the entire run, which is in the form of
box-and-whiskers plots with the 25th, 50th, and 75th
percentiles, as well as the minimum and 98th percen-
tile values.

Fig. 7 shows that the distribution is almost

identical in all four cases, indicating that both Driftor

Fig. 7 Distribution of throughput for WikiBench
workloads

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 744

and Nomad have limited impact on real cloud appli-
cations. Another observation is that Driftor performs
worse than in the case without any security enforce-
ment, because the lower end of its throughput distri-
bution is obviously smaller, so does Nomad. It can
also be observed that Driftor outperforms Nomad a bit
by comparing the lower end of their distributions. At
last, it can be found that all clients suffer from similar
performance degradation due to the security defense
operations (mainly switch and migration), indicating
the fact that Driftor is fair across different clients.

(2) MapReduce evaluation. To enforce the above
conclusions, we set a different workload as sorting
800-MB data using Hadoop Terasort. The experi-
mental setup was the same as that of webserver
evaluation except that the epoch duration was reduced
to 1 min and that each benign client was equipped
with five VMs, of which one was master and four
were slaves. This time we focused on the job com-
pletion time, which is collected and displayed in
Fig. 8.

By comparing completion time with different

security setups in Fig. 8, we can derive almost the
same observations as that in webserver evaluation: (1)
Normal setup outperforms Driftor, which achieves
better results than Nomad; (2) Two security configu-
rations bring about only a little influence on the
cloud-based web application.

To sum up, both tests on real-world applications
have demonstrated that Driftor induces little impact
on cloud-based applications. This is an advantage due
to the multi-executor structure of the VM in Driftor,
because switch operation happens in a way that the
service provider will be seamlessly switched to a

newly activated executor when it is fully activated
before the old executor has been suspended. There-
fore, whether Driftor can be deployed in cloud de-
pends on its security improvements.

7.2 Security analysis

7.2.1 Information leakage

To evaluate our defense against information
leakage, we adopted the same setting as that of
scalability tests in Section 7.1.1. Additional settings
included the number of clients (and servers) being 20
and the migration budget being 15%. We compared
the per-client leakages of Driftor, CIRCUIT-SAT, and
Nomad in <R, C> mode. Fig. 9 presents the cumula-
tive distribution function (CDF) of inter-client in-
formation leakage measured over five epochs with a
randomly generated initial placement with three dif-
ferent defense strategies. Fig. 9 shows that Nomad
slightly outperforms both Driftor and CIRCUIT-SAT,
while the latter two achieve almost the same resili-
ence against information leakage. This is because
Driftor focuses on defense against fast side-channel

attacks, which requires a very small value of MIG
DE .t

Therefore, optimization for overall information
leakage is more or less sacrificed. Luckily, this dis-
advantage is limited, as shown in Fig. 9. With regard
to the problem of fairness across different client pairs,
we figure out that all defense strategies achieve sim-
ilar satisfactory fairness since even the 95th percentile
of the distribution is relatively low (Fig. 9).

7.2.2 Practical side-channel attacks

To verify Driftor’s capability of defense against
real-world side channels in cloud, we adopted the

140

160

180

200

220

240

260 Normal Nomad Driftor

Client
Client 1 Client 2 Client 3 Client 4

Fig. 8 Distribution of job completion time for Hadoop
workloads with three different defense strategies

Fig. 9 Cumulative distribution function of client-pair
information leakage under different defense strategies

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 745

same experimental settings as that in Section 7.1.2.
Attackers were simulated by randomly selected cli-
ents by conducting LLC-based Prime+Probe (Liu
et al., 2015) and a practical fast side channel which
had a wide scope of application. Corresponding vic-
tims were decrypting a short file encrypted with a
3072-bit ElGamal public key, of which a 403-bit se-
cret was the real target. GnuPG 1.4.18 was used in the
decryption. The sliding-window exponentiation al-
gorithm will be executed during decryption. This
attack took about 12 min of online LLC-based
Prime+Probe.

To reduce the impacts of multiple types of noise,
each selected client can act as only one of roles, and
all of his/her executors in their live cycles were car-
rying out attacks or performing vulnerable operations
according to the roles. We randomly selected attack-
ers and victims (Table 6). Numbers in the first row
refer to attacker’s client ID, while the numbers in the
first column refer to victim’s client ID. This experi-
ment lasted about 60 min, which was divided into 30
epochs or defense intervals as 2 min per epoch; thus,
Driftor allowed two clients to co-locate for at most
five epochs. This time was selected to provide enough
time for possible side channels. Each pair of attacker-
victim corresponded to an entry consisting of two
values. The left number is the (active) co-residency
time of these two clients, and the right number is an
indicator showing whether the corresponding attack is
successful (that is, an effective side-channel attack
has been completed).

Table 6 Results of Driftor’s defense against real-world
side-channel attacks

Victim’s
client ID

Attacker’s client ID

1 10 14 17

3 1 0 4 0 5 0 0 0

8 0 0 0 0 2 0 3 0

16 3 0 0 0 0 0 0 0

18 2 0 4 0 0 0 1 0

From Table 6, we can observe that there is no
successful attack between any pair of clients in 30
epochs, because even the longest co-residency time
that occurs between clients 3 and 10 is only five
epochs, which equals 10 min. It is definitely less than
the necessary time for a complete side channel. An-
other observation is that Table 6 resembles a sparse
matrix with a lot of zeros, indicating a large margin of

defense space. It shows that a lot of client pairs can be
migrated to the same server to achieve co-residency
even without single tenancy after 30 epochs. This
benefit, that is, co-residency is slowly growing, is
another advantage introduced by the multi-executor
structure of VM and the regulation. To sum up,
Driftor is capable of well defending against practical
side channels.

7.2.3 Pure switch vs. Driftor

To demonstrate the necessity of executor migra-
tion in Driftor, we compared a strategy of pure switch
with Driftor. We used totally the same experimental
settings, including a same initial placement to make
these two results comparable.

Table 7 shows the experimental results of tenant
oriented pair-wise co-residency epochs with a pure
switch strategy. Although most of the co-residency
time is zero, there are two special client pairs, of
which client pairs <3, 14> co-exists for seven epochs,
and <10, 18> co-exists for six epochs. They are both
larger than five epochs, which is the threshold time
for an effective attack. Besides, other non-zero pairs
are relatively large compared with the most of the
entries in Table 6, indicating that migration can help
distribute the co-residency time over different client
pairs. Therefore, migration is quite necessary to
complement the defense ability of the executor
switch.

Table 7 Results of pure switch defense against real-
world side-channel attacks

Victim’s
client ID

Attacker’s client ID

1 10 14 17

3 0 0 4 0 7 0 0 0

8 0 0 0 0 0 0 4 0

16 3 0 0 0 0 0 0 0

18 3 0 6 0 0 0 0 0

8 Conclusions and future work

In this study, we have proposed Driftor, a

side-channel resistant cloud system which mitigates
information leakage attacks by creating a multi-
executor structure for each VM and switching and
migrating those executors. First of all, we have set up
a practical unified adversary model, which focuses on
the concept of effective side-channel attacks. To

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 746

defend against fast side channels that are beyond the
capability of current migration-based approaches, we
have proposed a new cloud system where we set up a
multi-executor structure for each VM and switch the
only active state among executors on different servers
to simulate the defensive effect which is similar to
that of migration. Besides, real migration of executors
was enabled to enlarge the scope of switch, thus in-
creasing the resilience against side channels. Instead
of solving this satisfiability problem of migration
with an intractable CIRCUIT-SAT, we have proposed
a greedy-like algorithm which searches viable solu-
tions by gradually expanding the size of solutions
from limited has-to-migrate executors. Experimental
results showed that Driftor can not only defend
against practical fast side-channel attacks, but also
introduce reasonable impact on real-world cloud
applications.

Driftor has the following two limitations: (1)
The number of necessary servers is proportional to
that of executors per VM, thus making defense cost
multiplied; (2) Synchronization between executors
becomes difficult if there are too many running states
generated during a defense interval. For the first lim-
itation, we have observed that a suspended VM con-
sumes only limited disk resource, which is the least
influential factor when defining a server’s capability
to host VMs. In other words, a suspended VM may
not be counted as a resource-consuming entity which
costs the server’s slot. Therefore, we can place many
more VMs on a server than its defined capability; thus,
the defense cost might be effectively reduced. The
second limitation is quite tough since it exists even in
synchronizing states between two running instances,
let alone the VM being suspended in our case. Maybe
we can resort to a new computing entity whose run-
ning states can be sliced to fine-grained granularity,
so that each such slice can be used for an immediate
state recovery, or the suspended VM can be periodi-
cally activated to keep its states up-to-date, thus re-
ducing the time to keep synchronization.

References
Almeida JB, Barbosa M, Barthe G, et al., 2016. Verifiable

side-channel security of cryptographic implementations:
constant-time MEE-CBC. 23rd Int Conf on Fast Software
Encryption, p.163-184.

 https://doi.org/10.1007/978-3-662-52993-5_9
Amazon EC2, 2018. Amazon EC2.

https://amazonaws-china.com/cn/events/ec2/?sc_channel
=ps&sc_campaign=inbounddg&sc_publisher=baidu&sc
_detail={ec2%20amazon}&sc_country=cn&sc_geo=chn
a&sc_category=ec2&sc_segment={AWS%20EC2|brand
}&sc_outcome=field&trkCampaign=inbounddg_ec2&
trk=Baidu|AWS%20EC2|brand|ec2%20amazon&audien
ce=205636 [Accessed on Aug. 4, 2018].

Bosman E, Razavi K, Bos H, et al., 2016. Dedup est Machina:
memory deduplication as an advanced exploitation vector.
IEEE Symp on Security and Privacy, p.987-1004.

 https://doi.org/10.1109/SP.2016.63
Douceur JR, 2002. The Sybil attack. 1st Int Workshop on

Peer-to-Peer Systems, p.251-260.
 https://doi.org/10.1007/3-540-45748-8_24
Ezhilchelvan PD, Mitrani I, 2017. Evaluating the probability

of malicious co-residency in public clouds. IEEE Trans
Cloud Comput, 5(3):420-427.

 https://doi.org/10.1109/TCC.2015.2451633
Feng DG, Zhang M, Zhang Y, et al., 2011. Study on cloud

computing security. J Softw, 22(1):71-83 (in Chinese).
 https://doi.org/10.3724/SP.J.1001.2011.03958
Garey MR, Johnson DS, 1979. Computers and intractability: a

guide to the theory of NP-completeness. W.H. Freeman &
Co., New York, NY, USA, p.498-500.

 https://doi.org/10.2307/2273574
Gruss D, Maurice C, Wagner K, et al., 2016. Flush+Flush: a

fast and stealthy cache attack. Int Conf on Detection of
Intrusions and Malware, and Vulnerability Assessment,
p.279-299.
https://doi.org/10.1007/978-3-319-40667-1_14

Han Y, Alpcan T, Chan J, et al., 2016. A game theoretical
approach to defend against co-resident attacks in cloud
computing: preventing co-residence using semi-
supervised learning. IEEE Trans Inform Forens Secur,
11(3):556-570.
https://doi.org/10.1109/TIFS.2015.2505680

Han Y, Chan J, Alpcan T, et al., 2017. Using virtual machine
allocation policies to defend against co-resident attacks in
cloud computing. IEEE Trans Depend Secur Comput,
14(1):95-108.
https://doi.org/10.1109/TDSC.2015.2429132

Hu HC, Wu JX, Wang ZP, et al., 2018. Mimic defense: a
designed-in cybersecurity defense framework. IET In-
form Secur, 12(3):226-237.

 https://doi.org/10.1049/iet-ifs.2017.0086
Irazoqui G, Eisenbarth T, Sunar B, 2015. S$A: a shared cache

attack that works across cores and defies VM sandboxing
-- and its application to AES. IEEE Symp on Security and
Privacy, p.591-604. https://doi.org/10.1109/SP.2015.42

Kämäräinen T, Shan YQ, Siekkinen M, et al., 2015. Virtual
machines vs. containers in cloud gaming systems. Int
Workshop on Network and Systems Support for Games,

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 747

p.1-6. https://doi.org/10.1109/NetGames.2015.7382987
Kim T, Peinado M, Mainar-Ruiz G, 2012. STEALTHMEM:

system-level protection against cache-based side channel
attacks in the cloud. 21st USENIX Conf on Security Symp,
p.1-11.

Kwiat L, Kamhoua CA, Kwiat KA, et al., 2015. Security-
aware virtual machine allocation in the cloud: a game
theoretic approach. Proc IEEE 8th Int Conf on Cloud
Computing, p.556-563.
https://doi.org/10.1109/CLOUD.2015.80

Li H, Ota K, Dong MX, et al., 2017. Multimedia processing
pricing strategy in GPU-accelerated cloud computing.
IEEE Trans Cloud Comput, p.1.
https://doi.org/10.1109/TCC.2017.2672554

Li H, Ota K, Dong MX, 2018. Virtual network recognition and
optimization in SDN-enabled cloud environment. IEEE
Trans Cloud Comput, p.1.

 https://doi.org/10.1109/TCC.2018.2871118
Li P, Gao DB, Reiter MK, 2014. StopWatch: a cloud archi-

tecture for timing channel mitigation. ACM Trans Inform
Syst Secur, 17(2):28. https://doi.org/10.1145/2670940

Lingeling, 2018. Lingeling, Plingeling and Treengeling.
http://fmv.jku.at/lingeling/ [Accessed on Aug. 4, 2018].

Liu FF, Lee RB, 2014. Random fill cache architecture. 47th
Annual IEEE/ACM Int Symp on Microarchitecture,
p.203-215. https://doi.org/10.1109/MICRO.2014.28

Liu FF, Yarom Y, Ge Q, et al., 2015. Last-level cache side-
channel attacks are practical. IEEE Symp on Security and
Privacy, p.605-622. https://doi.org/10.1109/SP.2015.43

MariaDB, 2018. The MariaDB Foundation–Supporting Con-
tinuity and Open Collaboration in the MariaDB Ecosys-
tem. https://mariadb.org [Accessed on Aug. 4, 2018].

Microsoft Azure, 2018. Microsoft Azure.
 https://azure.microsoft.com/zh-cn/ [Accessed on Aug. 4,

2018].
Migrate Instances, 2018. Migrate Instances.

https://docs.openstack.org/nova/rocky/admin/migration.h
tml [Accessed on Aug. 4, 2018].

Moon SJ, Sekar V, Reiter MK, 2015. Nomad: mitigating
arbitrary cloud side channels via provider-assisted mi-
gration. 22nd ACM SIGSAC Conf on Computer and
Communications Security, p.1595-1606.
https://doi.org/10.1145/2810103.2813706

Moscibroda T, Mutlu O, 2007. Memory performance attacks:
denial of memory service in multi-core systems. Proc 16th
USENIX Security Symp, Article 18.

Nginx, 2018. Nginx News.
http://nginx.org/ [Accessed on Aug. 4, 2018].

OpenStack, 2018. The Open Infrastructure Summit CFP is
Now Open!
https://www.openstack.org/ [Accessed on Aug. 4, 2018].

Pattuk E, Kantarcioglu M, Lin ZQ, et al., 2014. Preventing

cryptographic key leakage in cloud virtual machines. Proc
23rd USENIX Conf on Security Symp, p.703-718.

Rackspace, 2018. Transform the Way You Do Business.
 https://www.rackspace.com/ [Accessed on Aug. 4, 2018].
Raj H, Nathuji R, Singh A, et al., 2009. Resource management

for isolation enhanced cloud services. Proc ACM Work-
shop on Cloud Computing Security, p.77-84.

 https://doi.org/10.1145/1655008.1655019
Ristenpart T, Tromer E, Shacham H, et al., 2009. Hey, you, get

off of my cloud: exploring information leakage in
third-party compute clouds. Proc 16th ACM Conf on
Computer and Communications Security, p.199-212.

 https://doi.org/10.1145/1653662.1653687
Shyamasundar RK, 1996. Introduction to algorithms. Reso-

nance, 1(9):14-24. https://doi.org/10.1007/BF02837777
Thompson M, Evans N, Kisekka V, 2014. Multiple OS rota-

tional environment an implemented moving target de-
fense. 7th Int Symp on Resilient Control Systems, p.1-6.

 https://doi.org/10.1109/ISRCS.2014.6900086
Varadarajan V, Ristenpart T, Swift M, 2014. Scheduler-based

defenses against cross-VM side-channels. Proc 23rd
USENIX Conf on Security Symp, p.687-702.

Vattikonda BC, Das S, Shacham H, 2011. Eliminating fine
grained timers in Xen. 3rd ACM Workshop on Cloud
Computing Security Workshop, p.41-46.
https://doi.org/10.1145/2046660.2046671

Wang HX, Li F, Chen SQ, 2016. Towards cost-effective
moving target defense against DDoS and covert channel
attacks. Proc ACM Workshop on Moving Target Defense,
p.15-25. https://doi.org/10.1145/2995272.2995281

Wang ZH, Lee RB, 2007. New cache designs for thwarting
software cache-based side channel attacks. ACM
SIGARCH Comput Arch News, 35(2):494-505.
https://doi.org/10.1145/1273440.1250723

Wang ZH, Lee RB, 2008. A novel cache architecture with
enhanced performance and security. 41st IEEE/ACM Int
Symp on Microarchitecture, p.83-93.
https://doi.org/10.1109/MICRO.2008.4771781

WikiBench, 2018. WikiBench.
http://www.wikibench.eu/ [Accessed on Aug. 4, 2018].

Wu J, Dong MX, Ota K, et al., 2017. FCSS: fog computing
based content-aware filtering for security services in in-
formation centric social networks. IEEE Trans Emerg
Top Comput, p.1.
https://doi.org/10.1109/TETC.2017.2747158

Wu J, Dong MX, Ota K, et al., 2018. Big data analysis-based
secure cluster management for optimized control plane in
software-defined networks. IEEE Trans Netw Serv
Manag, 15(1):27-38.
https://doi.org/10.1109/TNSM.2018.2799000

Wu JX, 2016. Research on cyber mimic defense. J Cyber
Secur, 1(4):1-10 (in Chinese). https://doi.org/10.19363/

Yang et al. / Front Inform Technol Electron Eng 2019 20(5):731-748 748

j.cnki.cn10-1380/tn.2016.04.001
Yarom Y, Falkner K, 2014. FLUSH+RELOAD: a high reso-

lution, low noise, L3 cache side-channel attack. Proc 23rd
USENIX Conf on Security Symp, p.719-732.

Zhang YL, Li M, Bai K, et al., 2012. Incentive compatible
moving target defense against VM-colocation attacks in
clouds. In: Gritzalis D, Furnell S, Theoharidou M (Eds.),
Information Security and Privacy Research. Springer
Berlin Heidelberg, Germany, p.388-399.

 https://doi.org/10.1007/978-3-642-30436-1_32
Zhang YQ, Reiter MK, 2013. Düppel: retrofitting commodity

operating systems to mitigate cache side channels in the

cloud. Proc ACM SIGSAC Conf on Computer & Com-
munications Security, p.827-838.

 https://doi.org/10.1145/2508859.2516741
Zhang YQ, Juels A, Reiter MK, et al., 2012. Cross-VM side

channels and their use to extract private keys. Proc ACM
Conf on Computer and Communications Security, p.305-
316.

 https://doi.org/10.1145/2382196.2382230
Zhang YQ, Juels A, Reiter MK, et al., 2014. Cross-tenant side-

channel attacks in PaaS clouds. Proc ACM SIGSAC Conf
on Computer and Communications Security, p.990-1003.

 https://doi.org/10.1145/2660267.2660356

