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Abstract: A dynamic quantitative theory and measurement of power or dominance structures are proposed. Such power structures 
are represented as directed networks. A graph somewhat similar to the Lorenz curve for inequality measurement is introduced. The 
changes in the graph resulting from network dynamics are studied. Dynamics are operationalized in terms of added nodes and links. 
Study of dynamic aspects of networks is essential for potential applications in many fields such as business management, politics, 
and social interactions. As such, we provide examples of a dominance structure in a directed, acyclic network. We calculate the 
change in the D-measure, which is a measure expressing the degree of dominance in a network when nodes are added to an existing 
simple network. 
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1  Introduction  
 

The universe is often viewed through the duali-
ties of high and low, left and right, yin and yang, or 
dominance and subordination. Yet, each of these two 
opposing elements is not usually present in equal 
amounts. We explore how these notions can be ex-
pressed in mathematical terms using zero-sum arrays 
(Liu et al., 2017). Specifically, these zero-sum arrays 
will be used to study dominance and subordination.  

Network theory is an essential part of contem-
porary science.  Biological networks, such as protein- 
protein networks, computer networks for resource 
sharing or providing connectivity, social networks, 

business networks, and scientific collaboration net-
works are among the best known networks. Our point 
of focus is the study of dominance, defined in detail 
further on in the paper. Scientific disciplines benefit if 
networks representing (part of) the discipline are 
studied from many angles, with dominance and sub-
ordination being two of many possible aspects. Be-
cause science is a formal and an informal structure, it 
also includes dominance structures, which may change, 
for instance, when top scientists change affiliations. 
An interesting example of a power structure was pro-
vided in a criminal or dark network (Toth et al., 2013). 

Power structures are ubiquitous. Blogs and in-
formation systems are modern forms of social power 
(Wei, 2009; Liu et al., 2013; Lu et al., 2015; Nord et 
al., 2016). Politics often revolves around having or 
not having the power to change society. Sales (1991), 
for instance, studied the relation between the state and 
the society to which it is linked in terms of power 
structures. Universities and systems of education also 
have been described as power structures (van de 
Graaff et al., 1978; Clark, 1987). Power structures 
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among academics may influence scholarly impact in 
research (Truex et al., 2009). Empowerment of 
women is another topic that has lately received spe-
cial attention (Gutiérrez et al., 2000; Pacardo- 
Mercado, 2013; Oreglia and Srinivasan, 2016). Yet, 
the majority of these studies are qualitative in nature. 
Hence, a quantitative framework for measuring 
power or dominance may be of general interest. This 
has been provided in Liu et al. (2017). In this earlier 
work we discussed local and global dominance as 
special network structures.  

In this new investigation we discuss dynamic 
aspects of dominance structures by adding nodes and 
links to a network. Studying dynamic aspects of 
networks is essential for potential applications across 
various fields. In business management, for instance, 
employees get promoted or receive new responsibili-
ties, possibly leading to a changed power structure in 
the organization. This happens on a much larger scale 
when two companies merge, where tensions may also 
emerge as new boundaries are formed. These aspects 
are not studied in this paper, but we refer to Mont-
gomery and Oliver (2007) where, among other things, 
boundary-spanning activities were studied in relation 
to team-based structures, network organizations,  
inter-organizational alliances, and professional– 
organizational integration. Dominance relations also 
abound in the animal kingdom. The formation of such 
relations (pecking orders) among chickens was stud-
ied in Chase (1982), while Shizuka and McDonald 
(2012), in a clearly quantitative study, provided a 
mathematical/statistical approach to the organization 
of dominance relations in a network context. In our 
earlier work (Liu et al., 2017), we have already made 
the following observation related to a changing situ-
ation: adding one extra subordinate node, i.e., a node 
with a negative flow, to a maximum D-graph leads to 
a network with a higher dominance, globally as well 
as locally. We reiterate that in the previous study and 
also here the focus of our attention is directed at 
structures, not elements or single nodes. This work is 
an extension of Liu and Rousseau (2017). 

 
 

2  Zero-sum arrays and D-curves 
 
In this section we briefly recall the definitions 

and main results in Liu et al. (2017) as these will be 

necessary for understanding the developments pre-
sented in this paper. 

2.1  Definition of arrays 

If X is a (finite) array, i.e., an N-tuple, then the ith 
element of X is denoted as (X)i=xi, where xi is a real 
number. Components of any array used in this work 
are assumed to be ranked in decreasing order. If X is 
an array then −X, referred to as the opposite array, 
denotes the array where every component xi is re-
placed by its opposite, namely −xi. Also, the compo-
nents of −X are ranked in decreasing order. After 
re-ranking, we obtain the following relation: 
(−X)i=(X)N−i=xN−i. 
Example 1    If X=(5, 1, −7), then −X=(7, −1, −5). 

2.2  Definition of a zero-sum array 

If X=(x1, x2, …, xN) is a real-valued array such 
that 

1
0,


 N

ii
x  then X is called a zero-sum array. 

The set of all zero-sum arrays is denoted as Z; its 
subset of arrays of length N, namely Z∩N, is denoted 
as ZN.  

2.3  Construction of a pseudo-Lorenz curve for 
zero-sum arrays 

Supposing that X is a zero-sum array, we set 
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As in Liu et al. (2017), we assume that X is not 

the trivial zero array; hence, I0(X) is not equal to the 
set of all natural numbers from 1 to N. This require-
ment implies that sets I+(X) and I−(X) are always 
non-empty, but they may have different numbers of 
elements. It also follows that N>1. We simply write I+, 
I0, or I− when it is clear about which array we are 
talking.  

Note that .
  

  i ii I i I
x x  We next set 

ii I
x


 
 and i=1, 2, …, N: ai=xi/Σ+. With each 

zero-sum array X, we associate a corresponding 
A-array, denoted as AX, with AX=(a1, a2, …, aN). 
Clearly, AX is also a zero-sum array. Furthermore, in 
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our study we need the array QX, with 

1
( ) .


  j

j j kk
q aXQ  Clearly, qN, the last element 

in QX, is equal to two. 

2.4  Construction of a D-curve 

D-curves of a zero-sum array X, where symbol D 
stands for dominance, were introduced in Liu et al. 
(2017). Yet, for the sake of the reader we recall its 
construction: a D-curve of a zero-sum array X is de-
fined as the polygonal line connecting the points:  
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k
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q q

N N N

N I k
q
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where iI+ and kI−. 

The above definition is actually the description 
of a graph. Described as a function, this graph is de-
noted as DX(t), t[0, 1]. We see that a D-curve is 
partly concave (the first part), and partly convex (the 
last part), as illustrated in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
If |I+|≠N−|I−|, where |·| denotes the number of 

elements in a set, then the D-curve has a horizontal 
part in the middle, at a vertical value equal to one.  
Example 2    The D-curve of (4, 2, 0, 0, 0, −1, −1, −4), 
N=8, has an A-array (array of a-values) equal to 
A=(4/6, 2/6, 0, 0, 0, −1/6, −1/6, −4/6). Hence, it 
connects points with ordinates (0, 4/6, 6/6, 6/6, 6/6, 
6/6, 7/6, 8/6, 12/6=2). Fig. 1 shows this D-curve. 

If n0=|I+|, then it follows that DX(n0/N)=1. In the 
example of Fig. 1, n0=2 and we see that the point with 

abscissa 2/8 indeed has an ordinate equal to 1. 

2.5  Definition of equivalent zero-sum arrays 

Zero-sum arrays that have the same D-curve are 
said to be equivalent. Arrays (4, 2, 0, 0, −1, −5), (8, 4, 
0, 0, −2, −10), and (4/6, 2/6, 0, 0, −1/6, −5/6) are 
examples of equivalent arrays. Equivalent zero-sum 
arrays of length N all have the same A-array. Addi-
tionally, arrays such as (3, 2, 0, −5) and (3, 3, 2, 2, 0, 
0, −5, −5) are equivalent zero-sum arrays, but with 
different lengths. 

2.6  Partial orders for zero-sum arrays 

Definition 1 (Dominance relation ≤D in Z)    Let X 
and Y be zero-sum arrays, where the length of the 
arrays can be different. Then we say that X is 
D-smaller than Y, denoted as X≤DY (or Y≥DX) if, for 
each t[0, 1], DX(t)≤DY(t). X is strictly D-smaller 
than Y, denoted as X<DY if, for each t[0, 1], 
DX(t)≤DY(t) and there is at least one point t0 (and 
hence infinitely many) where DX(t0)<DY(t0).  

When X≤DY, it is clear that the D-curve of X lies 
completely below the D-curve of Y. It is now obvious 
that the relation ≤D determines a partial order in the set 
of all equivalence classes of zero-sum arrays. This 
observation can be written formally as 

 
D if and only if [0,1] : D ( ) D ( ,)X YX Y t t t     

if and only if [0,1] : D ( ) D ( ).X YX Y t t t   

 
As the dominance relation ≤D is only a partial 

order, some arrays cannot be compared. For this 
reason they are said to be intrinsically incomparable. 
When discussing concrete dominance structures in 
this paper, we always mean the partially ordered set 
determined by the relation ≤D. Next, we recall the 
following result, which will be needed further on: 
Proposition 1 (Liu et al., 2017)    If X≤DY, then 
−Y≤D−X. 

2.7  Maximum and minimum D-curves 

2.7.1  Maximum D-curves 

For a fixed N, the maximum D-curve occurs 
when the origin (0, 0) is connected to the point with 
coordinates (1/N, 1), and then further linearly con-
nected to the endpoint (1, 2). This D-curve corre-
sponds to all zero-sum arrays of the form X=(s, −t, …, 

Fig. 1  D-curve of array (4, 2, 0, 0, 0, −1, −1, −4) 
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−t), with s, t>0 and s=(N−1)t. Clearly, considering N 
as a variable, the line y=x+1, connecting points (0, 1) 
and (1, 2), is an upper bound for all these D-maximum 
N-curves. 

2.7.2  Minimum D-curves 

For a fixed N, a minimum D-curve is obtained by 
linearly connecting the origin (0, 0) to the point with 
coordinates ((N−1)/N, 1), and then further to point  
(1, 2). This minimum D-curve corresponds to all 
arrays of the form Y=(u, …, u, −v), with u, v>0 and 
v=(N−1)u. If X is a maximum N-array, then −X is a 
minimum one. The line y=x, connecting the origin and 
point (1, 1), is a lower bound for all these minimum 
D-curves.  

In Proposition 2, we note the first dynamic  
aspect: 
Proposition 2    If N increases, then the maximum 
D-curve also becomes larger in the partial order of 
D-curves. Similarly, the minimum D-curves become 
smaller. 

2.8  A measure respecting the dominance relation 
≤D in Z 

From the previous constructions and definitions 
we note that the area between the D-curve and the line 
y=x respects the D partial order. This area is denoted 
as ARD(X). For any zero-sum array this area takes 
values on the interval [0, 1]. We refer to the corre-
sponding numerical value as the D-measure: it is 
denoted as ARD and is calculated by the following 
formula: 

 

D
1

1 2AR ( ) ,
2

X
N

i
i

N
q

N N


   

 
where the q-values are the components of the array 
QX defined earlier. 
Example 3    For X=(5, 2, 0, −3, −4), the D-measure is 
obtained as follows: 

 

D
1 5 7 7 10 14 7 37AR ( ) .
5 7 7 7 7 7 10 70
        
 

X  

 
We already know that the maximum D-curves cor-
respond to arrays of the form (s, −t, …, −t), with s, t>0. 
They have D-measures equal to (N−1)/N. The mini-

mum D-curves correspond to arrays such as Y=(u, …, 
u, −v), u, v>0. They have D-measures equal to 1/N. 
For a fixed N, the minimum D-curves are opposites of 
the maximum D-curves. Clearly, their D-measures 
sum to 1.  

2.9  Transfer property for D-curves 

Recall that Dalton’s transfer property (Dalton, 
1920) states that if one takes from a poorer item 
(person or household) and gives to a richer one, ine-
quality increases. Obviously, the transfer principle 
does not hold for D-curves. If one takes a positive 
amount from a negative item and gives to one that is 
less negative, but still stays non-positive, this opera-
tion decreases the D-curve and hence the D-measure 
decreases too. We refer to the result of such a transfer 
as an opposite transfer principle. 

2.10  Applications to directed networks 

We will use D-curves to measure the dominance 
power in an acyclic or loopless graph. 

The number of edges in digraph G with node j as 
their initial (terminal) node is called the out-degree 
(in-degree) of node j. These numbers are denoted as 

( ). 
j j   Now we put   j j j    (Egghe and 

Rousseau, 2004). Parameter αj characterizes the flow 
through node j. More precisely, if it is positive, there 
are more edges leaving node j than reaching it. The 
number of edges in G, denoted as ε, is related to the 
degrees of its nodes by the following equation: 

 

 or 0,j j jj j j
          

 
where the summation is over all nodes of graph G. 
Because sequence (αj)j is a zero-sum array, we can 
apply D-theory to it. When using sequence (αj)j, this 
theory will be referred to as a local dominance theory, 
or LDT for short. The number αj is called a local flow 
number or simply the local flow, and the corre-
sponding zero-sum array is called a local flow array. 
In this study, we will use the terminology of local 
flow to contrast it to the global flow. 

We further consider a global dominance theory, 
or GDT for short, where we use arrays of the form 
Σ=(σ1, σ2, …, σN), defined as follows: 

 

.  i i i    
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Here, 
i  denotes the sum of the lengths of the chains 

starting from node i, and 
i  denotes the sum of the 

lengths of all chains ending at node i.  
Definition 2    A local source of a digraph is a node 
having in-degree zero, and a strictly positive 
out-degree. 

If a local source can reach any other node in a 
digraph, it is called a network source.  
Definition 3    A local sink of a digraph is a node 
having out-degree zero, and a strictly positive 
in-degree. 

Before continuing our discussion we recall the 
following definitions: 
Definition 4 (Dominance nodes)    A node with the 
highest global flow in a D-graph is called a global 
dominance node; a node with the highest local flow in 
a D-graph is called a local dominance node. 

Next we study the graphs for the maximum and 
minimum D-curves in LDT and GDT. 
Proposition 3   For a fixed N, the graph shown in  
Fig. 2 yields the only graph corresponding to a 
maximum global D-array. 
 

 
 
 
 
 
 
 
 
 
Proposition 4    The maximum D-graph for LDT is 
the same as that for GDT. 
Proposition 5    For a fixed N, the graph shown in  
Fig. 3 yields the only graph corresponding to a 
minimum D-array. 
 
 
 
 
 
 
 

 
Note that the minimum curves can be obtained 

by reversing the direction of the arrows of the max-
imum curves. Of course, the maximum and minimum 

curves are extreme cases and situations in between are 
more common.  

2.11  Terminology and meaning: hierarchies ver-
sus power (dominance) 

In this short subsection we want to explain our 
terminology. Consider, for instance, the digraph 
shown in Fig. 2. There is not much hierarchical 
structure here, but the digraph reflects a very strong 
power structure: that of one ruler and many equally 
powerless subordinates.  

In applications of D-curves to institutes, research 
groups, or scientists as nodes, we want to gauge the 
extant power structure. The greater the inequality 
among the positive nodes, the more powerful the 
order relation. However, it is also true that the more 
even the negative nodes (in the sense of evenness as 
defined in Nijssen et al. (1998)), the more powerful 
the extant order structure.  

 
 

3  Dynamic aspects of networks and proper-
ties of D-curves 

3.1  Modeling: the need for examples and case 
studies 

When a new measure is proposed, one usually 
derives theoretical properties and explains the possi-
ble benefits of using such a measure. This was done in 
Liu et al. (2017). Studying dynamic aspects of net-
works and their corresponding dominance measures 
is essential for potential applications in fields such as 
business management, politics, and social interac-
tions. We already mentioned examples in politics 
(Sales, 1991), and universities and systems of educa-
tion (van de Graaff et al., 1978; Clark, 1987). We 
further recalled the important case of changing power 
structures when two companies merge.  

3.2  Dynamic series of networks 

We already know that adding a node in a digraph 
which dominates the network source makes this new 
node the network source; hence, it becomes a global 
dominance node. If the network is a linear structure, 
then the new node also becomes the local dominance 
node. 

Linear structures are clear hierarchies, but they 
are not interesting in the context of power structures: 

Fig. 2  An example of an N-node graph corresponding to 
a maximum D-curve (N=5)  

Fig. 3  A graph corresponding to the minimum (local and 
global) D-curve (N=7) 
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they are always intrinsically incomparable, locally as 
well as globally, and because of their symmetry, their 
D-measures are always equal to 0.5. 

Next we consider the dynamic series of networks 
as illustrated in Fig. 4. 
 
 
 
 
 
 
 
 
 
 

Except for the last graph, there are always two 
nodes with a strictly positive flow. For a given N, such 
local arrays have the following structure, 


( 3) times ( 1) times

,1, 0,...,0 , 1,..., 1
N K K

K
  

 
  
 
 

  for K=1 to N−3. In the 

example shown in Fig. 4, N=6 and these arrays are  
(1, 1, 0, 0, −1, −1), (2, 1, 0, −1, −1, −1), and (3, 1, −1, 
−1, −1, −1). To these, we add the array (5, −1, −1, −1, 
−1, −1). The D-measures for these arrays are 0.5, 
0.611, 0.708, and the largest one has a D-value equal 
to 0.833 (namely 5/6). In all cases, these arrays clearly 
reflect an increasing dominance structure for K=1 to 
N−3. The last array in the row, being a maximum 
D-array, is the largest in the dominance structure.  

Adding an arrow from a node with positive flow 
to another node with strictly positive flow, but with a 
flow value which is at most equal to that of the first 
one, increases the dominance structure. This result 
holds, however, only for the local theory. It follows 
from the fact that the transfer principle holds among 
nodes with a strictly positive flow. Indeed, adding a 
link leads to a local increase of one for the node from 
which the links start, and reduces the flow value by 
one for the node in which the link terminates. An 
example is provided in Figs. 5 and 6. 

The network shown in Fig. 5 has a local D-array 
(3, 3, 2, −1, −1, −1, −1, −1, −1, −2), with a D-measure 
equal to 0.675. If we add an arrow from node b to 
node d, we obtain the local D-array (4, 3, 1, −1, −1, −1, 
−1, −1, −1, −2), with a D-measure equal to 0.7. Local 
D-curves for the original situation as well as for the 
new one are shown in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In general, however, adding an arrow changes 
the global D-curve in an unpredictable way. The 
global D-array of the network shown in Fig. 5 is (17, 3, 
2, −1, −3, −3, −3, −3, −3, −6), with a D-measure of 0.7. 
Node b has a global flow equal to 3 and node d has a 
global flow equal to 2. When we add a link from node 
b to node d, the new D-array becomes (28, 10, −1, −1, 
−3, −3, −3, −8, −8, −11), with a D-measure of 0.666, 
where node b now has a global flow equal to 10 and 
node d has a global flow equal to −1. The corre-
sponding global D-curves intersect and hence these 
two D-arrays are intrinsically incomparable (Fig. 7). 

If we add an arrow, and the positive global flow 
of a node remains positive, then it is possible that the 
corresponding D-curves are comparable. If, however, 
a node’s positive global flow becomes negative, then 
the corresponding D-curves cannot be comparable.  

Adding an arrow from a node which is 
non-positive to a node that does not have a larger flow 
value decreases the local dominance structure. This 
again follows from the fact that the opposite transfer 
principle holds among nodes with non-positive flow 
values. For example, if, in Fig. 5, we add an arrow 

Fig. 4  Four graphs with increasing D-measures 

Fig. 6  D-curves corresponding to Fig. 5 and a positive 
transfer 

Fig. 5  Network with local D-array (3, 3, 2, −1, −1, −1, −1, 
−1, −1, −2) 
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from node c to node h, we obtain the local D-array (3, 
3, 2, 0, −1, −1, −1, −1, −1, −3) with D-measure equal 
to 0.6, leading to the local D-curve shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Proposition 6    Given a fixed number of nodes with 
positive values (and a fixed number of nodes with 
negative values), the higher the dominance structure 
is, the more concentrated the positive values are 
(concentrated in the usual Lorenz sense). Moreover, 
the more even nodes with a negative flow are, the 
more concentrated the structure is as a whole. Here 
the term “even” is used in the sense of evenness for 
Lorenz curves (Lorenz, 1905; Nijssen et al., 1998; 
Marshall et al., 2011; Rousseau, 2011). 

Proposition 6 again follows from the transfer 
principle. 

What happens if we add an arrow from a node 
with a positive flow value to a node with a negative 
flow value? Before trying to answer this question, we 
first show an interesting example (Fig. 9). The figure 
on the left has a local array X=(3, 0, −1, −1, −1) with a 
D-measure equal to 0.7, and a global array Xʹ=(5, 0, 
−1, −1, −3) with a D-measure equal to 0.62. Adding 
an arrow from the dominance node a to the most 
subordinate node e yields arrays Y=(4, 0, −1, −1, −2) 
with a D-measure equal to 0.65 and Yʹ=(6, 0, −1, −1, 
−4) with a D-measure equal to 0.6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
We see from Fig. 10 that Y<DX. Similarly, one 

finds that Yʹ<DXʹ. The reason is that while nothing has 
changed to the other nodes, node e came “closer” to 
the dominating node, and hence became less subor-
dinate. Values of the D-measure confirm this  
observation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The previous example is an illustration of the 

following proposition, where we make a distinction 

Fig. 8  Local D-curves illustrating the opposite transfer 
principle 

Fig. 9  Adding an arrow from a dominance node to the 
most subordinate node 

Fig. 7  An example of two global D-arrays resulting from 
adding an arrow from a node with a positive flow to one 
with a lower positive flow 

0 1

1

2

Fig. 10  Local D-curves for the graph in Fig. 9 
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between the local case and the global case. 
Proposition 7  

1. Local case. Assume that a network has only 
one node with a strictly positive local flow; hence, 
this node is the network source. Consider a node with 
a strictly negative flow, which is moreover not di-
rectly linked to this source. Then, adding a link from 
the source to this node, one obtains a local D-curve 
which is strictly lower than the original one. 

2. Global case. Assume that a network has only 
one node with a strictly positive global flow; hence, 
this node is the network source. Consider a node with 
a strictly negative global flow, which is moreover not 
directly linked to this source. Then, adding a link 
from the source to this node, one obtains a global 
D-curve which is strictly lower than the original one. 
Proof    First let us prove the local case. Assume there 
are N nodes in the network and we consider the 
D-array (x1, x2, …, xN). By assumption the sum of all 
positive degrees is x1. Adding an arrow from the 
global source to another node leads to a local array of 
the form (x1+1, x2, …, xj−1, …, xN) (possibly after 
re-ranking), with j equal to one of the numbers {2, 
3, …, N}. 

As the second node, after re-ranking, is at most 
equal to zero and as there are at least three nodes (if 
there were two nodes they had to be directly con-
nected), we see that this operation lowers the negative 
part of the graph. Such a case is illustrated in Fig. 11. 
This figure shows a new link (dotted line) added from 
node a to node f. Originally, the local array was (2, 0, 
0, 0, 0, 0, −1, −1) with a D-measure equal to 0.563. 
After the addition of a new link, the new local array is 
(3, 0, 0, 0, 0, 0, −1, −2) with a D-measure equal to 
0.542. 

Next we consider the global case. Consider a 
node n which is neither the network source nor a sink. 
We know that n is not directly linked to the source. By 
assumption it is indirectly linked to the network 
source. Then, because n is not a sink, at least one 
intermediate node has a strictly positive global flow. 
Yet, because it is assumed that there is only one node 
with a strictly positive global flow, this case is ex-
cluded. Consequently, a node different from the 
source and not directly linked to it must be a sink. 
Then all nodes except the network source and the 
sinks must have a flow value equal to zero. Assuming 
there are (k1+k2) sinks, namely k1 directly connected 

to the source and k2 indirectly connected, then we are 
dealing with global arrays of the form  

 


2 1 2times times times

,0,...0, 1,..., 1, 3,..., 3 .
 
    
 
 


k k k

x  

 
Here, x=k1+3k2. Adding a link from the source 

to an unconnected sink leads to the array 


2 1 2times times ( 1) times

1,0,...0, 1,..., 1, 3,..., 3, 4 .
k k k

x


 
      
 
 

  Its D-curve is 

situated under the original one. Fig. 12 illustrates this 
part of Proposition 7. In this figure a new link is added 
from node a to node f. Originally, the global array is 
(10, 0, 0, 0, −1, −3, −3, −3) with a D-measure equal to 
0.65. After the addition of a new link, the new global 
array is (11, 0, 0, 0, −1, −3, −3, −4) with a D-measure 
equal to 0.636. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 12  Illustration of Proposition 7 (global case) 

Fig. 11  Illustration of Proposition 7 (local case) 
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4  Adding a node that becomes the network 
source or sink 

 
Next we study the following operations: 
(O1) Adding a node to a maximum D-graph 

which links only to the network source 
This implies that the new node is the new net-

work source. The resulting network, however, is not a 
maximum one. 

(O2) Adding a node to a maximum D-graph 
which links to every other node 

In this constellation the new node is the new 
network source and the resulting network is not a 
maximum. 

(O3) Adding a node to a minimum D-graph in 
such a way that the network sink links to it 

This implies that the new node is the new net-
work sink and that the resulting network is not a 
minimum one anymore. 

(O4) Adding a node to a minimum D-graph such 
that all other nodes link to it 

This operation implies that the new node is the 
network sink and the network is not a minimum one 
anymore. 

We already note that operations (O1) and (O2) 
applied to a maximum D-curve never turn a node with 
a negative flow into one with a positive flow. 
Example 4    Operations (O1) and (O2) are illustrated 
in Fig. 13.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13a has the same local and global array, 
namely (3, −1, −1, −1) with a D-measure of 0.75. The 
local array of Fig. 13b is (2, 1, −1, −1, −1) with a 
D-measure of 0.633, while its global array is (7, 2, −3, 
−3, −3) with a D-measure of 0.656. Fig. 13c leads to 
the local array (4, 2, −2, −2, −2) with a D-measure of 

0.633, and the corresponding global array (10, 2, −4, 
−4, −4) with a D-measure of 0.667. These D-values 
are brought together in Table 1. 

 
 
 
 
 
 
 
Though we add a source to a graph correspond-

ing to a maximum D-curve, the dominance in this new 
graph is not higher than that in the original one. 
Moreover, though the local D-curves of Figs. 13b and 
13c coincide, we notice that the network source in 
Fig. 13b is the new node t. In Fig. 13b, node a is a 
dominance node in the local sense.  

Focusing for the moment on operations (O1) and 
(O2) for which the new node becomes the network 
source, we consider the case of adding a node to a 
maximum D-curve. In this way we distinguish four 
cases (Table 2). Recall that we start from a maximum 
D-curve with N nodes. Its local and global arrays are 

the same, i.e., 
( 1) times

1, 1, 1,..., 1 .
N

N


 
     
 
 

MX   The cor-

responding D-curve consists of two segments. The 
first connects (0, 0) with (1/N, 1), while the second 
connects (1/N, 1) to (1, 2). These segments have 
slopes N and N/(N−1), respectively.  

The four cases indicated in Table 2 always lead 
to D-curves consisting of three segments. In each case 
the slope of the final segment is the same and equal to 
(N+1)/(N−1), which is always strictly larger than 
N/(N−1). Clearly, this line segment is situated under 
the original one as it is steeper and ends in the same 
point. This already shows that the new graph can 
never be situated above the original one. The original 
and the new graphs can be incomparable or the new 
one can be smaller than the old one. The resulting four 
curves are never the maximum D-curves. Exact re-
sults are formulated in Propositions 8–11. 
Proposition 8    If a node is linked only to the source 
of a maximum D-curve with N nodes, then the re-
sulting local D-curve is always smaller in the D-order. 
Proof    The slope of the first segment resulting from 
this operation is (N+1)(N−2)/(N−1). As (N+1)(N−2)/ 
(N−1)<N the new D-curve starts under the original 

Table 1  D-values resulting from Fig. 13 

Item D-value 
Fig. 13a Fig. 13b Fig. 13c 

Local 0.75 0.633 0.633 
Global 0.75 0.656 0.667 

 

Fig. 13  Three cases: (a) a maximum dominance graph; 
(b) the graph created by adding one node, t, linked to the 
network source; (c) the graph created by adding one 
node, t, directly linked to each other node 
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one, and because it also ends under the original one, 
the new local D-curve is smaller than the original one.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Proposition 9    If a node linked only to the source is 
added to a maximum D-curve with N nodes then, for 
N>3, the resulting global D-curve is always smaller in 
the D-order. If N=2 or 3, the original curve and the 
new one intersect; hence, the corresponding arrays are 
incomparable. 
Proof    The slope of the first segment resulting from 
this operation is equal to (N+1)(2N−1)/(3N−3). Be-
cause (N+1)(2N−1)/(3N−3)<N for N>3, the new 
D-curve starts under the original one; as we already 
know that the new D-curve always ends under the 
original one, we conclude that, for N>3, the new 
global D-curve is smaller than the original one. For 
N=2 or 3, the new D-curve starts above the original 
one and ends below it; hence, the two curves are  
incomparable. 
Proposition 10    If a node linked to all existing nodes 
in a maximum D-curve is added to this graph, then the 
resulting local D-curve is, for N>2, smaller in the 
D-order. For N=2, the two arrays are incomparable. 
Proof    The slope of the first segment of the new 
curve resulting from this operation is equal to 
N(N+1)/(2N−2). Because N(N+1)/(2N−2)<N for N>3, 
the new local D-curve is, in these cases, smaller than 
the original one. If N=3, the slope of the first segment 
of the new curve is 3, which coincides with that of the 
original curve. Because the new curve ends under the 
original one, this means that also for N=3, the new 
local D-curve is smaller than the original one. Finally 
for N=2, the slope of the first segment is 3, larger than 
2, the slope of the original one. Hence, in this case the 
two curves are incomparable. 
Proposition 11    If a node linked to all existing nodes 

in a maximum D-curve is added to this graph, then the 
resulting global D-curve is, for N>4, smaller in the 
D-order. For N=2, 3, or 4, the curves intersect and 
hence the arrays are incomparable. 
Proof    The slope of the first segment of the new 
curve resulting from this operation is equal to 
(N+1)(3N−2)/(4N−4). Because (N+1)(3N−2)/(4N−4)<N 
for N>4, the new local D-curve is, in these cases, 
smaller than the original one. For N=2, 3 or 4, the two 
curves are incomparable. 

Next we consider operations (O3) and (O4) for 
which the new node becomes the network sink. We 
consider the case of adding a node to a minimum 
D-curve. In this way we again distinguish four cases 
(Table 3). For a minimum D-curve with N nodes, the 
local and global arrays are the same and are equal to 

( 1) times

1,1,...,1 , ( 1) .
N

N


 
  
 
 

MN   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We observe that MN=−MX, MNL1=−MXL1, 

MNL2=−MXL2, MNG1=−MXG1, and MNG2=−MXG2. 
As X≤DY, which implies −Y≤D−X, we have the fol-
lowing four results: 

1. If a node linked only to the sink is added to a 
minimum D-curve with N nodes, then the resulting 
local D-curve is always larger in the D-order. 

2. If a node linked only to the sink is added to a 
minimum D-curve with N nodes, then, for N>3, the 
resulting global D-curve is always larger in the 
D-order. If N=2 or 3, the original curve and the new 
one intersect; hence, the corresponding arrays are 
incomparable. 

Table 2  Arrays resulting from operations (O1) and (O2), 
applied to a maximum D-curve 

Type Adding nodes and links to 
only the source (O1) 

Adding nodes and links to 
all existing nodes (O2)

LDT 
L1

( 1) times

2, 1, 1, 1,..., 1
N

N




 
    
 
 

MX


 

L2

( 1) times

, 2, 2, 2,..., 2
N

N N




 
    
 
 

MX


 

GDT 
G1

( 1) times

2 1, 2, 3, 3,..., 3
N

N N




 
     
 
 

MX


 

G2

( 1) times

3 2, 2, 4, 4,..., 4
N

N N




 
     
 
 

MX



Table 3  Arrays resulting from operations (O3) and (O4), 
applied to a minimum D-curve 

Type Adding nodes and links 
to only the sink (O3) 

Adding nodes and links to 
all existing nodes (O4) 

LDT

L1

( 1) times

1,1,...,1, 1, ( 2)
N

N




 
   
 
 

MN



 

L2

( 1) times

2,2,...,2, ( 2),
N

N N




 
   
 
 

MN



  

GDT

G1
( 1) times

3,3,...,3,

( 2), (2 1)

N

N N









    



MN 

 

G2
( 1) times

4,4,...,4,

( 2), (3 2)

N

N N









    



MN 
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3. If a node linked to all existing nodes in a 
minimum D-curve is added to this graph, then the 
resulting local D-curve is, for N>2, larger in the 
D-order. For N=2, the two arrays are incomparable. 

4. If a node linked to all existing nodes in a 
minimum D-curve is added to this graph, then the 
resulting global D-curve is, for N>4, larger in the 
D-order. For N=2, 3, or 4, the curves intersect and 
hence the arrays are incomparable. 

Next, we compare the two new situations in the 
case where we start from a maximum D-curve. 
Proposition 12 (Local case)    Given a maximum 
D-curve, if N<4, the D-curve obtained by adding a 
node which dominates all (other) nodes is higher than 
the D-curve resulting from adding a node that domi-
nates the source; for N=4, the D-curve resulting from 
adding a node dominating all (other) nodes coincides 
with the D-curve resulting from adding a node dom-
inating the source; if N>4, the D-curve of adding a 
node which dominates all (other) nodes is lower than 
the D-curve resulting from adding a node which 
dominates the source. 
Proof    The local D-array resulting from adding a 
node which dominates all other nodes is 

( 1) times

2,..., 2)2 ;, ,
N

N N


  (  the D-curve of this array is a 

curve that connects 
 

1 2(0,0) , ,1 ... (1,2).
+1 2 2 +1

N

N N N
            

 

 
The array resulting from adding a node which domi-
nates the source is 

( 1) times

( 2,  1, 1,..., 1 .
N

N


  )  The D-curve 

of this array is a curve connecting 
 

1 2 2(0,0) , ,1 ... (1,2).
+1 1 +1

N

N N N

            
 

 
These two graphs consist of three segments with 

coinciding third segments. The initial points of the 
first segment of the two curves, namely the origin, 
and the end points of the second segment, namely the 
point with coordinates (2/(N+1), 1) coincide. Hence, 
the curves are always comparable and the relation 
between the two cases is completely determined by 
the point with abscissa 1/(N+1). Denoting the differ-

ence of the ordinates of this point by Δ yields 
2 4

2 2 1 2( 1)
N N N

N N N
  

 
  

 . If N<4, then Δ>0 

and the D-curve resulting from adding a node domi-
nating all other nodes is higher than the D-curve re-
sulting from adding a node dominating the source. If 
N=4, then Δ=0 and the two curves completely coin-
cide. If N>4, then Δ<0 and the D-curve resulting by 
adding a node dominating all other nodes is lower 
than the D-curve resulting from adding a node which 
dominates the source. 
Proposition 13 (Global case)    For N>2, the D-curve 
resulting from adding a node dominating all (other) 
nodes in the maximum D-curve graph is higher than 
the D-curve resulting from adding a node dominating 
the dominance node. If N=2, then the two curves 
coincide. 
Proof    The global D-array for the first case is (3N−2, 
N−2, −4, …, −4) with (N−1) times the value −4; in the 
second case, it is (2N−1, N−2, −3, …, −3), with (N−1) 
times the value −3. These two D-curves are divided 
into three segments with coinciding third segments. 
Again, the end of the first segment is the key to de-
termining the dominance order. The difference in 

ordinates, denoted as Δ, is 3 2 2 1
4 4 3 3
N N

N N

 
 

 
 

2 .
12( 1)

N

N




 This expression is never negative. It is 

zero for N=2 and strictly positive for N>2. Hence, if 
N>2, the D-curve resulting from adding a node 
dominating all other nodes in the maximum D-curve 
graph is always situated higher than the D-curve re-
sulting from adding a node dominating the dominance 
node. If N=2, the two D-curves coincide. 

Similar results can be formulated for the mini-
mum D-curves. We leave this to the reader. 

 
 

5  Adding a node that is directly dominated 
by every other node 

 
Proposition 14    The following statements hold for 
the local as well as for the global case. Adding one 
node that is linked directly to the source of a maxi-
mum D-curve graph increases the dominance degree 
of the graph; adding one node directly dominated by 
every other node leads to a D-curve that intersects the 
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original one.  
This proposition is illustrated in Fig. 14. 

Proof    Adding a node that is linked directly to the 
source of a graph corresponding to a maximum 
D-curve (Fig. 14b), increases the dominance degree 
of the graph, which follows from the proposition 
which states that if N increases, then the maximum 
D-curve becomes larger too (in partial order of 
D-curves) and this is correct for the local case as well 
as the global case.  

Fig. 14c leads to a local array equal to 


( 1) times

, 0,...,0 ,
N

N N


 
  

 
 and a global array equal to 


( 1) times

3 2, 0,...,0 , (3 2) ,
N

N N


 
    

 
 which have the same 

D-curves. In both cases they intersect the original 
graph, and hence the resulting networks are  
incomparable.  

Note that the resulting graphs are the maximum 
graphs in the global hierarchy theory (Egghe, 2002). 
Such graphs are also maximum in the local hierarchy 
theory, but are not the only ones that are maximum 
(Egghe and Rousseau, 2004).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Discussion 
 
D-curves have properties making them suitable 

for measuring dominance: if N increases, then the 
maximum D-curve becomes larger, and the minimum 
D-curves become smaller, corresponding to the fact 
that dominance increases when there are more sub-
ordinates and decreases when there are fewer subor-
dinates. In this investigation we formulate changes in 

terms of added nodes and links. 
An important limitation of our approach is that if 

two nodes x and y are “equal” in the sense that in a 
network there is a link from x to y and vice versa, then 
our approach cannot be applied as this form of 
equality leads to a cycle so that our zero-sum theory is 
not applicable. We propose a study of this type of 
relation as a problem for further investigation. 

When companies merge or a new member joins a 
system, re-arrangements take place. Then one may 
ask how the dominance structure of the system 
changes. Our investigation shows that only when the 
new node is linked to the source in the maximum 
dominance structure, will the dominance structure 
increase. Adding a node that dominates all others, 
even when this is the former source in the maximum 
dominance structure, will decrease the dominance 
structure. 

In the introduction we hinted at possible appli-
cations in electronic networks and citation networks. 
With regard to the first, we think such applications are 
outside the scope of this contribution, and for the 
second application, we refer the reader to a recent 
publication (Liu and Rousseau, 2019). 

This discussion leads to a sociological question 
about the relation between change in a mathematical 
structure and its relation to a corresponding emotional 
change. In practice, replacing a director by a new 
director does not change the mathematical structure, 
but may lead to some quite significant emotional 
changes. Similarly, putting a “super-director” in a 
business network, i.e., someone in a directly domi-
nant position over all others, decreases the mathe-
matical dominance structure (as we have shown), but 
may change the emotional structure of the business 
unit to a very large extent. Some follow-up questions 
would be: How long does it take before the resulting 
turmoil settles down and the emotional structure is 
stable again? To what extent does the answer to this 
question depend on the existing mathematical struc-
ture? Such reflections are of great interest but outside 
the scope of our work. 

 
 

7  Conclusions  
 
We have applied partial orders in zero-sum ar-

rays to dominance structures in an acyclic, directed 

Fig. 14  Adding a node to the network (a), the case of a 
node dominated by the dominance node only (b), and the 
case of adding a node dominated by all other nodes (c) 
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network. These arrays consist of positive and negative 
values. The D-curves we have constructed are partly 
concave and partly convex. The curves follow from 
their construction that other properties such as per-
mutation and scale-invariance are satisfied.  

In this paper, we have provided some further 
examples of a dominance structure in a directed, 
acyclic network. Then, we have calculated the 
D-measure when nodes are added to an existing sim-
ple network. We have demonstrated an interesting 
change in the dominance structure when a dominance 
interaction happens from dominating individuals 
(those who have positive flows in the D-array) to 
subordinate individuals (those with negative flows). 
The results show that when the system is monopolis-
tic, i.e., just one individual has power, the dominance 
interaction decreases the dominance structure. Under 
other conditions, the dominance interaction leads to 
intersecting dominance curves, showing that the 
corresponding dominance structures are intrinsically 
incomparable. 
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