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Abstract: We present the Georgia Tech Miniature Autonomous Blimp (GT-MAB), which is designed to support
human-robot interaction experiments in an indoor space for up to two hours. GT-MAB is safe while flying in close
proximity to humans. It is able to detect the face of a human subject, follow the human, and recognize hand
gestures. GT-MAB employs a deep neural network based on the single shot multibox detector to jointly detect a
human user’s face and hands in a real-time video stream collected by the onboard camera. A human-robot interaction
procedure is designed and tested with various human users. The learning algorithms recognize two hand waving
gestures. The human user does not need to wear any additional tracking device when interacting with the flying
blimp. Vision-based feedback controllers are designed to control the blimp to follow the human and fly in one of two
distinguishable patterns in response to each of the two hand gestures. The blimp communicates its intentions to the
human user by displaying visual symbols. The collected experimental data show that the visual feedback from the
blimp in reaction to the human user significantly improves the interactive experience between blimp and human.
The demonstrated success of this procedure indicates that GT-MAB could serve as a flying robot that is able to
collect human data safely in an indoor environment.
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1 Introduction

Recent advances in robotics have enabled the
rapid development of unmanned aerial vehicles
(UAVs). With increasing penetration of UAVs in
industry and everyday life, cooperation between hu-
mans and UAVs is quickly becoming unavoidable.
It is extremely important that UAVs interact with

‡ Corresponding author
* Project supported by the Office of Naval Research (Nos. N00014-
14-1-0635 and N00014-16-1-2667), the National Science Founda-
tion, U.S. (No. OCE-1559475), the Naval Research Laboratory
(No. N0017317-1-G001), and the National Oceanic and Atmo-
spheric Administration (No. NA16NOS0120028)

ORCID: Fumin ZHANG, http://orcid.org/0000-0003-0053-4224
c© Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2019

humans safely and naturally (Duffy, 2003; Goodrich
and Schultz, 2007), and to this end, the study on
human-robot interaction (HRI) has enjoyed recent
research interest (Draper et al., 2003; de Crescen-
zio et al., 2009; Duncan and Murphy, 2013; Acharya
et al., 2017; Peshkova et al., 2017). Quad-rotors
are one of the most popular robotic platforms for
three-dimensional (3D) HRI studies (Graether and
Mueller, 2012; Arroyo et al., 2014; Szafir et al., 2015;
Cauchard et al., 2016; Monajjemi et al., 2016). Hu-
mans can use speech/verbal cues (Pourmehr et al.,
2014), eye gaze (Monajjemi et al., 2013; Hansen
et al., 2014), and hand gestures (Naseer et al., 2013;
Costante et al., 2014) to command quad-rotors to ac-
complish certain tasks. In addition to quad-rotors,
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other types of UAVs, such as fixed-wing aircrafts (He
et al., 2011) and flying displays (Schneegass et al.,
2014), have been developed to interact with humans.

In contrast to fast-flying UAVs, autonomous
blimps are the preferred platform for HRI (Liew
and Yairi, 2013) in certain applications where human
comfort is a major concern. In Burri et al. (2013),
a spherical robotic blimp was proposed to monitor
activities in human crowds. St-Onge et al. (2017)
demonstrated that a cubic-shaped blimp can fly close
to human artists on stage. In another case, a robotic
blimp (Srisamosorn et al., 2016) was used for mon-
itoring elderly people inside a nursing home. These
applications demonstrate the necessity of studying
human-blimp interaction. However, there is a lack of
dedicated design for autonomous blimps to support
experiments in human interaction with flying robots
in an indoor lab space.

We developed the Georgia Tech Miniature Au-
tonomous Blimp (GT-MAB), which is designed to
collect experimental data for indoor HRI (Cho et al.,
2017; Yao et al., 2017; Tao et al., 2018). Being a fly-
ing robot, GT-MAB does not pose the safety threats
and anxiety that a typical quad-rotor can cause to
humans, and it can fly close to humans in indoor en-
vironments. In addition, GT-MAB has a relatively
long flight time of up to two hours per battery charge,
which supports uninterrupted HRI experiments. In
this study, we introduce the hardware designs, per-
ception algorithms, and feedback controllers on GT-
MAB that identify human intentions through hand
gesture recognition, communicate the robot’s inten-
tions to its human subjects, and execute the blimp
behavior in reaction to the hand gestures. These
features are the basic building blocks for more so-
phisticated experiments to collect human data and
study human behaviors.

Achieving natural HRI can be more easily ac-
complished when the human subject does not need to
wear tracking devices or use other instrumentation to
interact with the robot (Duffy, 2003). With only one
onboard monocular camera installed on GT-MAB,
its perception algorithms can identify human inten-
tions. We implemented a deep learning algorithm
(specifically, the single-shot multibox detector (SSD)
in Liu et al. (2016)), so GT-MAB could detect human
faces and hands. Then we applied principal compo-
nent analysis (PCA) (Wold et al., 1987) to robustly
distinguish hand waving gestures in the horizontal

and vertical directions. These two hand gestures
trigger different reactions in the blimp. A person
uses horizontal hand gestures to trigger spinning in
GT-MAB and uses vertical hand gestures to trigger
the blimp to fly backward (Fig. 1). We use monocu-
lar vision to measure the position of the human rela-
tive to the blimp. Vision-based feedback controllers
then enable the blimp to autonomously follow a per-
son while identifying the hand gestures. GT-MAB
communicates its intentions by displaying immediate
visual feedback on an onboard light-emitting diode
(LED) display. The visual feedback is proven to be a
key feature that improves the interactive experience.

First person view

Onboard camera

Fig. 1 An uninstrumented human user interacts with
the Georgia Tech Miniature Autonomous Blimp (GT-
MAB) in close proximity and commands the GT-
MAB via gestures

We conducted HRI experiments with multiple
human participants and presented a user study to
evaluate the effectiveness of the proposed HRI proce-
dure. In our experiments, GT-MAB reliably demon-
strated its ability to follow humans and it consis-
tently collected the human data while interacting
with humans. In the user study, most of the partic-
ipants could successfully control the robotic blimp
using the two hand gestures and reported positive
feedback about the interactive experience. These re-
sults clearly demonstrated the effectiveness of the
basic features of GT-MAB.

2 Literature review and novelty

2.1 Data collection in the human intimate
zone

Hall (1966) defined space in terms of distance
to humans. The intimate (0–0.45 m), personal
(0.45–1.2 m), social (1.2–3.6 m), and public (>
3.6 m) spatial zones have been widely used in both
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human-human and HRI literature. However, be-
cause of their relatively high speed and powerful
propellers, quad-rotors normally need to keep a rel-
atively far distance from humans to ensure safe and
comfortable interaction. In the previous HRI works
(Monajjemi et al., 2013; Naseer et al., 2013; Costante
et al., 2014; Nagi et al., 2014), researchers proposed
similar HRI designs whereby a human user could
control a single quad-rotor or a team of quad-rotors
through face and hand gesture recognition. How-
ever, quad-rotors need to stay more than 2 m away
from the humans to protect the users and avoid mak-
ing the user feel threatened. Duncan and Murphy
(2013) suggested that the minimum comfortable dis-
tance for humans interacting with small quad-rotors
could not be less than 0.65 m. It is difficult for UAVs
with strong propellers or the existing blimps (due
to their size and functionality) to enter the human
user’s intimate space and collect human data without
prompting anxiety on the user. GT-MAB can inter-
act with humans within 0.4 m and collect videos of
the human and the human’s trajectories, which can
be used to fit the social force model of Helbing and
Molnár (1995) in the intimate zone. To the best of
our knowledge, GT-MAB is perhaps the first aerial
robotic platform that is able to collect HRI data nat-
urally within the human intimate spatial zone.

2.2 Visual feedback from blimp to human

Visual feedback in the HRI procedure can sig-
nificantly improve the interactive experience. Previ-
ous research has explored the implicit expressions of
robot intentions by manipulating the flying motions
(Sharma et al., 2013; Szafir et al., 2014; Cauchard
et al., 2016). However, such implicit expressions are
limited when aerial robots interact closely with hu-
mans. Explicit expressions are preferred for proxi-
mal interactions. Szafir et al. (2015) devised a ring
of LED lights under the quad-rotor and designed
four signals to indicate the next flight motion of the
quad-rotor. A user study was conducted, where hu-
man participants were asked to predict the robot’s
intentions. The user study verified that the LED sig-
nals significantly improved the viewer response time
and accuracy compared to a robot without the sig-
nals. However, in that work, the human participants
were separated from the robot’s environment by a
floor-to-ceiling glass panel, so it was not an interac-
tive environment. In our work, we discovered that

immediate visual feedback is crucial for reducing hu-
man’s confusion caused by the time delays between
the time when a robot perceives a human command
and the time when the robot initiates an action. We
conducted a user study for our proposed HRI pro-
cess and verified that the LED feedback significantly
improves the interactive experience and efficiency.

2.3 Monocular vision based human localiza-
tion

To localize a human, quad-rotors normally re-
quire a depth camera (Lichtenstern et al., 2012;
Naseer et al., 2013). Recent works (Costante et al.,
2014; Lim and Sinha, 2015; Perera et al., 2018) have
also used a monocular camera on UAVs to local-
ize humans and estimate human trajectories. Since
these works used quad-rotors as the HRI platforms,
one unavoidable step for monocular vision is to esti-
mate the camera pose due to the flying mechanism
of the quad-rotors, which is a challenging problem.
Compared to quad-rotors, GT-MAB is self-stabilized
and can fly in a horizontal plane with almost no vi-
bration, so the pitch and roll angles of GT-MAB can
be approximately viewed as staying at zero. The
pose of the onboard camera is fixed. Due to this
unique feature, we developed a vision-based tech-
nique to localize a human in real time from the on-
board monocular camera of GT-MAB.

2.4 Joint face and hand detection

In previous gesture-based HRIs (Monajjemi
et al., 2013; Costante et al., 2014), human face de-
tection is necessary for distinguishing a human from
other objects. Once a human face is detected, a hand
detector is triggered to recognize human gestures.
For each frame, two feature detectors are needed to
detect different human features. The computation
to run two feature detectors takes a relatively long
time and is hard to implement for real-time video.
To speed up video processing, feature tracking al-
gorithms are used to track the feature detected in
the previous frame (Birchfield, 1996). However, the
tracking algorithms cannot consistently provide an
accurate and tight bounding box around the human
feature. To overcome the above-mentioned prob-
lems, we use one of the state-of-the-art object de-
tection deep learning algorithms, SSD (Liu et al.,
2016), in the context of human blimp interaction.
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We also build a dataset that is efficient and adequate
for training the SSD for real-time face and hand
detection.

In our previous work (Yao et al., 2017), we
achieved human following behavior on GT-MAB.
GT-MAB was able to follow a human who was not
wearing a tracking device and keep the human in
sight of its onboard camera based on face detection,
but GT-MAB could not react to the human. In this
study, we propose a novel advancement to achieve
natural interaction between a human and GT-MAB
by enabling GT-MAB to recognize human intentions
through hand gestures and react to human intentions
through visual feedback and flying motions.

3 GT-MAB platform

GT-MAB consists of an envelope and a cus-
tomized gondola. The envelope has a unique saucer-
like shape, as shown in Fig. 1, which solves the con-
flict between maneuverability and stability and en-
hances its capability to interact with humans at a
close distance. The gondola is a 3D-printed mechani-
cal structure accommodating all onboard devices un-
derneath the envelope. Fig. 2 depicts the structure
of the gondola and indicates the main components
installed on it. We use five motors for the HRI appli-
cation. The vertically mounted motors are used to
change the altitude, while the horizontal ones enable
the blimp to fly horizontally and change the head-
ing angle. One side-way motion motor is used to
keep the blimp in the front of a human. This design
enables the blimp to move in the 3D space without
changing its roll and pitch angles.

Side-way 
motion 
thruster

Microcontroller 
& Xbee module

LED display

Wireless camera

Horizontal thruster

Vertical thruster

Fig. 2 Georgia Tech Miniature Autonomous Blimp
gondola with the installed electronic components

The appealing characteristics of GT-MAB, es-
pecially the small size, impose challenges in the
blimp’s hardware design. The blimp has only 60 g
of total load capacity, including the onboard cam-
era, microprocessors, and wireless communication
devices. One difficulty in vision-based HRI using
a blimp is finding a wireless camera that is light
enough. The camera we selected for GT-MAB is
a 5.8-GHz analog camera, which is the best option
we could find that can support low-latency wireless
transmission. This compact device weighs 4.5 g and
has a diagonal field of view of 115 degrees. The cam-
era is directly attached to the gondola. However,
since the camera is analog, the video produced from
it includes some glitch noise, which makes image pro-
cessing more difficult than with digital cameras. We
also installed an 8 × 8 LED matrix display on the
blimp to provide the visual feedback for human users.
The LED display shows the recognition results, while
the controller outputs achieve spinning and back-
ward motions for the control of the blimp. Fig. 3
shows the block diagram of the hardware setup for
the system. The video stream coming from the on-
board camera is obtained by the receiver connected
to the ground station PC. Outputs of the perception
and control algorithms running on the ground PC
are packed into commands and sent to GT-MAB via
an Xbee wireless module.

Blimp core
electronics

5.8-GHz
wireless
camera

Air

USB video
capture card

Ground station
PC

5.8-GHz wireless
receiver

Ground

Xbee wireless
module

Xbee wireless
module

External
monitor

LED
matrix
display

Fig. 3 Hardware overview

4 System overview

We achieve a natural and smooth HRI by en-
abling GT-MAB to perceive human intention. Hu-
mans are required to communicate their intentions to
the blimp through predefined hand gestures so that
human intentions are regulated and predictable. The
human uses only one hand, starts the hand gesture
near the face, and moves his/her hand horizontally
or vertically. Then the blimp spins or flies backward
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according to the two hand gestures.
The overall HRI design involves five steps: (1)

detecting a human face and hands jointly in a real-
time video stream, (2) recognizing hand gestures, (3)
communicating the blimp’s intentions to the human
through the onboard LED display, (4) estimating
the human’s location relative to the blimp, and (5)
controlling the blimp to follow the human and ini-
tiate movement according to hand gestures. Fig. 4
shows a block diagram of the proposed HRI design.
We first run a joint face and hand detector to de-
tect human features in each video frame. If no face
or hand is detected, the onboard LED displays the
negative feedback for a human and the detector goes
to the next frame. If a face is detected, a human
localization algorithm and a human following con-
troller are triggered to maintain the blimp’s position
relative to the human. If both face and hand are de-
tected, a gesture recognition algorithm is triggered
and the LED display shows a positive feedback to the
human indicating that the gesture recognition has
started. Once a valid gesture is recognized, the LED
display shows another positive feedback indicating
that GT-MAB has received the human’s command.
Meanwhile, the blimp controller switches from hu-

No

Video
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Face 
position

(3) LED
positive

feedback

Yes

Yes

Yes

No

(2) Gesture recognition

A valid gesture
recognized?

(5) Blimp
motion

controller

Control
command
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command

No(3) LED
negative
feedback

Yes
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Detected
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(1) Joint face and hand 
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(4)
Localization
(5) Human
following
controller

Fig. 4 System block diagram. The pink blocks rep-
resent the five steps. The green blocks represent the
visual feedback shown on the LED display. The blue
blocks represent logic questions. The blue solid ar-
rows represent the logic flow for the process and the
dashed arrows represent the data flow between each
block. References to color refer to the online version
of this figure

man following control to blimp motion control, which
controls the blimp to initiate spinning or backward
motion. Once a motion is accomplished, the joint
face/hand detector is activated again and the whole
interactive process repeats. The details of each step
will be introduced in the following sections.

5 Perception algorithms

In this section, we present the first three steps
of GT-MAB’s perception capabilities.

5.1 Joint detection of face and hand

We leverage the SSD (Liu et al., 2016), which
is fast and can detect multiple categories of objects
at the same time to jointly detect a human face and
hands in real-time videos. The idea behind SSD
is simple. It reframes object detection as a sin-
gle regression problem where object bounding boxes
are assigned with confidence scores representing how
likely a bounding box is to contain a specific object.
To train the SSD, the learning algorithm discretizes
a training image into S × S grid cells. Each cell
has B default bounding boxes of different locations
and sizes. During the training process, these default
boxes are compared with the ground-truth bounding
boxes in training images, and a confidence score is
computed for each object category. The neural net-
work is trained to determine which default box has
the highest corresponding confidence score. During
detection, the trained neural network can directly
generate the bounding box with the highest con-
fidence score and determine to which category the
bounded object belongs.

Particularly, to train the SSD for joint detection
of a human face and hand, we create a new training
set leveraging an image dataset from the Oxford Vi-
sion Group (Mittal et al., 2011). The images in this
dataset have already been labeled with the human’s
hands. However, the human faces in this dataset are
not labeled. To modify the dataset for both hand
and face detection, we first assign the originally la-
beled hand regions as category 1. Then we use the
Haar face detector (Viola and Jones, 2004) to detect
a human face and label the face bounding box as
category 2. We divide the modified dataset into a
training set, which contains 4069 images, and a test
set, which contains 821 images. The joint face and
hand detector is then trained offline using the new
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training set. We fine-tune the neural network using
a stochastic gradient descent with 0.9 momentum,
0.0005 weight decay, and a 128 batch size. As for the
learning rate, we use 4 × 10−4 for the first 5 × 104

iterations, and then continue training for 3× 104 it-
erations with a 4 × 10−5 learning rate and another
2× 104 iterations with a 4× 10−6 learning rate.

The trained joint face and hand detector is eval-
uated on the test set using the mean average pre-
cision (or mAP), a common metric used in feature
and object detection. Specifically, for each bound-
ing box generated by the trained detector, we dis-
card the box if it has less than k percent intersection
over the union with the ground-truth bounding box.
Given a specific threshold k, we compute the aver-
age precision (or AP) for each test image. Then we
compute the mAP by taking the mean of all APs for
all the test images. The test results are that with
k = 25%, the detector can achieve 0.862 mAP, with
k = 50%, the detector can achieve 0.844 mAP, and
with k = 75%, the detector can achieve 0.684 mAP.
The performance is almost the same as that in Liu
et al. (2016).

After testing the joint face and hand detector,
the detector is applied to detect a human face and
hand in the real-time video stream from the blimp
camera. The results are shown in Fig. 5. The de-
tected face is bounded by the yellow box with a label
“Face” and the detected hand is bounded by the box
labeled as “Hand.” Fig. 5a shows the case where
only a face is detected. Fig. 5b shows the case where
both a face and a hand are detected but the hand is
outside the initial gesture region, i.e., the two yellow
boxes near the face bounding box. We define the
initial gesture regions to filter out incorrect human

gestures or random hand movements, and to ensure
that the gesture recognition is more robust. Fig. 5c
shows the case where both a face and a hand are
detected with the hand in the initial gesture region.
Only this case initializes the gesture recognition step.

Based on the bounding boxes, we define the po-
sition of the human face to be the center of the face
bounding box, denoted as P ′ = [iP , jP ]

T ∈ R
2, and

the face length lf in the image frame, where iP , jP ,
and lf are in pixels. The hand position is the center of
the hand bounding box, denoted as x = [i, j]T ∈ R

2.
We use the face position and the length of the human
face to estimate the human position relative to the
blimp, which will be introduced in Section 6.1.

5.2 Hand gesture recognition

Once the gesture recognition algorithm is ini-
tialized, the algorithm identifies two types of hand
movements: horizontal linear hand movements and
vertical linear hand movements.

The detection algorithm tracks the human hand
from frame to frame. Once gesture recognition is
triggered, the hand position is not restricted by the
initial gesture region. The human hand can move
out of the initial region and still be recognized.
We collect the hand position data in 50 successive
video frames once gesture recognition is triggered.
The hand trajectory is modeled as a set of two-
dimensional (2D) points X = [x1,x2, . . . ,x50]

T ∈
R

50×2 in the OIXIYI image coordinates, where
xm = [im, jm]T ∈ R

2 (m = 1, 2, . . . , 50) is a 2D
vector of the hand position. If the human performs
a defined gesture for the blimp, the distribution of
hand trajectory data X should be close to a line. We
use PCA (Wold et al., 1987) to analyze the linearity

Face
Face

Face

Hand
Hand

(a) (b) (c) 

Fig. 5 Face and hand detection: (a) only face is detected; (b) face and hand are detected with the hand outside
the initial region; (c) face and hand are detected with the hand in the initial region. The images are from the
onboard camera of Georgia Tech Miniature Autonomous Blimp. References to color refer to the online version
of this figure
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of the data points in X and determine whether a
hand trajectory is valid as defined. PCA is an or-
thogonal linear transformation which transforms the
dataset X into a new coordinate system such that
the greatest variance in the data lies on the first co-
ordinate, and the second greatest variance lies on the
second coordinate (Fig. 6). In our setup, the direc-
tion of the first coordinate from PCA is exactly the
hand movement direction.

OI XI

YI

v1

v2

xm

Fig. 6 PCA illustration. The red crosses represent
the data points xm, v1 represents the first coordinate,
and v2 represents the second coordinate. References
to color refer to the online version of this figure

To apply PCA, we first need to compute the
mean-subtracted dataset X ′ = [x′

1,x
′
2, ...,x

′
50]

T,
since the hand positions are in pixels which are pos-
itive integers and do not have a zero mean. Each
element x′

m (m = 1, 2, . . . , 50) equals xm−µ, where
µ is the mean of X. Then the principal component
can be obtained using singular value decomposition
(SVD):

X′ = USV T, (1)

where U is a 50 × 50 orthonormal matrix, V is a
2 × 2 orthonormal matrix, and S = diag(λ1, λ2) is
a 50 × 2 rectangular diagonal matrix with λ1 ≥ λ2.
After applying SVD, we obtain the two bases of the
new coordinates of PCA, v1 and v2, which are the
two column vectors of matrix V .

The ratio λ1/λ2 is computed to determine
whether a hand trajectory is linear. A large ratio
represents a high linearity. However, since humans
cannot move their hands in a perfectly straight line,
we need to add in some tolerance. To achieve high
accuracy and robustness in gesture recognition, we
run multiple trials using the blimp camera to collect
both valid and invalid hand trajectories and finally
select the threshold as five. Additionally, to avoid
false detection of human hand gestures, we require
the maximum first principal component among all
the hand position data be greater than or equal to

250 (in pixels) so that the hand movement is notice-
able enough that a human can recognize it. That is
to say, if λ1/λ2 ≥ 5 and maxxm xT

mv1 ≥ 250, the
hand trajectory is detected as a valid linear hand
gesture.

For a valid linear hand gesture, the slope
v1,2/v1,1 of the first coordinate v1 is used to deter-
mine the direction of the hand gesture, where v1,1
and v1,2 are the first and second elements of vector
v1, respectively. If v1,2/v1,1 ≤ 1, the gesture is a
horizontal gesture. If v1,2/v1,1 ≥ 10, the gesture is
a vertical gesture. Otherwise, the hand gesture is
invalid.

5.3 Visual display

However, using hand gesture recognition to ac-
tivate the blimp reactive behaviors may not always
work for human users. This is because there is a time
delay between the time instant when the blimp de-
tects a human and the time instant when the blimp
initiates the corresponding movement. Although the
time delay is only a few seconds, a human user may
find the delay confusing because the person perceives
no immediate reaction from the blimp. The human
user may redo the hand gesture, approach the blimp
to see whether the blimp is broken, or feel disap-
pointed and walk away, even if the blimp actually
recognizes the hand gesture and executes the correct
action later.

Through these unsuccessful interactions, we dis-
cover that it is important for the blimp to commu-
nicate its intentions to humans. To achieve bidirec-
tional communication between the human user and
the blimp, we install an LED matrix screen on GT-
MAB and it displays what the blimp is “thinking.”
The LED screen gives the human instantaneous feed-
back during the interactive process and shows the
human the status of the blimp: whether it detects
the user and understands his/her hand gesture. The
spatially close interaction with the blimp enables the
human to see the visual feedback from the LED dis-
play, and the visual feedback helps the human user
take the correct action for the next step and increase
the efficiency and satisfaction of the interaction.

We design four visual patterns on the LED dis-
play to represent the four intentions of the blimp
(Fig. 7). The first pattern, which is the letter “R” in
Fig. 7a, indicates that the user’s face has been de-
tected, and GT-MAB is ready to detect the human’s
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(a) (b) (c) (d)

Fig. 7 LED feedback display: (a) face is detected;
(b) hand is detected; (c) a hand is not detected or a
valid gesture is not recognized; (d) a valid gesture is
detected, ready to fly

hand. This is a positive feedback. When the hu-
man user sees this pattern, the human should place
his/her hand near the face and start a vertical or hor-
izontal hand movement. The second pattern, which
is the “check” mark in Fig. 7b, represents that the
blimp has successfully detected a human face and a
hand in the initial gesture region, and it is in the pro-
cess of recognizing the human’s gesture. This is also
a positive feedback. When the human user sees this
pattern, the human should continue moving his/her
hand. The third pattern, which is the “cross” mark
in Fig. 7c, means that no hand has been detected in
the initial gesture region or that the blimp cannot
recognize a valid hand gesture. This is a negative
feedback from the blimp that tells the human there
was a mistake during the interaction. When seeing
this pattern, the human user should place his/her
hand in the initial gesture region and redo the ges-
ture. The last pattern, shown in Fig. 7d, indicates
that GT-MAB recognizes a valid hand gesture and
it is going to make the corresponding motion. When
seeing this pattern, the human user can see if the
blimp successfully recognizes the gesture by check-
ing whether the blimp is making the correct motion.
Once the blimp completes the motion and returns to
the initial position, the joint face and hand detec-
tor is triggered to detect the human face. If a face
is detected, the pattern “R” is displayed again and
the human can perform the next hand gesture. The
whole interaction procedure repeats.

6 Localization and control algorithms

In this section, we present the last two steps in
the HRI design for GT-MAB: vision-based human
localization and blimp motion control.

6.1 Relative position estimation

GT-MAB localizes a human using its onboard
monocular camera only. This is different from most

other blimps which use an external system to localize
humans, such as indoor localization or fixed external
cameras (Srisamosorn et al., 2016).

We assume that the camera satisfies the pinhole
camera model (Corke, 2011), which defines the rela-
tionship between a 3D point P = [xP , yP , zP ]

T ∈ R
3

in the camera coordinates OCXCYCZC and a 2D
point P ′ = [iP , jP ]

T in the camera image frame
OIXIYI :

⎡
⎣
iP
jP
1

⎤
⎦ =

⎡
⎣
fi 0 i0 0

0 fj j0 0

1 0 1 0

⎤
⎦

⎡
⎢⎢⎣

xP
yP
zP
1

⎤
⎥⎥⎦ , (2)

where fi and fj are the focal lengths in the XI and
YI directions respectively, and [i0, j0]

T is the optical
center of the image. Here, we assume that fx and fy
are both equal to the focal length f and [i0, j0]

T is
the center of the image.

The illustration of human position estimation
is shown in Fig. 8. Because the pitch and roll an-
gles of the blimp are very small, we can assume that
the camera projection plane is always perpendicu-
lar to the ground; i.e., YC is perpendicular to the
ground. This assumption does not hold for quad-
rotors because they need to change the pitch angle
to fly forward or backward. GT-MAB provides a
certain convenience for support of vision-based HRI
algorithms because the pitch and roll angles of the
onboard camera can be controlled to be zero. Line
AB represents the center line of the human face and
we assume that it is parallel to the image plane; i.e.,
the plane of the human face is also perpendicular

OI XI

YI

OC XC

YC

Projection plane

Face plane

A

P

B

ZC

O

O’

A’

P’

B’

Fig. 8 Illustration of relative distance estimation
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to the ground. Point P = [xP , yP , zP ]
T is the cen-

ter point of line AB. Points A′, B′, and P ′ are the
corresponding projection points. We denote the ac-
tual length of the human face as L0 := |AB| and
denote the length of the human face in the camera
projection plane as lf := |A′B′|.

In the calibration phase, we use the detection
algorithm introduced in Section 5.1 to compute a
human user’s face length, denoted as L0 in unit of
meters. The human stands away from the camera at
a fixed distance dL, and the position of the blimp is
adjusted such that the center of the human face is at
the center of the image frame. Then we run the joint
face and hand detector to detect the human face and
obtain the face length l0f in the image. Given l0f ,
dL, and f , the true human face length L0 can be
computed using

L0 = dL
l0f
f
. (3)

During the interaction experiments, the face
length lf from each image frame should satisfy the
following equation:

lf
L0

=
|A′B′|
|AB| =

|OCP
′|

|OCP | =
|OCO

′|
|OCO| =

f

zP
. (4)

Note that this equation holds only if line AB
is parallel to the projection plane. The estimated
localization of the human face [x̂P , ŷP , ẑP ]

T in the
camera coordinate frame can be computed as
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẑP =f
L0

lf
,

x̂P = ẑP · iP − i0
f

=f
L0

lf
· iP − i0

f
=
L0(iP − i0)

lf
,

ŷP = ẑP · jP − j0
f

=f
L0

lf
· jP − j0

f
=
L0(jP − j0)

lf
,

(5)

where the true face length L0 is known from Eq. (3)
and the camera focal length f can be obtained
through standard camera calibration.

6.2 Blimp control

Due to the modeling (Tao et al., 2018) and the
autopilot controller design (Cho et al., 2017), GT-
MAB can be easily controlled to maintain its position
or fly in certain patterned motions. In this subsec-
tion, we introduce three types of blimp controllers
that we design for HRI application.

6.2.1 Human following controller

To follow the human user and accurately track
the human’s hand trajectory, the goal for the hu-
man following controller is to control the blimp to
maintain a fixed distance d0 away from the human
and to keep the human face at the center of the
camera frame. The general blimp model has six de-
grees of freedom and is highly nonlinear and cou-
pled. Due to the self-stabilized physical design of
GT-MAB, we can use the simplified motion primi-
tives presented in Cho et al. (2017) to design three
independent PID controllers for stable human fol-
lowing behavior. A distance PID controller is de-
signed to control the relative distance d̂ to coverage
to the desired value d0. A height PID controller
is designed to control the height difference between
the human and blimp ĥ to be 0. A heading PID con-
troller is designed to control the difference ψ̂ between
the blimp’s heading angle and the human’s heading
angle to be 0◦. The measurements of d̂, ĥ, and ψ̂

can be calculated based on the estimated human po-
sition [x̂P , ŷP , ẑP ]

T, d̂ =
√
x̂2P + ẑ2P , ĥ = −ŷP , and

ψ̂ = arcsin(x̂P /d̂). The PID parameters are shown
in Table 1.

Table 1 PID controller gains

Controller P I D

Distance 0.0125 0 0.0658
Height 1.3120 0.0174 1.4704
Yaw 0.3910 0 0.3840

6.2.2 Blimp motion controllers

If a valid hand gesture is recognized, the blimp
should not only follow the human but also make the
corresponding motion controlled by the blimp mo-
tion controllers.

1. Backward motion controller
Once a vertical gesture is recognized, the back-

ward motion controller is triggered, which also con-
sists of three independent controllers for distance,
height, and heading angle. The height and heading
controllers are the same as the human following con-
troller. The distance controller switches to an open-
loop backward motion controller, which linearly in-
creases the thrust of the two horizontal thrusters on
GT-MAB until the thrust reaches its maximum lim-
its. Under this controller, GT-MAB flies backward
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(away from the human). The open-loop backward
motion controller can achieve a faster and more obvi-
ous motion compared to the feedback PID controller.
Once the relative distance between the human and
GT-MAB reaches (d0 + 0.6) m, the backward mo-
tion is completed. The backward motion controller
switches to the human following controller and then
GT-MAB flies towards the human until it reaches
the initial interaction distance d0.

2. Spinning motion controller
Once a horizontal gesture is recognized, a spin-

ning motion controller is activated. To achieve a
spinning motion, all three PID feedback controllers
for human following behavior are disabled. The spin-
ning controller directly sets two opposite thrusts for
the two horizontal thrusters so that GT-MAB can
start to spin. The two opposite thrusts last 2.5 s.
After 2.5 s, the horizontal thrusters stop but the
spinning motion continues because of inertia. Once
GT-MAB returns to its initial heading direction, the
human face appearing in the video stream can be
detected again and the spinning controller switches
back to the human following controller.

7 Experiments and results

We conducted two HRI experiments on GT-
MAB which validated the capabilities of GT-MAB
in support of HRI. We first tested the ability of GT-
MAB to follow a human and collect human data.
Then we invited multiple human participants to in-
teract with GT-MAB and collected the users’ feed-
back to examine how participants felt about the pro-
posed interactive procedure and how the LED vi-
sual feedback on GT-MAB affected the interactive
experience.

7.1 Human following experiment

In this experiment, a human user served as the
leader and the blimp served as the follower. As the
human moved up, down, right, left, forward, and
backward, the blimp followed the human to the ex-
tent that the human was not moving abruptly. We
set the desired relative distance d0 between the hu-
man and the blimp to 0.4 m, which regulates the
blimp to follow the human in the intimate zone. We
used an external real-time localization system, Op-
tiTrack, to measure the 3D position of GT-MAB.
Meanwhile, we used the localization method intro-

duced in Section 6.1 to estimate the human trajec-
tory online, given the position of GT-MAB from Op-
tiTrack. To test the human following performance,
we also used OptiTrack to obtain the accurate 3D
position of the human, but the OptiTrack data for
the human user were used only as ground truth to
analyze the performance of our method. The data
used for implementing human following functional-
ity and blimp control were from the onboard camera
only.

Fig. 9 shows a 3D view of the estimated human
trajectory, true human trajectory, and blimp trajec-
tory. The red solid line represents the online esti-
mated human trajectory computed by our method.
The blue dashed line represents the true trajectory
of the human measured by OptiTrack. The black
dotted line represents the trajectory of the blimp
from OptiTrack. The coordinates in this figure are
the OptiTrack coordinates in meters. Fig. 10 shows
a top view of the blimp and the human trajecto-
ries. Fig. 11 shows the height of the estimated hu-
man, true human, and the blimp trajectories in the
Z axis of the OptiTrack system. The human kneeled
down once to test the height control and the blimp
can change its height corresponding to the human
height. From the three figures, we can see that the
estimated human trajectory and the true human tra-
jectory matched well to a certain degree. There were
some errors between the estimated trajectory and
true human trajectory, even though the errors were
not significant (the maximum error was 0.38 m in
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0.0

X (m)Y (m)
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Fig. 9 Three-dimensional view of the estimated hu-
man, true human, and blimp trajectories. The start-
ing positions are represented by the circles, and the
ending positions are represented by the stars. Refer-
ences to color refer to the online version of this figure
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Fig. 11 Z positions of the estimated human, true
human, and blimp trajectories

the XY plane and 0.11 m in the Z axis). The er-
rors were mainly due to the blimp vibrations caused
by the wind from an air conditioner in our lab. Al-
though the vibration was small and can be stabilized
after a few seconds, the assumption that the camera
projection plane is parallel to the human face does
not hold during transitions. The errors can be re-
duced by conducting the experiment in a no-wind
environment, or be compensated for by a low-level
controller to better stabilize the vibration.

7.2 Evaluation of human-blimp interaction

We conducted a user study with the goal of com-
paring the human experience during interaction with
the blimp with and without an LED display. Our
goal was to verify whether the blimp’s immediate
visual feedback from the blimp to the human could
improve the interaction.

The main hypothesis in this experiment is that
human users will experience different levels of com-
fort with or without the LED display feedback from
the blimp. This was assessed using the time du-

ration of each interaction and a survey after the
interactions.

We recruited a total of 14 participants to test
the human-blimp interactive procedure designed in
this study. The participants included 7 males and
7 females. The average participant age was 26.14

years old with a range of 21 to 44 years old. Six
participants reported a prior familiarity with UAVs
and eight participants reported a low familiarity with
UAVs.

7.2.1 Experimental procedure

Each participant was directed to perform the
procedure in a lab setting independently, i.e., with-
out the attendance of other participants but under
the guidance and supervision of the experiment as-
sistants. We randomly separated the 14 users into
two groups, groups A and B. Each group had seven
participants. Participants from group A controlled
the blimp without LED feedback first and with LED
feedback later. Participants from group B performed
the test with LED feedback first and tested without
LED later. The study took approximately half an
hour and consisted of three parts: pre-interaction,
interaction, and post-interaction.

1. Pre-interaction
The pre-interaction began when a participant

was greeted and provided consent forms with infor-
mation about the study objective and his/her rights
as a participant. After signing the consent forms, a
participant was taken to the experiment room and
guided by the experiment assistants through a few
preparatory steps to learn how to interact with GT-
MAB: (1) An experiment assistant first played a
video to the participant, demonstrating a valid hor-
izontal hand gesture and a valid vertical hand ges-
ture, and the corresponding blimp motions for each
gesture. All participants watched the same video.
(2) The assistant showed the participant pictures
of the LED display patterns and informed the par-
ticipant of the meaning of each pattern and what
they should do after seeing each pattern. (3) The
assistant demonstrated the experiment process to
the participant. After the preparation, the partic-
ipant was asked to practice commanding the blimp
to spin and fly backward using the two valid hand
gestures with and without LED display. The prac-
tice stopped when the participant felt confident that
he/she could control the blimp using both hand
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gestures. The practice time was less than 10 min
for all participants.

2. Interaction with GT-MAB
The participants were asked to use the two ges-

tures, horizontal and vertical hand movements. The
order of the gestures could be determined by the
participant. The first trial conducted by the partic-
ipant was labeled as trial 1 (without LED feedback
for group A and with LED feedback for group B) and
the second trial conducted by the participant was la-
beled as trial 2. At the beginning of each trial, the
participant was asked to stand at a fixed location in
the experiment room and the location was unknown
to the blimp. The blimp was released in front of
the participant at around 1.2 m away. After the
blimp was released, it automatically approached the
participant and the interactive distance was set to
0.5 m, i.e., d0 = 0.5 for the distance PID controller.
When the blimp arrived at the desired interaction
position and the human face was detected, a timer
started. Meanwhile, the participant was informed by
the assistant that he/she could start to perform the
gesture. When the blimp recognized a valid gesture
from the participant, the timer stopped. After trial
1, the participant was required to repeat the gestures
to control the blimp for trial 2. The order of gestures
was required to be the same as that for trial 1.

3. Post-interaction
After completing both trials, the participants

were taken out of the experiment room and asked to
fill out a survey form. The survey collected infor-
mation including whether the participant thought
the blimp took the correct action based on each ges-
ture the participant performed, which trial brought a
better interactive experience, as well as notes about
the experiment in general and the interactions with
GT-MAB.

7.2.2 Results and analysis

Experimental results showed that most of the
users can interact with the autonomous blimp. There
were only two gesture recognition errors among all
56 blimp control tests. The horizontal gestures from
participants 7 and 9 without LED feedback were rec-
ognized as vertical gestures by the blimp. All the
gestures with LED feedback were correctly recog-
nized. This confirms that the human-blimp inter-
action procedure has a high success rate when used
by participants who go through a short training pe-

riod. We measured the amount of time that the
blimp took to recognize a gesture from each trial of
each participant. The time duration without LED
feedback is denoted as tNL, and the time duration
with LED feedback is denoted as tL. The time du-
ration is in seconds. We also recorded videos of the
participant’s gestures and the blimp’s corresponding
motions to compare with the participant’s answers
collected from the survey form.

The time durations for horizontal gesture com-
mands are shown in Fig. 12a. The blue circles
represent the experimental results of participants
1, 2, 3, 7, 9, 12, and 14 from group A, who completed
the gesture without LED feedback first and with
LED feedback later. The red circles represent the
experimental results of participants 4, 5, 6, 8, 10, 11,
and 13 from group B, who completed the gesture
with LED feedback first and without LED feed-
back later. Nine participants (data points below the
dashed line) took less time to finish the horizontal

Fig. 12 Time duration for gesture recognition: (a)
horizontal gesture; (b) vertical gesture. The red cir-
cles represent the data from group A and blue circles
represent the data from group B. The dashed line
represents the line where tNL = tL. The number near
each circle represents the index of each user. Refer-
ences to color refer to the online version of this figure
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gesture with LED feedback. Participants 10 and 13

took almost the same time to finish the horizontal
gesture with and without LED feedback. Partici-
pant 2 took slightly more time (about 0.3 s) to finish
the horizontal gesture with LED feedback. Partic-
ipants 5 and 8 took about 1.5 s more to finish the
horizontal gesture with LED feedback.

The time durations for vertical gesture com-
mands are shown in Fig. 12b. The blue circles rep-
resent the experimental results of group A and red
circles represent the results of group B. Eight partic-
ipants (data points below the dashed line) took less
time to finish the vertical gesture with LED feedback.
Participants 2, 3, 10, and 12 took almost the same
time to finish the vertical gesture with and without
LED feedback. Participants 7 and 9 took more time
to finish the vertical gesture with LED feedback. For
both gestures, most of the participants took less time
to command the blimp with LED feedback.

The average time to complete a gesture that
could be successfully recognized by the blimp across
the 14 participants is shown in Table 2. For hori-
zontal gestures, the average recognition time was re-
duced by 2.7545 s (24.7%) with LED feedback com-
pared to the average time without LED feedback.
For vertical gestures, the average recognition time
was reduced by 2.1981 s (16.1%) with LED feedback
compared to the average time without LED feed-
back. These results confirmed that the simple visual
feedback improves the interactive efficiency between
the human and the blimp.

Table 2 Average time with or without LED feedback

Gesture
Time (s)

Without LED With LED

Horizontal 11.1567 8.4022
Vertical 13.6597 11.4616

The participants were asked to choose which
trial (with or without LED) provided them a bet-
ter interactive experience. The preferences among
all participants are shown in Fig. 13. Eleven partic-
ipants out of 14 reported that the interaction with
LED feedback is better. Participant 14 chose the in-
teraction without LED feedback because participant
14 mentioned in the survey that he/she felt nervous
when seeing the negative feedback from the blimp, so
participant 14 preferred the interaction without LED
even if the blimp might misunderstand his/her com-

mands. Participants 2 and 10 replied that the two
interactive trials provided the same HRI experience
for them. From the data we collected, participant 2
took a very short time (less than 3.5 s) to complete
every gesture with and without LED, so participant
2 was very effective at controlling the blimp using
hand gestures. Therefore, the visual feedback was
not crucial for this participant. It was a similar case
for participant 10, who took almost the same time
to complete each gesture. All of the other 11 par-
ticipants replied in the survey that the LED visual
feedback provided a better interactive experience be-
cause they knew what the blimp was “thinking.”
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Fig. 13 Users’ preference of a better human-robot
interaction experience

8 Conclusions

We have presented a novel robotic platform,
an autonomous robotic blimp equipped with only
one monocular camera, which enables an uninstru-
mented human to use hand gestures to interact with
the robot. The deep neural network design can ef-
fectively recognize human face and hands. The pro-
posed learning algorithm can distinguish horizontal
hand movements and vertical hand movements. The
blimp reacted to humans via immediate feedback and
patterned motions. We collected experimental data
to show that GT-MAB has reliable human detection
and human following capabilities. A user study was
conducted to verify that the proposed HRI procedure
can enable natural interaction between a human and
a robotic blimp. We also discovered that simple vi-
sual feedback improves the interactive experience.
Future work will improve the perception and learn-
ing algorithms so that more gestural commands can
be interpreted by the blimp. We also acknowledged
that participant groups that are more broadly rep-
resentative of the potential users should be recruited
to test the design of GT-MAB.
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