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Abstract: Image classification is an important application of deep learning. In a typical classification task, the classification 
accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural 
network, often used for dimensionality reduction and feature extraction. The proposed method is based on the traditional auto-
encoder, incorporating the “distance” information between samples from different categories. The model is called a semi- 
supervised distance autoencoder. Each layer is first pre-trained in an unsupervised manner. In the subsequent supervised training, 
the optimized parameters are set as the initial values. To obtain more suitable features, we use a stacked model to replace the basic 
autoencoder structure with a single hidden layer. A series of experiments are carried out to test the performance of different models 
on several datasets, including the MNIST dataset, street view house numbers (SVHN) dataset, German traffic sign recognition 
benchmark (GTSRB), and CIFAR-10 dataset. The proposed semi-supervised distance autoencoder method is compared with the 
traditional autoencoder, sparse autoencoder, and supervised autoencoder. Experimental results verify the effectiveness of the 
proposed model. 
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https://doi.org/10.1631/FITEE.1900116 CLC number: TP391.9 
 
 
1  Introduction 

 
Image classification has become a hotspot in 

machine learning over the last few years. In a classi-
fication task, the key issues are dimensionality re-
duction, extraction of high-level features, and re-
moval of redundant information (Haralick et al., 1973; 
Sun YN et al., 2017). He et al. (2018) and Peng et al. 
(2018) separately proposed different supervised ap-
proaches for fast fine-grained image classification. 
Such methods aim at addressing time- and labor- 
consuming problems. He et al. (2019) proposed a 

multi-scale and multi-granularity deep reinforcement 
learning approach to discriminate similar subcatego-
ries belonging to the same superclass. 

As the data dimension increases (Bianco et al., 
2018; Feng and Duarte, 2018; Rahmani et al., 2018), 
such as with video and image data, the dimensionality 
reduction of the data becomes a necessity. When ap-
plying machine learning models, high-dimensional 
data may lead to many problems. The most serious 
one is overfitting, i.e., high accuracy in the training 
set but a low score in the test set. In addition, the 
extracted low-dimensional data can effectively reduce 
the computational complexity and help better under-
stand the data (Bengio et al., 2013; Meng LH et al., 
2018). 

The autoencoder (AE) (Kingma and Welling, 
2016; Santana et al., 2016) is a typical neural network 
structure, learning features from the input data, in a 
process called encoding. Then, the original input data 

Frontiers of Information Technology & Electronic Engineering 

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com 

ISSN 2095-9184 (print); ISSN 2095-9230 (online) 

E-mail: jzus@zju.edu.cn 

 

‡ Corresponding author 
* Project supported by the National Natural Science Foundation of 
China (Nos. U1664264 and U1509203) 

 ORCID: Liang HOU, https://orcid.org/0000-0003-0887-627X; 
Jun LIANG, https://orcid.org/0000-0003-1115-0824 
© Zhejiang University and Springer-Verlag GmbH Germany, part of 
Springer Nature 2020 

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1900116&domain=pdf


Hou et al. / Front Inform Technol Electron Eng   2020 21(7):1005-1018 
 

1006

can be reconstructed based on the learned features, in 
a process called decoding. Through the processes of 
encoding and decoding, the output vector is recon-
structed by the least but most representative infor-
mation (Bengio, 2009; Tolstikhin et al., 2017). The 
basic AE is an unsupervised learning method (Hinton 
and Salakhutdinov, 2006; Hinton, 2007; Taherkhani 
et al., 2018). Usually, the mean squared error (MSE) 
between the output and input is used as a term of the 
objective function. The reconstruction error decreases 
as the training loss decreases (Vincent et al., 2010). 
Based on the AE proposed by Hinton, many improved 
models of AEs have been proposed. Deng et al. (2013) 
proposed a sparse AE (SAE) to create transfer learn-
ing based on the features. Zhang et al. (2016) pro-
posed a denoising AE to extract and combine robust 
features against variable noise. Rifai et al. (2011) 
added a penalty into the traditional AE and proposed 
the contractive AE (CAE) for feature extraction. Xu 
et al. (2016) applied a semi-supervised variational AE 
(VAE) into the field of text classification and added a 
conditional long short-term memory model, making 
the text classification more effective. Wang et al. 
(2014) proposed a generalized AE (GAE), taking the 
relevance of the data into consideration by adding a 
weighted relational function to modify the AE. 

If there are a sufficient number of data samples 
with labels, carrying out supervised learning is the 
first choice. If there are a limited number of data 
samples with labels, we have to resort to unsupervised 
learning. Some AEs, such as the SAE, are unsuper-
vised learning models that extract features from un-
labeled data. Some unsupervised methods (Gong et 
al., 2013; Tang et al., 2015) aim at generating hash 
codes by capturing a feature when the similarity in the 
feature space is preserved. Thus, these unsupervised 
methods retrieve the neighbors according to the Eu-
clidean distance in the feature space, which does not 
always achieve a good performance. However, col-
lected data samples without labels are universal in the 
real world, so it is important to make full use of the 
unlabeled data for supervised learning models. 

Metric learning, also called distance metric 
learning (Du et al., 2018), is a typical classifier in 
unsupervised learning. DeepID2 is one of the metric 
learning ideas in the field of face recognition based on 
the deep learning proposed in Sun Y et al. (2014). A 
“feature,” also called the DeepID2 vector, increases 

the difference between different classes, extracts 
features from different faces, and reduces the differ-
ence between intra-classes. DeepID2 uses face veri-
fication information and face identification infor-
mation on the same network, both of which are su-
pervised signals. Contrastive loss was introduced into 
the verification loss in the feature layer, making the 
distance for the same person’s face in the feature 
space small and the distance for other people’s faces 
large. If we do not consider the label information and 
introduce it into the loss function, we may lose the 
intrinsic information between different classes. Based 
on the above introduction, the contributions of this 
study are as follows: 

1. To leverage the advantages of unsupervised 
training methods and class information, a semi- 
supervised learning method is proposed. 

2. To obtain deep information, the stacked AE is 
proposed. 

3. Distance information is introduced into the 
objective function for improving the classification 
performance. 

 
 

2  Related work 
 

In this section, we briefly introduce the models 
used in this study, including the AE, SAE, some im-
proved AEs, and the softmax function for classification. 

2.1  Autoencoder 

The AE is an unsupervised learning algorithm 
whose goal is to keep the difference between the input 
and output as small as possible. The traditional basic 
AE is a three-layer neural network: an input layer, a 
representation layer, and an output layer. The diagram 
of its network structure is shown in Fig. 1. X=(x1, 
x2, …, xn)D×n is an n-dimensional dataset and xi 
(i=1, 2, …, n) is the ith D-dimensional data sample. 
Y=(y1, y2, …, yn)D×n contains the reconstructed 
input samples. The entire network consists of two 
networks called the encoder and decoder, respectively. 
The representation layer, as the core part of the whole 
network, expresses the compressed features of the 
high-dimensional data. 

The theory behind the AE is as follows: first, the 
weights of the encoder and decoder are initialized,  
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and then the AE is trained according to an L2 penalty 
and MSE between the original data and the recon-
structed data. 

The encoding process is as follows: 
 

( ),h Wx bhf                            (1) 
( ) 1 / [1 exp( )],x xf                       (2) 

 
where f(x) is called the activation function, chosen to 
be the nonlinear sigmoid function, W is the weight 
matrix of the encoder, and bh is the bias of the input. 

The decoding process is as follows: 
 

( ),y W h bvf                           (3) 
 

where W′ is the weight matrix of the decoder (in the 
following experiment, W′=WT, also called the tied 
weights), bv is the bias in the output layer, and y ob-
tained here is the reconstruction of the original data. 

The reconstruction error between the recon-
structed data y and input data x is formulated as 
 

2
MSE

1
( ) ,x y

m

i i
i

J


                       (4) 

 

where m is the number of samples, xi is the input  
 
vector, yi is the output vector, and θ is the set of all 
parameters in the network. 

To prevent overfitting during the training pro-
cess, a weight regularization term is usually added to 
the objective function to put limits on the network 

parameters. The weight regularization term in the 
following experiments is formulated as 
 

 
12 2( )

w
1 1 1

( ) ,
2

l ls s
l

ji
l i j

J w
 

  

               (5) 

 
where γ determines the value of the weight regulari-
zation term in the objective function, l is the number 
of layers in the network, sl is the dimensionality of the 
lth layer, and wji is the element in the ith row and jth 
column. 
 

cost MSE w( ) ( ) ( ).J J J                  (6) 
 

2.2  Stacked autoencoder 

As we know, the power of deep networks is that 
they can learn more comprehensive representations  
of raw data layer by layer. Each layer is based on the 
previous expression, which tends to be more abstract 
and more suitable for complex tasks such as  
classification. 

A single AE can learn a representation through a 
three-layer (encoder-representation-decoder) network. 
In fact, when the training is over, the output layer is of 
no use. Now, we will simply focus on the expression 
of features.  

During the whole training process of the stacked 
AE, we use a layer-by-layer pre-training strategy; i.e., 
the self-encoding transformation between every two 
layers is trained, and a layer’s parameters are taken as 
the initial values of the next layer. The layer-by-layer 
approach can stabilize the convergence. Once a stack 
of encoders has been built, its output representation of 
the highest level can be used as input to a stand-alone 
supervised learning algorithm as shown in Fig. 2. The 
parameters of all layers can then be simultaneously 
fine-tuned using a gradient procedure such as sto-
chastic gradient descent (Du et al., 2018). 

2.3  Sparse autoencoder 

As a neural network model based on feature ex-
traction methods, a major advantage of the AE is its 
simple structure. The SAE is also an unsupervised 
learning method. In the SAE, the number of nodes in 
the hidden layer is greater than the number of input 
nodes, most nodes in the hidden layer are  

Fig. 1  Automated encoder network structure 
“+1’ denotes the bias of the layer. hW,b(x) is the activation 
function 
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“suppressed,” and only a small portion are in an “ac-
tive” state. 

In an AE network structure, if 2a j  represents the 
activation value of the jth hidden node, then the av-
erage activation value of the jth hidden node in the 
training data xi can be represented as follows: 
 

2

1

1ˆ ,a x
m

j j i
im




                           (7) 

 

where the sparsity limitation ˆ
j    is added to 

make the neuron in the jth hidden layer close to ρ, and 
ρ indicates the sparsity parameter. To satisfy this 
limitation, in most cases the activation value of the 
neuron is close to zero, and there are only a small 
number of neurons that are not close to zero. 

To achieve sparsity, we also need to add a pen-
alty term in the objective function, which encourages 
the parameters to stay close to ˆ .j   

The penalty term for the SAE is as follows: 
 

2

sparse
1

1( ) ln (1 ) ln ,
ˆ ˆ1

s

j j j

J
  
 
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where s2 is the number of neurons in the hidden layer. 
To facilitate writing it, we have 

 

1ˆKL( || ) ln (1 ) ln ,
ˆ ˆ1j

j j

    
 

   
           

     (9) 

where ˆKL( || )j   is a way to quantify the difference 

between two probability distributions ρ and ˆ ,j  also 
known as relative entropy. The larger the relative 
entropy, the greater the difference between the two 
parts. When ˆ= ,j   ˆKL( || )=0;j   it means that 
these two distributions are the same. With the increase 
of the difference between ρ and ˆ ,j  ˆKL( || )j   
increases. Therefore, minimizing this term can bring 
ˆ

j  closer to ρ. 
Combining Eq. (6), the objective function of the 

SAE is as follows: 
 

cost MSE w sparse( ) ( ) ( ) ( ).J J J J            (10) 
 

2.4  Softmax regression model 

The softmax regression model allows multiple 
classification results, not just two. For a softmax 
classifier, the probability output function is shown as 
follows: 
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These are parameters in the softmax model, in-
cluding the bias. θj represents the jth row of matrix θ. 
The objective function can be expressed as  
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where θij is the element in the weight matrix, j is the jth 
term of the input layer, i is the ith term of the output 
layer, and λ2 is a weight attenuation matrix. The ex-
pression of the indicator function is given as follows: 
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                (13) 

Fig. 2  Fine-tuning of a deep network for classification 
After training a stack of encoders as explained in the figure, 
an output layer is added to the stack. The parameters of the 
whole system are fine-tuned to minimize the error in pre-
dicting the supervised target (e.g., class), by performing 
gradient descent on a supervised cost 

x

fθ

fθ
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fθ
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3 Extracting features and the distance  
autoencoder 

 
In this section, before introducing feature ex-

traction and the distance AE (DAE), an introduction 
to the supervised AE (Sv-AE) is given (Du et al., 
2018). We take this state-of-the-art method as our 
baseline. 

Given training data x=(x1, x2, …, xD) and label 
vector y=(y1, y2, …, yD), where yi (i=1, 2, …, D) has 
only one non-zero element (yic=1 denotes that exam-
ple xi belongs to class c), the input is first prepro-
cessed as described above. The obtained input is de-
noted as ( , ),z x y    the encoding process of the 
Sv-AE can be expressed as follows: 

 
( ),h Wx Uy bf                      (14) 

 
and the decoding process is added with a label re-
construction requirement: 
 

( ),
( ),

v W h b

l U h c

f

g

 
  

 


                     (15) 

 
where the activation function f and the network pa-
rameters (W, W′, b, b′) are similar to those described 
in the traditional AE. The objective function is as 
follows: 

 

Sv-AE 1 2
1 1( ) ( , ) ( , ),

x x

y l x v
n nD D

J L L
n n


 

    (16) 

 
where L1 and L2 denote the reconstruction errors of 
the label and data, respectively. λ is a hyperparameter 
that controls the trade-off between data reconstruction 
and label reconstruction. For details, please refer to 
Du et al. (2018). 

3.1  Feature extraction 

The traditional AE is an unsupervised learning 
algorithm, using a backpropagation algorithm to 
make the output value as close as possible to the input 
value. An AE consists of two parts, the encoding 
process and decoding process. For a trained AE, the 
vector containing the activation value of each layer 
composed of units a(2)=(a1

(2), a2
(2), …, an

(2)) can rep-

resent the input vector x=(x1, x2, …, xm); namely, a(2) 
is a new feature value of x in the new feature space. 
Assuming that there are n units in the hidden layer, 
then there are n new features (namely ai

(2) is n-  
dimensional). The compression of high-dimensional 
data into low-dimensional data to acquire features can 
be linear or nonlinear. A traditional AE is a nonlinear 
process mapping the original data to the hidden layer. 
Selecting different activation functions to extract 
features can satisfy different demands. The com-
pressed data should reflect the characteristics of the 
original data as much as possible, so that the data 
features are more expressive, and the performance of 
the trained classifier will be better. 

In the process of encoding, if no restrictions are 
imposed on the network, it is difficult to obtain fea-
tures that are more expressive than the original input 
data. Therefore, we need to apply some constraints to 
effectively extract useful information and eliminate 
noise. For example, considering a given dataset X 
with n samples and a features, the original feature set 
is denoted as Yi and the feature extraction function f 
generates a new feature set Yo, where |Yo|<|Yi|. Gen-
erally, the objective functions of the feature extraction 
methods minimize the difference between the original 
space Yi and the new space Yo (Meng QX et al., 2017). 
Moreover, the encoding process adopts the activation 
function as a nonlinear process; the weighting ma-
trices of the encoding and decoding processes of the 
following experiments use the binding matrix to en-
hance the nonlinearity of the mapping process. 

3.2  Distance autoencoder 

The traditional AE simply relies on minimizing 
the error between the input and reconstructed signals 
to obtain the feature representations of the hidden 
layer from the input; however, this training strategy 
does not guarantee the most representative feature of 
the extracted data. The feature that the encoder has 
learned may cause the reconstruction information to 
be only a duplicate of the original input. In a multi- 
category task, the “distance” between different clas-
ses largely reflects whether the two categories can be 
easily classified correctly. If the “distance” between 
the centers of the two different classes is small (that is, 
the centers are close to each other), it is difficult to 
distinguish the categories to which they belong. If the 
“distance” between the two different classes is  
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relatively large, it is easier to determine the categories 
to which they belong. Suppose there are three dif-
ferent classes (Fig. 3), and “distance” is the distance 
between the center point of label 1 and the center 
point of label 2. Similarly, the distance between each 
two class labels is the distance between their respec-
tive centers. The SAE is an improved form of AE. It 
introduces the sparsity penalty into the loss function 
and minimizes the loss function to generate new 
features; the SAE uses the label information to train 
the classification model mentioned above. Inspired by 
this, we propose the DAE. By introducing distance 
into the loss function and minimizing the objective 
function, we can improve the classification accuracy 
of the classifier. Specifically, the loss function is de-
fined as follows: 

 
cost MSE w sparse

( 1)/2

1

( ) ( ) ( ) ( )

               distance,
m m

i

J J J J






  

 
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        (17) 

 
where JMSE(θ), Jw(θ), and Jsparse(θ) have the same 
meanings as in Eq. (10), m is the number of label 
categories, ( 1)/2

1
distancem m

i



  is the sum of the dis-

tances between labels, and β is the weight coefficient 
in the loss function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
There are multiple representations for “dis-

tance,” such as the Euclidean distance, Manhattan 
distance, and Chebyshev distance. Here, the distance 
in Eq. (17) is chosen as the Euclidean distance. 

However, in many cases, owing to a variety of 
reasons, the labeling of our data may not be complete. 

So, we use the unlabeled data to pre-train the network. 
In the experiments below, we manually delete some 
labels of the data to simulate cases where the data are 
contaminated. Based on the discussion above, we 
propose a semi-supervised DAE (Algorithm 1), and 
the flowchart is shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Illustration of the distances between three labels
“distance” means the distance between each two class 
centers 

Algorithm 1    Distance autoencoder 
Input: data matrix XD×n, parameters α>0, β>0, γ>0 
1    Initialize AE
2    model=DiscriminatedAutoencoder(θ, β) 
3    a=model.encoder(Xunlabeled) 
4    Xreconstruction=model.decoder(Xunlabeled) 
5    Minimize Jcost(θ)=JMSE(θ)+γJw(θ) 
6    alabeled=model.encoder(Xlabeled) 
7    Xreconstruction=model.encoder(alabeled) 
8    Calculate the center of each label (m labels) 
9    distance=0
10  for (i=1; i<m; i++) do

11     for (j=i; j<=m; j++) do

12         distance=Σ||centeri−centerj|| 
13     end for

14  end for

15  Minimize Jcost(θ)=JMSE(θ)+γJw(θ)+αJsparse(θ) 

                                   
( 1)/2

1
distancem m

i
 


   

16  prediction=model.fit
17  Classify the results

Fig. 4  The algorithm process for the semi-supervised 
autoencoder 
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Number of epochs>1000 ?
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L2 penalty, and the sum of distances
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data
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Predict the classification results
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training
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N
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4  Experimental results 

4.1  Datasets 

4.1.1  MNIST dataset 

The MNIST dataset of handwritten digits is 
provided by the National Institute of Standards and 
Technique (NIST) and contains 60 000 training sam-
ples and 10 000 test samples. It has 10 labels from 
zero to nine (Fig. 5b). The size of each image is 28×28. 
Both the training set and test set are composed of 
handwritten numbers written by 250 different people. 
One hundred randomly selected images are shown in 
Fig. 5a. 

For the MNIST dataset, the two-dimensional 
distribution of the data is shown in Fig. 6. 

4.1.2  Street view house numbers 

The street view house numbers (SVHN) dataset 
is a real-world image dataset for developing machine 
learning and object recognition algorithms with a 
minimal requirement for data preprocessing and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

formatting. The SVHN was obtained from the house 
numbers in Google street view images and it has 10 
classes, 73 257 digits for training, and 26 032 digits 
for testing. 

There are 10 images in each category, shown in 
Fig. 7. 

4.1.3  German traffic sign recognition benchmark 

The German traffic sign recognition benchmark 
(GTSRB) is a multi-class, single-image classification 
dataset. We selected eight classes from it as our da-
taset. Fig. 8a shows the traffic signs randomly se-
lected from the GTSRB. Since the images were col-
lected in a real environment, the dataset includes a 
large number of images under various adverse condi-
tions such as low resolution, different illumination 
intensities, partial occlusion, the tilt of view, and mo-
tion blur, which can comprehensively reflect the 
practical application potential of the classification 
algorithm. 

4.1.4  CIFAR-10 

The CIFAR-10 dataset consists of 60 000 color 
images in 10 classes with 6000 images per class; it  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Two-dimensional distribution of the MNIST data: 
(a) original data before using the DAE; (b) reconstructed 
data after using the DAE 

(b)

(a)

Fig. 5  The original (a) and preprocessed (b) MNIST data

(a) 

(b) 
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represents a labeled subset which includes 80 million 
tiny images. Fig. 9 shows 10 random images from 
each class. There are 50 000 training images and 
10 000 test images. 

4.2  Experiment 

We carried out experiments using the datasets 
mentioned above. All models were carried out with 
the same configurations on the same dataset. Specif-
ically, when building the network structure, we ini-
tialized the encoder weight matrix using the standard 
normal distribution. For the decoder weight matrix, 
we used W′=WT. The activation function of each layer 
of the encoder and decoder was selected as the sig-
moid function. The objective function was trained with 
stochastic gradient descent (SGD) for 1000 epochs. 

To verify the semi-supervised algorithm, we 
took some data from the original data as labeled and 
unlabeled data respectively. The setting values of this 
ratio were 10%, 30%, 50% (meaning that 10%, 30%, 
or 50% labeled/unlabeled data were extracted from 
the original data). Specifically, when we took 50%  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
unlabeled data (artificially erasing the label) from the 
original data in unsupervised learning, the same un-
labeled data were used in supervised learning, and the 
rest of the labeled data were used for fine-tuning in 
the supervised learning process. Both the unlabeled 
and labeled data would be used in semi-supervised 
learning. 

At the beginning of the experiment, the classi-
fication performance of the DAE proposed in this 
study was compared with those of the traditional AE 
and the SAE (Wu et al., 2013). Then we compared the 
improved distance sparse autoencoders (distance 
sparse autoencoder, DSAE) with their original ver-
sions (SAE). We also incorporated the state-of-the-art 
Sv-AE mentioned in Section 3 as our baseline in the  
experiment. 

Glorot and Bengio (2010) pointed out that the 
AEs in each of contrast experiment have their own 
loss functions, but for feature extraction, all of the 
AEs take the MSE of the reconstruction error. The 
classifier uses the softmax function of the fully con-
nected layer. 

Fig. 7  The original (a) and preprocessed (b) SVHN data

(a) 

(b) 

Fig. 8  The original (a) and preprocessed (b) GTSRB data

(a) 

(b) 
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4.2.1  Comparison with AE, SAE, and the state-of- 
the-art algorithm 

We first compared the classification perfor-
mance of our proposed DAE with those of the tradi-
tional AE and the SAE on the datasets described 
above. To objectively evaluate the performance of our 
method, we compared it with the state-of-the-art 
Sv-AE algorithm. In the experiment, we explored 
different parameters of the autoencoder so that we can 
know how they affect the performance of the  
autoencoder.  

The original and reconstructed maps of the tra-
ditional AE, SAE, and DAE are shown in Figs. 10, 11, 
and 12, respectively. 

As we know, the smaller the magnitude of the 
reconstruction error is, the more distinct the recon-
struction map will be. From the results shown above, 
we can learn that the DAE has more effective classi-
fication than the traditional AE. 

To verify the effectiveness of our algorithm in 
real scenes, we carried out a recognition and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
classification experiment using traffic lights. We 
made a dataset (DS) with a training set consisting of 
1187 images and a test set consisting of 297 images. 
The traffic lights are shown in Fig. 13. The experi-
mental results are shown in Tables 1–3. 

4.2.2  Experiments on single autoencoders and 
stacked autoencoders 

In the experiment, we explored different values 
of the scaling parameter β, which determines the 
weights of the reconstructed data and the original data. 
The value of β ranged from zero to two in the step of 
0.02. Note that the AE and SAE do not have such a 
parameter; thus, their reconstruction loss does not 
change as β changes. The reconstruction loss was 
measured by the MSE, which confirmed that consid-
eration of the distance information is distinctive in the 
processes of encoding and decoding. The proposed 
DAE model was influenced by the weight parameter β, 
and the value of β depended on the datasets. 

We also evaluated the DAE as a pre-training  

(a) 

(b) 

Fig. 9  The original (a) and preprocessed (b) CIFAR-10 
data 

Fig. 10  Original and reconstructed maps of the tradi-
tional autoencoder: (a) MNIST dataset; (b) SVHN da-
taset; (c) GTSRB dataset; (d) CIFAR-10 dataset 

Original map

Reconstructed map

Original map

Reconstructed map

Original map

Reconstructed map

Original map

Reconstructed map

(a)

(b)

(c)

(d)
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strategy for building deep networks, using the stack-
ing procedure that we described in Section 2.2. We 
compared mainly the classification performance of 
networks pre-trained by stacking distance AEs 
(StackedDAE) with those of stacking traditional AEs 
and the corresponding improved versions. 

Tables 1, 2, and 3 are the results of the experi-
ments that 10%, 30%, and 50% labeled/unlabeled 
data were extracted from the original data,  
respectively. 

We compared the performance of the extended 
variants of the autoencoders to those of their original 
versions, and the results are listed in Table 1–3. The 
more data we used, the better the results we achieved. 
For small-scale datasets, the methods performed well; 
for CIFAR-10, the best classification accuracy 
achieved was only 0.6591. The classification accu-
racy of our own dataset was up to 0.9868. Thus, the 
proposed method prefers small-scale datasets. The 
proposed method achieved better results than the 
algorithms compared (including the state-of-the-art  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
supervised autoencoder algorithm). We observed that 
in most cases, considering the distance of the classes 
contributed to improving the classification perfor-
mance, suggesting that autoencoders can generate 
more robust and useful features with less information 
and that these features are the key to achieving good 
classification results. In the real scenes, our proposed 
method also achieved satisfactory results. According 
to the results above, we conclude that under the con-
dition of a lack of sufficient labeled data, unlabeled 
data can help improve the classification performance 
using our proposed method.  

Fig. 12  Original and reconstructed maps of the distance 
autoencoder: (a) MNIST dataset; (b) SVHN dataset; (c) 
GTSRB dataset; (d) CIFAR-10 dataset 

Fig. 13  Traffic lights in real scenes 

Fig. 11  Original and reconstructed maps of the sparse 
autoencoder: (a) MNIST dataset; (b) SVHN dataset; (c) 
GTSRB dataset; (d) CIFAR-10 dataset 
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5  Conclusions 
 

In this paper, we have proposed a semi- 
supervised stacked DAE model that can extract the 
features of high-dimensional data based on the dis-
tance information for a semi-supervised image clas-
sification problem. As we know, the traditional AE is 
an unsupervised method, which does not use label 
information. We have extended this principle to other 
major autoencoder models including the SAE. From 
the experiments, we argued that the labels’ distance 
information has an effect on the classification per-
formance. The proposed semi-supervised distance 
autoencoder models have been evaluated on several 
datasets, and the experimental results showed that by 
considering the distance information, more robust  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
features can be generated. The better features con-
tribute to improved classification results. 
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