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Abstract: Symbolic execution is an effective way of systematically exploring the search space of a program, and
is often used for automatic software testing and bug finding. The program to be analyzed is usually compiled
into a binary or an intermediate representation, on which symbolic execution is carried out. During this process,
compiler optimizations influence the effectiveness and efficiency of symbolic execution. However, to the best of our
knowledge, there exists no work on compiler optimization recommendation for symbolic execution with respect to
(w.r.t.) modified condition/decision coverage (MC/DC), which is an important testing coverage criterion widely
used for mission-critical software. This study describes our use of a state-of-the-art symbolic execution tool to carry
out extensive experiments to study the impact of compiler optimizations on symbolic execution w.r.t. MC/DC.
The results indicate that instruction combining (IC) optimization is the important and dominant optimization for
symbolic execution w.r.t. MC/DC. We designed and implemented a support vector machine based optimization
recommendation method w.r.t. IC (denoted as auto). The experiments on two standard benchmarks (Coreutils
and NECLA) showed that auto achieves the best MC/DC on 67.47% of Coreutils programs and 78.26% of NECLA
programs.
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recommendation; Symbolic execution
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1 Introduction

Testing is the mainstream method used in soft-
ware development to improve the quality of soft-
ware (Beizer, 2003). Software testing is a labor-
intensive and time-consuming process. Improving
the efficiency and evaluating the effectiveness are
challenging. Automatic testing aims to improve the
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efficiency of testing by different techniques, such as
automatic test-case generation (Cadar et al., 2008)
and automatic test execution (Fewster and Gra-
ham, 2000). On the other hand, many approaches
(Chen TY et al., 1998; McKeeman, 1998; Wong WE,
2001) have been proposed to evaluate the effective-
ness of testing. For example, in mutation testing
(Wong WE, 2001), the evaluation of effectiveness
is related to the number of mutants that the test-
case set can kill. The more mutants are killed,
the more effective the testing is. Program cover-
age is an important way of evaluating the effective-
ness of testing (Ammann and Offutt, 2016). The
higher the coverage achieved, the more effective the
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testing is. Until now, existing program coverage cri-
teria include statement coverage, branch coverage,
decision coverage, and modified condition/decision
coverage (MC/DC) (Zhu et al., 1997; Hayhurst and
Veerhusen, 2001; Jia Y and Harman, 2011; Su et al.,
2017).

Symbolic execution (King, 1976; Godefroid
et al., 2005) provides a general way for systemati-
cally exploring the search space of a program and
has been widely used for automatic test-case gen-
eration (Cadar et al., 2008; Godefroid et al., 2008),
such as KLEE (Cadar et al., 2008), Pex (Tillmann
and de Halleux, 2008), and CUTE (Sen et al., 2005).
Compared with random testing (Duran and Ntafos,
1984), symbolic execution based automatic testing
can generate test cases to achieve higher coverage
quickly. In addition to test case generation, sym-
bolic execution can automatically find subtle bugs in
the tested programs (Cadar et al., 2008).

Usually, when using a symbolic executor to an-
alyze a program, the program will be compiled into
a binary or an intermediate representation (IR) first.
Then, symbolic execution is carried out by running
the binary representation or IR. During this pro-
cess, compiler optimization influences the effective-
ness and efficiency of symbolic execution (Cadar,
2015; Dong et al., 2015). For example, when we
use symbolic execution for test-case generation, com-
piler optimization may simplify the path condition
and further improve the efficiency of the satisfiabil-
ity modulo theories (SMT) solver (de Moura and
Bjørner, 2008), but it may also decrease the coverage,
due to the simplification in control flows and the re-
duced instruction caused by different optimizations.

Existing work (Cadar, 2015) discussed the im-
pact of compiler optimization on symbolic execution.
The influence of compiler optimization was empiri-
cally studied in Dong et al. (2015) with respect to
(w.r.t.) statement and decision coverage. How-
ever, to the best of our knowledge, there exists no
work that studies the impact of compiler optimiza-
tion on symbolic execution w.r.t. MC/DC (Hay-
hurst and Veerhusen, 2001), which is an important
industrial coverage criterion for safety-critical soft-
ware systems. Compared with statement, branch,
and decision coverages, MC/DC measures the ad-
equacy of test cases more strictly. For example,
DO-178B (EUROCAE, 1998), which is an industrial
avionics software development standard, requires use

of MC/DC to measure the testing of the most criti-
cal (level A) software. In addition, MC/DC was used
for satellite software in Dupuy and Leveson (2000),
and the test cases that satisfy the MC/DC require-
ment can detect errors that could not be found by
employing other coverage criteria. Therefore, con-
sidering symbolic execution as an important method
for generating test cases, it is worth investigating
the factors that influence MC/DC for symbolic exe-
cution. Although compiler optimization has a par-
ticular influence on the effectiveness and efficiency
of symbolic execution, there are few works on com-
piler optimization recommendation for symbolic ex-
ecution, because the feature extraction of a program
w.r.t. the influence of compiler optimization on sym-
bolic execution is challenging.

In this study, we propose an MC/DC oriented
compiler optimization recommendation method for
symbolic execution. The basic idea is to conduct
an empirical study to identify the critical compiler
optimizations w.r.t. coverage criteria first. Then,
based on the feature extraction w.r.t. the key com-
piler optimizations, we use data mining techniques
to train a recommendation model for compiler opti-
mizations. The model can be used before symbolic
execution to determine whether to apply the criti-
cal compiler optimizations, and aims to improve the
coverages achieved by the test cases generated by
symbolic execution.

The main contributions of this study are as
follows:

1. We propose a general framework for the
empirical influence study of compiler optimizations
on symbolic execution w.r.t. a testing coverage
criterion.

2. Based on this framework, comprehensive em-
pirical studies are carried out on standard bench-
marks and a state-of-the-art symbolic execution en-
gine, i.e., KLEE, w.r.t. statement coverage, deci-
sion coverage, and MC/DC. The empirical studies
indicate that instruction combining (IC) optimiza-
tion (Lopes et al., 2015) is the important and domi-
nant component influencing the effectiveness and ef-
ficiency of symbolic execution w.r.t. the three cover-
age criteria.

3. We propose a method to extract the program
features w.r.t. IC optimization, based on which an
optimization recommendation method for symbolic
execution is proposed to improve the coverages. The
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experimental results indicate that the recommenda-
tion method is effective.

2 Background and the motivating
example

This section first provides a brief introduction
to symbolic execution, MC/DC, and compiler opti-
mization. Then, a motivating example is used to
demonstrate the research problem.

2.1 Symbolic execution

Symbolic execution is an effective technique for
exploring the program’s search space. To symbol-
ically execute a program, the inputs of the pro-
gram are initialized as symbols, such as x and y,
which represent all the possible values of the inputs;
then the symbolic inputs are used to execute the
program based on the program’s semantics. For
each path in the program, symbolic execution ob-
tains a path condition corresponding to this path.
A path condition is the conjunction of the mathe-
matical expressions about the input symbols, such
as (x ≤ 1) ∧ (x + y ≥ 2). At the beginning, path
condition (PC) is True. A path’s PC is calculated
as follows: if the current path condition is PC while
meeting a branch statement whose condition is c,
then symbolic execution can derive two path condi-
tions from PC, i.e., PC = PC∧ c and PC = PC∧¬c,
which correspond to the true and false branches of
the statement, respectively. After that, symbolic
execution adopts an SMT solver to check the satis-
fiability of each path condition. If the path condi-
tion is satisfiable (de Moura and Bjørner, 2011), i.e.,
the corresponding branch is feasible, symbolic exe-
cution will enter the branch to continue; otherwise,
symbolic execution abandons the branch due to its
infeasibility. In this way, symbolic execution can be
used to automatically generate test cases for a pro-
gram, i.e., generate a test case for each path in the
program via the path’s PC. Compared with random
testing (Duran and Ntafos, 1984), symbolic execu-
tion can be more efficient in achieving a higher code
coverage. There have been many successful symbolic
execution based automatic testing tools, including
KLEE, Pex, and CUTE.

2.2 Modified condition/decision coverage

MC/DC is an important industrial coverage cri-
terion for safety-critical software systems. The cores
of this coverage are: (1) All possible outcomes of the
conditions and the decision are exploited; (2) Each
condition in the decision can independently affect
the outcome of the decision at least once.

For example, the decision in Fig. 1 is
“x > 0 && y > 0,” which contains two conditions.
We can use the three test cases shown in Table 1
to achieve full MC/DC: test cases 1 and 2 exploit
all possible outcomes of x > 0, which independently
affects the outcome of the decision, and the same as
y > 0 w.r.t. test cases 1 and 3.

int main (int x, int y) {
    if  (x>0 && y>0)
        return 1;
    else
        return −1;
}

Fig. 1 An MC/DC example program

Table 1 Test cases for MC/DC

Test case x > 0 y > 0 Decision Input

1 True True True (1, 1)
2 False True False (−1, 1)
3 True False False (1, −1)

2.3 Compiler optimization

Compiler optimization is generally used to
transform the source program into a semantically
equivalently optimized program. The rational use
of compiler optimizations can effectively minimize
the time taken to execute a program and the
amount of memory needed to run the program
(Aho et al., 1986). Modern compilers, such as
GCC (https://gcc.gnu.org/) and LLVM (Lattner
and Adve, 2004), employ many optimizations before
generating binaries. KLEE (https://klee.github.io/
tutorials/testing-function/) is a symbolic virtual ma-
chine built on top of the LLVM compiler infrastruc-
ture. KLEE carries out symbolic execution on the
LLVM IR of the program. Before starting symbolic
execution, KLEE employs compiler optimizations
that are provided by LLVM to optimize the LLVM
IR of the program to improve the efficiency of sym-
bolic execution. The compiler optimizations using
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KLEE include IC, loop rotation (LR), and constant
merge (CM).

2.4 Motivating example

Fig. 2 displays an example program to demon-
strate the research problem. The program is from
the example programs provided by KLEE.

int get_sign (int x) {
    if (x==0)
        return 0;
    if (x<0)
        return −1;
    else
        return 1;
}

Fig. 2 An example program

The function get_sign has an input variable x,
and there are three cases depending on the value of x.
There are three paths in the function. However, if we
analyze the program by KLEE using the default con-
figuration in which compiler optimization is turned
on, KLEE generates only two inputs (e.g., 0 and 10),
which result in 80% statement coverage, 75% condi-
tion coverage, and 50% MC/DC, respectively. If we
turn off the compiler optimization, KLEE generates
three inputs, whose execution achieves full statement
coverage, condition coverage, and MC/DC. The rea-
son is that KLEE optimizes the LLVM IR of the
program before symbolic execution.

Fig. 3 displays the IR of the second branch
statement after optimization, where r is the return
value. The compiler optimization optimizes the sec-
ond branch statement into two instructions, i.e., an
arithmetic shift right and a bitwise or. When the
symbolic execution is carried out on the optimized
IR, only the first branch’s condition, i.e., x == 0,
produces path conditions. Hence, KLEE explores
only two paths, resulting in two test cases. As
demonstrated by this example, although the effi-
ciency of symbolic execution may be improved by
compiler optimization due to a reduction of a pro-
gram’s search space, the achieved coverages of the
tests produced by symbolic execution may also be
reduced.

y = ashr x, 31;
r = y or 1;

Fig. 3 IR of the optimized second branch statement

3 Empirical study

This section begins by stating our research ques-
tions. Then, we describe our design of the experi-
ment and its framework to answer the research ques-
tions. After that, we show and discuss the experi-
mental results. Finally, we discuss the threats to the
validity of this experiment.

3.1 Research questions

The influence of compiler optimization on state-
ment and decision coverages has already been stud-
ied in Dong et al. (2015). In our study, we are con-
cerned with MC/DC. We have the following research
questions to answer by empirical studies:

RQ1: Does increasing the time of symbolic exe-
cution improve the program’s MC/DC?

RQ2: Does the compiler optimization influence
the program’s MC/DC?

RQ3: Do dominant compiler optimizations exist
w.r.t. MC/DC?

RQ4: Are the results of the aforementioned
three questions still valid w.r.t. statement or de-
cision coverage?

3.2 Experimental framework

Fig. 4 gives the framework of the experiments.
The inputs of the framework are the programs under
test and the configuration of the symbolic executor
KLEE, and the framework’s output is the test re-
port, which contains the different kinds of coverage
information. The primary process of the framework
can be divided into two stages, in which test-case
generation and test execution are carried out, re-
spectively. In the first stage, KLEE is configured
and used to systematically explore the search space
of the program under test. For each path, KLEE gen-
erates a test case in a Ktest file containing the pro-
gram inputs. Then, each Ktest file is input into the
test driver generator to extract the input values of
the program and generate the driver code according
to the test driver templates of Parasoft C/C++test
(https://www.parasoft.com/products/ctest). In the
second stage, the test driver code and the program
under test are fed into Parasoft C/C++test to exe-
cute the test cases and generate the test report in
HMTL format. The coverage information in the
current report includes statement coverage, condi-
tion coverage, and MC/DC. Finally, we extract the
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Stage 1

KLEE Test cases
(Ktest files)

Test driver
generator

Stage 2

Parasoft
C/C++test

Test drivers

C programs

C programs

Configuration
Test reports

Fig. 4 Experimental framework

coverage values in the HTML report (this step is
omitted in Fig. 4 due to the space limitation). The
whole process of the framework is automated to fa-
cilitate the experiments. Inside the framework, we
implement the test driver generator and the cover-
age information extractor. The versions of LLVM,
KLEE, and Parasoft C/C++test are 3.4, 1.2, and
9.6, respectively. Our experiments are carried out on
a server with eight cores and 16 GB memory, and the
OS is Ubuntu Linux 14.04 in a 64-bit architecture.

We use the programs in Coreutils (https://
www.gnu.org/software/coreutils/coreutils.html) as
the studied benchmark. KLEE originally uses Core-
utils as the main benchmark, and Coreutils is later
widely adopted to evaluate the symbolic execution
techniques (Wong E et al., 2015) that do the imple-
mentations based on KLEE. Coreutils contains Unix
utility programs in which many diverse operations
exist, such as file operations and system invocations.
There are 89 Coreutils programs used in the origi-
nal KLEE paper (Cadar et al., 2008). We filter six
programs (i.e., kill, hostname, who, chmod, ln, and
du), because Parasoft C/C++test cannot produce
the test reports for them due to abnormal exit dur-
ing testing. Table 2 shows the 83 programs in our
experiments and their numbers of MC/DC condi-
tions. As shown in Table 2, the number of MC/DC
conditions is well distributed; the smallest is three
and the largest is 927, which indicates how represen-
tative the benchmark is.

The KLEE configuration contains the following
items:

1. Whether to do compiler optimization before
symbolic execution. The --optimize parameter of
KLEE can enable or disable all the default optimiza-
tions carried out by KLEE before symbolic execu-
tion. Also, we modify the KLEE optimization mod-
ule to control a specific optimization item.

2. The analysis time of symbolic execution,
which can be controlled by the --max-time param-
eter. KLEE analyzes each program at 5, 10, 30, and
60 min. The search strategy is depth-first search

(DFS).
3. Other configurations are the same as those in

KLEE’s original paper for testing Coreutils (https://
klee.github.io/docs/coreutils-experiments/). Specif-
ically, we use the default cache-based query opti-
mizations (i.e., -use-cache and -use-cex-cache)
provided by KLEE.

3.3 Experimental results

3.3.1 Influence of analysis time

In real-world programs, there often exist
branches or conditions that are difficult for the sym-
bolic executor to explore in a limited time, e.g., com-
plex non-linear conditions and program statements.

Table 2 Eighty-three Coreutils programs in this study

P #c P #c P #c

base64 108 id 53 setuidgid 21
basename 11 join 259 shred 207
cat 136 link 6 shuf 130
chcon 134 logname 4 sleep 11
chgrp 22 ls 876 sort 668
chown 21 md5sum 220 split 91
chroot 8 mkdir 13 stat 58
cksum 90 mkfifo 10 stty 927
comm 61 mknod 24 sum 75
cp 165 mktemp 29 sync 3
csplit 171 mv 52 tac 130
cut 209 nice 23 tail 377
date 70 nl 163 tee 76
dd 230 nohup 30 touch 84
df 368 od 32 tr 256
dircolors 177 paste 118 TRUE 47
dirname 11 pathchk 56 tsort 219
echo 50 pinky 92 tty 6
env 59 pr 379 uname 24
expand 101 printenv 14 unexpand 128
expr 178 printf 121 uniq 131
factor 22 ptx 339 unlink 5
FALSE 47 pwd 28 uptime 27
fmt 145 readlink 8 users 32
fold 126 rm 23 wc 225
ginstall 93 rmdir 25 whoami 4
head 259 runcon 34 yes 7
hostid 3 seq 128

P : program; #c: MC/DC condition
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To improve the coverage, a common method is to
increase the time of test case generation to produce
more test cases.

To study the analysis time’s influence on
MC/DC, we automatically test all the 83 Coreutils
programs at 5, 10, 30, and 60 min of execution time,
where we disable the compiler optimization used by
the symbolic executor. Out of 83 programs, there
are 56 programs (67.5%) on which MC/DC does not
change when increasing the time of symbolic execu-
tion, i.e., the same coverage occurs at 5, 10, 30, and
60 min. Within these 56 programs, only two pro-
grams achieve full MC/DC in 5 min. For the other
27 programs, MC/DC increases, and there are 14
programs whose MC/DC increases using 10 min, 7
using 30 min (but the same for 5 and 10 min), and
6 using 60 min (but the same for 5, 10, and 30 min).
These results indicate that increasing the time of
symbolic execution does not always increase MC/DC
effectively. MC/DC of only 13 programs (15.7%) in-
creases after 10 min, which is a reasonably long time
for test-case generation. Hence, we have the answer
to RQ1: Increasing the time of symbolic execution
does not always effectively increase MD/DC.

This result also indicates that it is important
to investigate more efficient methods of path ex-
ploration in symbolic execution w.r.t. MC/DC. In
addition, the result indicates that 5 min is enough
to inspect the compiler optimization’s influence on
MC/DC for the Coreutils programs.

3.3.2 Influence of compiler optimizations

To study compiler optimization’s influence on
MC/DC, we test each program for 5 min. We use
MC/DC of not using any compiler optimization (de-
noted as NO) as the baseline. We enable only one
compiler optimization method and compare the re-
sulting MC/DC with the baseline. Instead of focus-
ing on the detailed coverage value of each program,
here we are more concerned about the extent of cov-
erage change on each program and the number of
programs influenced after applying the compiler op-
timization method. If the coverage of a program is
increased or decreased by at least 10% w.r.t. NO
when using an optimization method, we count the
program as being influenced w.r.t. the optimization
method. Fig. 5 displays the result. The x axis shows
the abbreviation of each optimization method, where
ALL represents using all the optimizations. The y

axis shows the number of affected programs (i.e.,
decreased and increased ones) for each optimization
method.

As indicated in Fig. 5, compiler optimization
may decrease or increase the MC/DC of a program.
Almost every optimization method used by KLEE
influences at least one program’s MC/DC, except
Function Attrs (FA). However, many optimization
methods influence only a small number of programs,
i.e., fewer than four programs. There exist only six
optimization methods that influence more than 10
programs, i.e., IC, Function Inlining (FI), Promote
Memory To Register (PMTR), Scalar Replacement
of Aggregates (SRA), Internalize, and Loop Ro-
tate (LR). The functionalities of these compiler op-
timizations (https://llvm.org/docs/Passes.html) are
as follows:

IC: combining instructions to form fewer or sim-
pler instructions;

FI: making the functions inline in a bottom-up
manner w.r.t. the callees;

PMTR: transferring memory references to regis-
ter references, which reduces memory load and stores
instructions;

SRA: replacing the aggregate type’s alloca in-
structions with the individual alloca instructions
for each member in the aggregate type;

Internalize: making all the global variables with
initializers internal if there exists a main function;

LR: rotating a loop, e.g., moving the loop con-
trol statement before the loop body to the place after
the loop body.

The number of programs influenced using all
the compiler optimizations (denoted by ALL) is the
largest; i.e., 37 decreased and 18 increased. There
are 30 optimization methods that can increase the
MC/DC, whereas only 14 optimization methods can
decrease the MC/DC. In addition, the number of
programs with decreased MC/DC using ALL is close
to that of IC, and the number of the programs with
increased MC/DC using ALL is smaller than that
of FI. Hence, this indicates that the influences of
different optimization methods cannot be accumu-
lated, and that different optimization methods may
influence each other. Therefore, we have the answer
to RQ2: Compiler optimization may increase or de-
crease the MC/DC of a program.
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Simplify; GVN: Global Value Numbering; GO: Global Optimizer; TCE: Tail Call Elimination

3.3.3 Dominant compiler optimizations

According to the results in Fig. 5, there are
six optimization methods that mainly influence
MC/DC. We want to study whether there exist key
or dominant ones inside these six for MC/DC. To
evaluate that, we give some evaluation criteria. Two
optimization methods coincide on a program if they
both increase or decrease the MC/DC of the pro-
gram. Two optimization methods are equivalent on
a program if they coincide on the program and the
difference between the MC/DC using the two meth-
ods is less than 10%.

The basic idea of finding dominant optimization
methods is a two-stage procedure. First, we identify
the ones that are more equivalent to or coincident
with ALL. Then we inspect the difference between
ALL and ALL after disabling a single optimization
method. If an optimization method is identified to be
more equivalent to or coincident with ALL at the first
stage, and also very different from ALL after being

disabled at the second stage, then the method is
considered to be a dominant or essential optimization
for MC/DC.

At the first stage, because the number of the
programs influenced by IC is close to that of ALL,
we first inspect the rates of coincidence and equiva-
lence of IC with ALL. Fig. 6 displays the MC/DC of
NO, ALL, and IC. The x axis displays the program
index, and the y axis shows MC/DC. The programs
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are ordered by the MC/DC of NO. Compared with
NO, ALL may decrease or increase MC/DC on some
programs, and the trend of IC is coincident with
that of ALL on most programs. Furthermore, Fig. 7
shows the rates of coincidence and equivalence for
the six optimization methods with ALL. As shown
by Fig. 7, IC is the one that is most equivalent to
(50.6%) and coincident with (75.9%) ALL. The co-
incidence rate of IC is at least 20% higher than those
of the remaining five methods. Hence, IC is likely to
be the dominant optimization method for KLEE.
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Fig. 7 Rates of equivalence and coincidence with ALL

At the second stage, we disable each optimiza-
tion method and inspect the rates of equivalence
and coincidence. Fig. 8 shows the MC/DC of ALL,
disable-PMTR, disable-SRA, disable-LR, disable-
Internalize, and disable-FI. The programs are or-
dered by MC/DC of ALL. We find that the equiva-
lence rate of disabling the optimization method other
than IC is extremely higher, with the lowest 87.95%
and the highest 96.39%. As indicated in Fig. 8, the
six coverage lines coincide. On the other hand, Fig. 9
shows the results of disabling IC. The equivalence
rate of disable-IC is 43.37%, which is much less than
those of the other five methods. These results indi-
cate that disabling IC influences ALL most, but the
influence of disabling other optimization methods is
small. Therefore, we have the answer to RQ3: IC is
the dominant optimization method in KLEE w.r.t.
MC/DC.

3.3.4 Results on other coverage criteria

Based on our framework, we also study compiler
optimization’s influence on statement and decision
coverages to see whether the results of MC/DC are
still valid w.r.t. statement or decision coverages. The
experimental results indicate that the result of RQ1
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w.r.t. statement or decision coverages is the same
as that of MC/DC. There are 58 programs having
the same statement coverage at 5, 10, 30, or 60 min,
and 55 for decision coverage. In summary, more than
60% of the programs coverages do not increase after
5 min, regardless of the coverage type.

Considering the influence on coverage, the im-
portant compiler optimization methods w.r.t. state-
ment or decision coverages are the same as those
of MC/DC. Fig. 10 shows the number of influenced
programs w.r.t. statement and decision coverage. As
shown in Fig. 5, ALL also influences most programs
w.r.t. statement or decision coverage, and IC’s in-
fluence is close to ALL’s. The number of influenced
programs w.r.t. statement or decision coverage is
smaller than that of MC/DC, and the number of
influenced programs w.r.t. statement coverage is
smaller than that of decision coverage. This indi-
cates that more programs are influenced by compiler
optimization when the coverage criterion is more
complicated.

To study the dominant optimization method, we
adopt the same process as MC/DC. Fig. 11 shows
the equivalence and coincidence rates of the six opti-
mization methods w.r.t. statement and decision cov-
erages. As we see for MC/DC, IC also has the high-
est equivalence and coincidence rates. For statement
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coverage, the equivalence and coincidence rates of
IC are 62.65% and 78.31%, respectively, whereas the
rates are 59.04% and 78.31% for decision coverage.
In addition, the coincidence rate of IC is at least 20%
higher than those of the remaining five methods on
both statement and decision coverages.

Fig. 12 shows the equivalence and coincidence
rates of disabling a single optimization method. As
shown in the figure, the rates of disabling IC are

the lowest on both statement and decision cover-
ages. The equivalence rate of disabling IC is 51.81%
for statement coverage, and the rate is 46.99% for
decision coverage. The rates of the remaining five
methods are very high, i.e., at least 90.36% for state-
ment coverage and 87.95% for decision coverage.
These results indicate that IC is also the dominant
optimization method when the coverage criterion is
statement or decision coverage. Hence, we have the
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following answer to RQ4: Compiler optimization also
influences the statement and decision coverages; IC
is also the dominant optimization method in KLEE
w.r.t. statement or decision coverage.

3.4 Discussion

According to the experimental results, compiler
optimization influences testing coverage, which is co-
incident with the conclusion in Dong et al. (2015).
However, different from Dong et al. (2015), we study
MC/DC and the dominant compiler optimization
methods of different coverage criteria. The exper-
imental results also indicate that IC is the dominant
compiler optimization method in KLEE. Actually,
IC, i.e., InstCombine LLVM pass, is used to combine
LLVM instructions into fewer and simpler instruc-
tions. For example, two constant add instructions
can be combined into one add instruction. There
are 1028 rules in IC, including arithmetic, memory-
related, and control-flow optimizations. Usually, IC
will be used multiple times during the LLVM opti-
mization to reduce the number of instructions while
ensuring semantic equivalence.

We explain IC’s influence on MC/DC as fol-
lows. On one hand, reduced instructions can reduce
the search space of the program and improve the ef-
ficiency of symbolic execution, i.e., exploring more
paths in the same period, which is why IC can in-
crease the coverages for some programs. This reason
also applies to other optimization methods. On the
other hand, the control-flow optimizations in IC, i.e.,
Br and Select instruction-related optimizations, may
reduce the branches in the programs (Fig. 3). Hence,
the symbolic executor will explore fewer paths and
generate fewer test cases when analyzing the opti-
mized IR program, resulting in a decreased cover-
age of source code. Usually, if there are optimized
branches for a program, the coverage of the program
will very likely decrease. In addition, compared with
the other optimization methods, IC is the most fre-
quently used during LLVM compiler optimization,
which is also one reason why IC is the dominant
method.

3.5 Threats to validity

There are possible external and internal threats
to the validity of our results. The external threats
come from the limited programs used for analysis.

However, we offset these external threats in the fol-
lowing aspects to show the representativeness of the
Coreutils program:

1. All the programs come from Coreutils and are
widely used on Unix-like operating systems. Core-
utils programs are often used as the benchmark pro-
grams in previous studies (Fehnker et al., 2006; Wag-
ner et al., 2013; Joshi et al., 2015; Converse et al.,
2017).

2. Our work concerns MC/DC, and the bench-
mark Coreutils programs are well distributed w.r.t.
MC/DC conditions (Table 2).

The internal threats come from our evaluation
methods for the dominant compiler optimization.
The justification of this method is given as follows:

1. To evaluate the dominant compiler optimiza-
tions, we explore both the positive and negative influ-
ences of compiler optimization in a two-step analysis.

2. The experimental results are coincident
with Dong et al. (2015) in statement and decision
coverages.

3. The identification method of the dominant
compiler optimizations is a general framework, which
makes the results more convincing.

4 Optimization recommendation

Compiler optimization influences the coverages
of the programs under test. If we can intelligently
turn on or turn off the optimization method, e.g.,
turn it off when the optimization decreases the cov-
erage, the coverage achieved by symbolic execution
can be improved. In the remainder of this section,
we first introduce our coverage-oriented method of
recommending compiler optimizations for symbolic
execution. Then we give and explain the experimen-
tal results. Finally, we discuss the threats to the
validity of the recommendation method.

4.1 Recommendation method

Optimization recommendation needs the pro-
gram feature w.r.t. the optimization to decide
whether to adopt a compiler optimization. The fea-
ture extraction and synthesis of a program w.r.t.
compiler optimization methods are challenging. The
answer to RQ3 in Section 3.3 indicates that IC is
the dominant compiler optimization method. Hence,
whether to adopt IC is critical and directly deter-
mines the coverage results in many cases. According
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to this result, we propose a program feature ex-
traction method w.r.t. IC, based on which a
recommendation method for IC is designed and
implemented.

IC is an intra-procedural optimization process.
Each function in the program is optimized individu-
ally. For a function f , the instructions inside f are
optimized using different rules if possible until no
rule can be applied. There are 11 kinds of rules in IC,
including AddSub, AndOrXor, and compare. Each
kind has a set of optimization rules that optimize the
LLVM instructions of several types. For example,
the compare kind contains the rules for FCompInst
and ICmpInst LLVM instructions. As pointed out
by Alive (Lopes et al., 2015), each IC rule has a pre-
condition that specifies the requirements of the rule.
The rule preconditions can be used for feature extrac-
tion, i.e., calculating a program’s chance of applying
a rule. However, for precise feature extraction, anal-
ysis on the program w.r.t. the preconditions of IC
rules is required, which is not practical and intro-
duces large overhead for feature extraction. Hence,
we propose a lightweight method for feature extrac-
tion. The basic idea of feature extraction is to run IC
optimization on the program, and record the times of
successful optimizations on each LLVM instruction
type. In total, IC handles 43 types of LLVM instruc-
tions. Hence, given a program P , its feature w.r.t.
IC, denoted by F (P ), is a vector of 43 dimensions,
i.e., 〈c1, c2, . . . , c43〉, where ci ≥ 0 (i = 1, 2, . . . , 43)
is the number of successful optimizations on the ith

instruction type.

Based on IC’s feature extraction method, we can
extract the features of the 83 Coreutils programs,
and use the support vector machine (SVM) (Cortes
and Vapnik, 1995) to train a classifier with the ex-
tracted features. According to the experimental re-
sults in Section 3, we can label the feature of each

program. If IC increases the MC/DC of a program,
we label the feature as 1; otherwise, we label the
feature as −1, including the cases of decreasing and
no influence. There exists a problem of data im-
balance (Chawla, 2005), because disable-IC outper-
forms ALL in more cases. To alleviate the imbalance
problem, we make several copies of positive samples,
making the ratio between positive and negative sam-
ples 1 : 2. The reason why the ratio is not 1 : 1

is that a large number of duplications may lead to
bias. Then we use LIBSVM (Chang and Lin, 2011)
to train the model. The adopted optimal SVM type
is C-SVM, and the core function is radial basis func-
tion (RBF) (Chen S et al., 1991), whose parameters
c and g are 8.0 and 0.5, respectively. The precision
of the trained model is 83.13%. Based on the trained
model, we can decide whether to carry out IC before
symbolic execution. Fig. 13 shows the procedure of
training and recommendation.

The feature extractor provides the functional-
ities of both IR generation and feature extraction.
The extractor accepts a program and produces the
program’s IR representation and its IC feature. Then
the feature and the IR representation are input into
an SVM classifier using the trained model and the
optimizer. If the classifier decides that IC needs to
be carried out, all the optimizations will be applied
on the IR representation; otherwise, IC will not be
applied, but the remaining optimizations are still ap-
plied. Symbolic execution will be carried out on the
optimized IR representation to generate test cases.
In this way, we can recommend whether to apply IC
before symbolic execution to improve the coverage.

The recommendation method considers only
two cases: ALL and disable-IC. Then we can inspect
the limit of our recommendation method on Core-
utils programs. We collect the maximum MC/DC
value of each program in all the configurations

Training C
programs

C program

Offline training
Feature
extractor

Feature
extractor

IC feature LIBSVM SVM model

IC feature
Optimization recommendation

IR 
representation

Classifier and 
optimizer

Optimized IR 
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Symbolic
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Test 
cases

Fig. 13 Training and recommendation procedure
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(denoted by ideal), and the maximum MC/DC of
ALL and disable-IC. Fig. 14 shows the results.
The programs are ordered by the MC/DC of ALL
and disable-IC. The coincidence rate of two lines
is 72.29%, which means that the recommendation
method’s rate of achieving the maximum MC/DC
value is at most 72.29%. In the next subsection, the
experimental results demonstrate the effectiveness of
the recommendation method in practice.
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4.2 Experimental results

4.2.1 Effectiveness of the recommendation method

We implement the optimization recommenda-
tion in KLEE and provide an optimization option
auto. Our experiments are carried out on Coreutils
programs and other real-world programs. Experi-
ments are expected to answer the following research
questions:

RQ5: How effective is the recommendation
method on MC/DC?

RQ6: Is the recommendation method also effec-
tive for other programs?

We integrate the recommendation method into
the framework in Fig. 4 and reran the experiments on
the 83 Coreutils programs. Fig. 15 displays the re-
sults of the recommendation method. The programs
are ordered by the MC/DC of auto. We find that
the line of ALL and disable-IC and the line of auto
are basically coincident at 83.13%. On 50.60% (less
than 72.29%) of the programs, the recommendation
method achieves the maximum MC/DC, i.e., ideal.

Furthermore, we inspect the number of pro-
grams influenced by auto. The recommendation
method increases and decreases MC/DC on 18 and
13 programs w.r.t. NO, respectively; the numbers
for ALL are 18 and 37, respectively; the numbers
for disable-IC are 13 and 16, respectively. The

recommendation method increases the coverage on
more programs and decreases the coverage on fewer
programs. Hence, the recommendation method out-
performs both ALL and disable-IC.

We also compare the recommendation method
with NO and ALL. Fig. 16 shows the results. The
programs are ordered by the MC/DC of NO. As
shown in the figure, the recommendation method’s
line is above those of ALL and NO on most (67.47%)
programs, which indicates the effectiveness of the
recommendation method. In addition, it indicates
that simply turning on or turning off all the opti-
mizations cannot achieve better coverage.

Therefore, we have the answer to RQ5: The
recommendation method likely provides a sensible
recommendation w.r.t. MC/DC, which shows a high
rate of coincidence, 83.13%, with the lines of ALL
and disable-IC.

To further investigate our recommendation
method’s effectiveness, we apply it to other
programs like NECLA (v1.1) (https://www.nec-
labs.com/research/system/systems_SAV-website/
benchmarks.php), which is a set of C programs
with various C-specific bug patterns. We select 23
programs from the benchmark according to whether
the program contains branch statements and the
uncertainty of inputs.

M
C

/D
C

 (%
)

100

80

60

40

20

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Ascending ordinal number of programs w.r.t. auto

ALL and disable-IC
Ideal

Auto

Fig. 15 MC/DC of the recommendation method

M
C

/D
C

 (%
)

100

80

60

40

20

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Ascending ordinal number of programs w.r.t. NO

NO
ALL
Auto

Fig. 16 Comparing recommendation with NO and
ALL



Hong et al. / Front Inform Technol Electron Eng 2020 21(9):1267-1284 1279

Similar to Fig. 16, we compare the recommen-
dation method with NO and ALL on the NECLA
benchmark. The results are shown in Fig. 17; the
programs are ordered by the MC/DC of NO. As
the figure shows, the recommendation method’s line
(auto) is above those of ALL and NO on most
(78.26%) programs, which implies the effectiveness
of this method on the NECLA benchmark.

Therefore, we have the answer to RQ6: The rec-
ommendation method is also effective in improving
the coverage on the NECLA benchmark.
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4.2.2 Comparison with LEO

Chen JJ et al. (2018) proposed a ma-
chine learning based method—the prototype
implementation’s name is LEO (https://github.
com/JunjieChen/leo)—of recommending compile
optimizations for symbolic execution to improve
statement coverage. LEO extracts the static pro-
gram features (e.g., the number of basic blocks and
the number of direct calls) from the program under
testing and the libraries. Then, LEO recommends
the compile optimizations for each function unit of
the program and the libraries. Compared with LEO,
we study the influence of compiler optimization w.r.t.
MC/DC, and recommend the compiler optimizations
w.r.t. MC/DC. Different from LEO, our optimiza-
tion recommendation considers only IC, which is the
dominant optimization method according to the em-
pirical study in Section 3. In addition, compared
with the static program feature extraction by LEO,
we extract the program features based on the inter-
nal procedure information of applying IC optimiza-
tion, which is more accurate w.r.t. the optimization.
However, in our method the optimization needs to
be done once more to obtain the features.

It is interesting to compare the two methods

empirically. Because LEO’s code and data are in-
complete in its GitHub repo (the feature extraction
component, the trained model, and the test cases
are unavailable, which are checked on August 21,
2019), we fail to use LEO to train a model w.r.t.
MC/DC. Although our goal is not to improve state-
ment coverage, we try to make a tradeoff to compare
the two methods w.r.t. statement coverages. We
extract the results in Chen JJ et al. (2018) which
were obtained by disabling the cache-based query
optimizations during training and testing. However,
because query cache is an effective method of KLEE
to improve statement coverage in practice, we enable
cache-based query optimizations during training as
used in the above experiments.

We use KLEE with auto to analyze the Core-
utils programs in 10 min (with DFS search heuris-
tic) and collect the statement coverages achieved by
the generated test cases. Considering the difference
between the experimental environments and the con-
figurations of the two methods, we consider only the
programs on which LEO and auto (disabling query
optimizations) have equivalent results (less than 5%
difference) on ALL and NO. We collect the testing’s
coverage results of both turning on and turning off
the query optimizations to make an indirect compar-
ison. Table 3 shows the results.

We can observe the following in Table 3:
1. The query optimizations, i.e., -use-cache

and -use-cex-cache, influence the statement cov-
erage results of different compiler optimization con-
figurations. When we turn on the query optimiza-
tions, KLEE achieves a higher statement coverage
on nine programs with NO than with ALL, and an
equal statement coverage on five programs. How-
ever, on these programs (14/17), KLEE performs
better with ALL than with NO when turning off the
query optimizations.

2. LEO turns off the two query optimizations
during training and testing; however, we turn on
the two optimizations during training and testing.
As shown by the table and the results of the pre-
vious experiments, auto tends to select disable-IC
for Coreutils programs, which has a similar result
to NO. When turning off the query optimizations,
auto also recommends disable-IC, which decreases
the statement coverages for many programs, because
ALL performs better than NO when disabling query
optimizations.
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Table 3 Experimental results of 10 min using depth-first search

Program

Statement coverage (%)

Disable query optimizations Enable query optimizations

Chen JJ et al. (2018) Ours Ours

NO ALL LEO NO ALL auto NO ALL auto

chgrp 34.44 67.78 67.78 34.44 68.89 34.44 86.67 41.11 82.22
chown 30.11 60.22 65.59 30.11 61.29 30.11 84.95 29.03 84.95
cp 26.29 46.34 41.46 25.82 46.47 23.91 49.73 30.43 46.47
df 63.61 64.42 64.15 59.30 67.39 59.03 60.92 65.23 65.77
dircolors 10.00 20.00 73.16 10.00 20.00 10.00 39.47 14.74 38.42
factor 64.18 71.64 71.64 64.18 71.64 64.18 65.67 49.25 65.67
hostid 59.09 63.64 63.64 59.09 63.64 59.09 63.64 63.64 63.64
link 60.71 64.29 75.00 64.29 64.29 64.29 64.29 64.29 64.29
logname 52.00 56.00 56.00 52.00 56.00 52.00 56.00 56.00 56.00
mkdir 34.85 66.67 77.27 34.85 71.21 28.79 71.21 34.85 68.18
mkfifo 36.17 74.47 82.98 36.17 74.47 36.17 74.47 48.94 74.47
pinky 79.91 83.33 83.33 83.76 83.33 83.76 83.33 76.07 83.33
pwd 20.34 20.34 20.34 20.34 20.34 20.34 20.34 20.34 20.34
sleep 43.48 45.65 45.65 43.48 45.65 43.48 45.65 45.65 65.22
tr 40.52 39.15 22.15 40.36 40.36 40.52 37.48 33.08 33.69
uname 19.32 77.27 79.55 19.32 79.55 19.32 80.68 21.59 80.68
whoami 50.00 53.85 53.85 50.00 53.85 50.00 53.85 53.85 53.85

We also compare the two methods using the
configuration of turning on query optimizations
and employing a random search strategy (default
nurs:covnew search strategy), under which the
statement coverage can be improved further. Ta-
ble 4 gives the results. As in Table 3, we consider
only the programs on which these two methods have
equivalent results on NO and ALL. As shown in
the table, if we use a random search strategy and
enable query optimization, the statement coverages
achieved by both LEO and auto are close to those
of NO and ALL, which indicates that the improve-
ments become relatively small when employing more
orthogonal optimization techniques to improve the
efficiency of symbolic execution.

Table 4 Experimental results using random search
and query optimizations

Statement coverage (%)

Program Chen JJ et al. (2018) Ours

NO ALL LEO NO ALL auto

cp 48.78 49.05 48.24 50.27 50.54 53.80
ls 53.46 50.34 53.93 55.76 51.22 46.14
nice 96.61 94.92 96.61 94.92 94.92 94.92
od 84.11 86.08 86.08 79.47 84.11 76.79
paste 92.51 92.51 92.51 92.51 92.51 92.51
printenv 100 100 100 100 100 100
pwd 20.34 20.34 20.34 20.34 20.34 20.34

In summary, LEO and auto can perform better
than other methods on different programs, but a di-
rect comparison between LEO and auto w.r.t. state-
ment coverage is not preferable. The main reason is
that the two methods have different configurations
of query cache optimization. It is more reasonable to
train the optimization recommendation model using
the data generated under the configuration where
orthogonal techniques are used to improve the effi-
ciency of symbolic execution.

4.3 Threats to validity

The external threats come from the limited pro-
gram for analysis and training. We relax this threat
as discussed in Section 3.5. In addition, we plan to
address this threat further in the future by analyz-
ing more real-world programs. As for the training
process, although the problem of imbalance exists
for the original training data, we duplicate the pos-
itive samples to handle the imbalance problem. For
the 52 programs (there are 83 in total) that ALL
and disable-IC perform differently, auto performs the
same as ALL on nine programs (17%).

The internal threats come from the design and
implementation of the recommendation method. We
control these threats as follows:

1. Although the recommendation method
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considers only the two cases ALL and disable-IC,
the two compilation optimization options can man-
ifest the various compilation optimization options.
For example, as shown in Fig. 8, the optimization
ALL presents a high equivalent rate with the opti-
mizations that disable the specific optimization other
than IC, which indicates that the performance of
ALL can represent those of these optimizations. In
addition, the coincidence rates of the optimization
methods disable-IC with PMTR and FI are 84.34%
and 78.31%, respectively. These high coincidence
rates also imply that the performance of disable-IC
is representative of these single optimization options.

2. The classifier trained by Coreutils programs
can be applied to other programs, e.g., the NECLA
benchmark. In addition, we plan to train the classi-
fier on more programs.

5 Related works

Our work is related to the existing studies that
improve the effectiveness and efficiency of symbolic
execution, study the impact of compiler optimiza-
tions on symbolic execution, and recommend opti-
mal compiler optimization for symbolic execution.

There exist many studies for improving the effi-
ciency of symbolic execution. Many highly efficient
search heuristics have been proposed, such as target-
oriented search (Ma et al., 2011), coverage-oriented
search (Li et al., 2013), and context-guided search
(Seo and Kim, 2014). Wang et al. (2018) provided
an optimal strategy to improve the effectiveness of
dynamic symbolic execution. In addition, an alter-
native method is to use some abstraction techniques
to reduce the search space of the program, such as
state merging (Kuznetsov et al., 2012), partial order
reduction (Khurshid et al., 2003), and slicing (Cui
et al., 2013). Another option is to employ distributed
computing techniques to parallelize symbolic execu-
tion (Fan et al., 2009; Staats and Päsäreanu, 2010;
Bucur et al., 2011). Christakis et al. (2016) guided
dynamic symbolic execution by aborting tests that
lead to verified execution and further explore more
unverified executions. Sen et al. (2015) provided a
tool, MultiSE, which uses a value summary to rep-
resent the state and shows high efficiency compared
with traditional dynamic symbolic execution. Based
on the logical relations among constraints, GreenTrie
reuses the constraint-solving results to reduce the

constraint solver time during symbolic execution (Jia
XY et al., 2015). Zhang et al. (2015) and Yu et al.
(2018) used static and dynamic analysis to boost the
verification of regular properties by dynamic sym-
bolic execution. Our work is complementary to the
existing work.

Different from the above work on symbolic ex-
ecution, we explore the effectiveness of symbolic ex-
ecution from the perspective of compiler optimiza-
tions. Compiler optimization plays an important
role in the testing and verification processes. For
example, the impact of compiler optimizations on
mutation testing was investigated in Hariri et al.
(2016). Cadar (2015) considered program transfor-
mations as an important aspect for scalable symbolic
execution and gave several examples of why trans-
formations influence scalability. However, no empir-
ical studies were provided, and no recommendation
method was proposed in Cadar (2015). Dong et al.
(2015) and Wagner et al. (2013) studied the relation
between compiler optimizations and symbolic exe-
cution. Specifically, Dong et al. (2015) found that
compiler optimization influences symbolic execution
w.r.t. statement and decision coverages. Different
from Dong et al. (2015), we inspect the influence
w.r.t. MC/DC. In addition, we investigate the key
and dominant optimizations. Also, recommending
compiler optimizations was not investigated in Dong
et al. (2015). In Barr et al. (2018), the program
was rewritten by indexification to obtain a subset of
the program’s original search space, which makes the
path conditions easier for the SMT solver. In Con-
verse et al. (2017), non-semantics-preserving pro-
gram transformations were studied to improve the
coverage achieved by symbolic execution. In addi-
tion, semantics-preserving transformations were pro-
posed and used online to simplify the array path
constraints during symbolic execution (Perry et al.,
2017).

There has been much work on recommending
optimal compiler optimizations for a given program
to achieve better performance (Tiwari et al., 2009).
In recent years, many studies have used machine
learning methods to recommend the optimal com-
piler optimization sequence for a program. For ex-
ample, an iterative selection method for optimiza-
tion options was proposed based on program code
features (Agakov et al., 2006). Another example was
to use an automatic performance-tuning algorithm,
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i.e., combined elimination, to select the optimal
compilation optimization combination in a shorter
time (Pan and Eigenmann, 2006). However, as far
as we know, there exists less work for recommend-
ing compiler optimizations in the context of symbolic
execution. The only work is LEO (Chen JJ et al.,
2018). We have compared our method with LEO in
Section 4.2.2.

6 Conclusions

Compiler optimizations influence the effective-
ness and efficiency of symbolic execution. In this
study, we took MC/DC as the criterion for evaluating
symbolic execution. Our empirical study indicated
that compiler optimizations influence MC/DC, and
IC is the dominant optimization method. Then, we
designed and implemented a lightweight recommen-
dation method w.r.t. IC towards improving MC/DC.
The experimental results indicated that the method
is effective. Future work lies in four aspects: (1) con-
ducting more extensive experiments on other bench-
marks; (2) designing a more effective recommenda-
tion method; (3) inspecting whether the recommen-
dation method is still valid w.r.t. other coverage
criteria; (4) exploring the influence of combinatorial
compiler optimization options.
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