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Abstract: Traceability link recovery (TLR) is an important and costly software task that requires humans establish
relationships between source and target artifact sets within the same project. Previous research has proposed to
establish traceability links by machine learning approaches. However, current machine learning approaches cannot
be well applied to projects without traceability information (links), because training an effective predictive model
requires humans label too many traceability links. To save manpower, we propose a new TLR approach based
on active learning (AL), which is called the AL-based approach. We evaluate the AL-based approach on seven
commonly used traceability datasets and compare it with an information retrieval based approach and a state-of-
the-art machine learning approach. The results indicate that the AL-based approach outperforms the other two
approaches in terms of F-score.
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1 Introduction

Traceability link recovery (TLR) refers to estab-
lishing traceability relationships between a source
artifact set S (e.g., requirement documents) and a
target artifact set T (e.g., source codes and test
cases) within the same project. The resulting soft-
ware traceability supports activities including im-
pact analysis, test coverage verification, and re-
quirement coverage verification (Rempel and Mäder,
2017). TLR usually requires humans identify the
valid (i.e., two artifacts are related) traceability links
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in S×T possible traceability links. There are a large
number of possible traceability links in a large soft-
ware system, so it is tough to manually identify valid
traceability links. To address this challenge, many
research teams have been working to automate the
traceability creation process (Asuncion et al., 2010;
Borg et al., 2013). Information retrieval (IR) is a
common technology to automate TLR (Panichella
et al., 2013). IR-based approaches can make it easier
to identify traceability links by recommending the
links that are most likely to be the traceability links
at the top. In recent years, some research teams
have begun to apply machine learning to TLR. Mills
and Haiduc (2017b) proposed a TLR approach based
on traditional supervised learning (hereafter called
the TSL-based approach), which achieved good re-
sults. The TSL-based approach uses existing trace-
ability information to train a classifier and then uses
this classifier to classify possible traceability links
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as valid or invalid (i.e., two artifacts are unrelated).
Although the accuracy of the TSL-based approach
is high, creating traceability information can require
a lot of manpower, especially for projects without
traceability information. To save manpower, we pro-
pose a new TLR approach based on active learn-
ing. The main difference between the TSL- and AL-
based approaches is that the TSL-based approach
randomly selects traceability links for labeling, while
the AL-based approach selects traceability links for
labeling based on a sample selection strategy. The re-
sults show that the AL-based approach outperforms
the TSL-based approach when we label the same
number of traceability links.

2 Related work

Automatic TLR is a research hotspot in the field
of software traceability. Much work has been done
to increase the level of automation available for es-
tablishing traceability links, most commonly using
IR techniques to rank artifacts based on document
similarity. IR techniques such as the vector space
model (VSM) (Antoniol et al., 2000), latent seman-
tic indexing (LSI) (Marcus et al., 2005), and latent
Dirichlet allocation (LDA) (Asuncion et al., 2010)
have been applied directly to TLR. The accuracy
of IR-based approaches is affected by the problem
of “vocabulary mismatch” (e.g., synonymy) (Gethers
et al., 2011). To solve this problem, current main-
stream research has improved IR-based approaches
through lexical analysis such as text preprocessing
(Lucia et al., 2012) and the IR model (Marcus and
Maletic, 2003). While these improvements achieve
certain results, rich and high-quality textual infor-
mation is required by the target software systems.
In practice, however, software systems often lack de-
tailed textual descriptions, which makes the results
returned by IR-based approaches not good enough
(Cleland-Huang et al., 2005).

In recent years, machine learning has gradually
been applied to TLR. Cleland-Huang et al. (2007)
first proposed a probabilistic classifier trained on
a set of indicator words for non-functional require-
ments. This was subsequently used for linking reg-
ulatory codes with project requirements (Cleland-
Huang et al., 2010) and architectural tactics with
source codes (Mirakhorli et al., 2012). Li et al.
(2015) used a knowledge-rich approach to extend a

supervised baseline system with (1) additional train-
ing samples derived from annotator rationales and
(2) additional features derived from a hand-built on-
tology. Since IR is affected by query quality, Mills
and Haiduc (2017b) and Mills et al. (2018) proposed
several features related to query quality. They used
query quality features and IR-related features to
train a classifier and subsequently used the classifier
to identify the validity of each link. For projects
without traceability information, all of the above
methods require humans create training data (la-
beled traceability links). To save manpower, we pro-
pose an AL-based approach to minimize the amount
of training data required to generate an effective pre-
dictive model.

3 Active learning based approach

For projects without traceability information,
the TSL-based approach requires humans label too
many traceability links. To save manpower, we use
the AL-based approach to select a small number of
representative samples for labeling. The AL-based
approach includes the following steps:

1. There are S × T possible traceability links in
a system, and these traceability links form a sample
set D = {x1, x2, . . . , xn}. The AL-based approach
generates a training set including these steps:

(1) Randomly label a small number of samples
to initialize a labeled sample set. Let Dl denote
this labeled sample set and an unlabeled sample set
Du = D\Dl.

(2) Train a classifier on Dl.
(3) Select an unlabeled sample from Du based

on the sample selection strategy and request experts
to label the sample.

(4) Add the newly labeled sample to Dl.
Repeat steps (2)–(4) until the termination con-

dition is met. Once the termination condition is met,
the training setDl is obtained (Section 3.1 introduces
the details of active learning).

2. Establish a set of features representing trace-
ability links (Section 3.2 describes features).

3. The number of valid links in the training
set is much smaller than that of invalid links. To
solve this problem, the training data is balanced by
rebalancing techniques (Section 3.3 describes more
details about rebalancing techniques).

4. The learning engine trains a classifier C
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on the training set, and then C is used to classify
unlabeled links. The classification algorithm chosen
is random forest (RF), as it is accurate and robust
(Breiman, 2001). The results also show that RF
classification is the best.

Fig. 1 shows an overview of the AL-based ap-
proach. In the following subsections, we will give the
details of some steps.

1. A classifier C is 
trained on a set of 
labeled links.

Traceability artifacts

Source S1 Target S2

Learning engine

Classifier C

2. Use trained classifier 
C to predict whether 
the unlabeled links 
are valid or not.

Classified links
Unlabeled set Classifier C

Possible links

Training set

Selection engine

Expert

Unlabeled set

...

...

...

... ...

... ...

.. ..
. . .. .

.. ..
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Fig. 1 Overview of the active learning based approach

3.1 Active learning

Active learning allows experts to iteratively la-
bel unlabeled samples, and a classifier can be learned
or improved at each iteration. An active learning
system can generally be divided into two parts: a
learning engine and a selection engine. At each it-
eration, the learning engine trains a classifier on Dl.
The selection engine then selects a sample xi from
Du and requests experts to label xi before passing
it to the learning engine. The learning engine and
selection engine alternately work, and the accuracy
of the classifier gradually improves. Once the termi-
nation condition is met, the iteration will stop. The
termination condition we use is that the number of
labeled samples reaches a preset value. In our study,
the training set size is treated as the preset value.
For example, if the training set size is set to N , ac-
tive learning will stop when the number of labeled
samples reaches N . Algorithm 1 gives the active
learning process.

At present, active learning is roughly divided

Algorithm 1 Active learning process
Input: A sample set D = {x1, x2, . . . , xn}, a labeled sample

set Dl, where Dl is initially empty, and an unlabeled
sample set Du, where Du = D\Dl

Output: Dl

1: Dl ← Dl0 // Randomly label a small number of
// samples to initialize Dl

2: Train a classifier on Dl

3: while Termination condition is not met
4: Select a sample xi from Du

5: Experts label the sample xi

6: Add the labeled sample xi to Dl

7: Train the classifier on Dl

8: end while
9: Return Dl

into two categories: stream-based learning and pool-
based learning. In stream-based learning, a learning
engine receives one sample at a time and has to deter-
mine whether to label this sample based on a thresh-
old or not. In general, the threshold of a project is
difficult to determine. Thus, active learning primar-
ily focuses on pool-based learning at present, where
each query selection is made via search in a fixed
unlabeled sample pool. Pool-based sampling selects
samples by measuring the uncertainty of samples.
A higher uncertainty of the sample leads to higher
representativeness and greater likelihood of being se-
lected. The key to pool-based learning is to build a
fixed unlabeled sample pool (Cheng et al., 2013).
For TLR, unlabeled traceability links can form such
a pool. Therefore, pool-based learning is more suit-
able for TLR.

3.2 Features representing the links

We use two types of features: IR-based features
and query quality (QQ) features. IR can capture
the textual similarity between software artifacts and
build a list of candidate links. This list contains all
possible pairs of source and target artifacts ranked
according to textual similarities. The ranking of the
links in the list of candidate links reflects its validity
to some extent. Therefore, our first feature set is
about the ranking of links. Since the accuracy of IR
is affected by QQ, our second feature set is about
QQ.

3.2.1 IR-based features

Given two artifact sets S and T , these is a pos-
sible link between artifacts d1 and d2, where d1 ∈ S

and d2 ∈ T . We apply an IR engine twice to obtain
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two features. First, we use d1 as a query and artifacts
in T as the corpus. After running d1 as a query
through the IR engine, we capture the ranking of
d2 in the list of candidate links as the first feature.
We then repeat the procedure. This time we con-
sider d2 as a query and S as the corpus, and capture
the ranking of d1 in the list of candidate links as
the second feature. The reason for considering both
directions is that previous work indicated that the
choice of search direction affects search performance,
especially traceability (Mills and Haiduc, 2017a).

3.2.2 Query quality features

While two IR ranking features provide infor-
mation on textual similarity, previous studies have
shown that the quality of query highly influences
the results of IR (Mills et al., 2017). For exam-
ple, if d1 is of poor quality as a query, the IR
ranking value may indicate that d1 and d2 are not
linked, despite the fact that they are. To over-
come this potential issue, we apply 16 QQ met-
rics to two documents in a possible link, which re-
sults in 32 different QQ features for each possible
link. The QQ metrics can be divided into two cat-
egories: (1) specificity, i.e., how specific a query ex-
pression is; (2) coherence, which measures how fo-
cused a query is on a particular topic. The complete
list of QQ features is given in the online appendix:
http://github.com/TLR2019/resource/tree/master.

3.3 Data rebalancing

For each project, the number of valid traceabil-
ity links is much smaller than that of invalid links.
This imbalance of data can make it difficult to dif-
ferentiate minority class samples (He and Garcia,
2009). To solve this problem, rebalancing techniques
can be applied to the training set, which provides a
more balanced representation of the majority and
minority classes. Oversampling and undersampling
are frequently used in sample rebalance methods.
We use these two different methods in our experi-
ments to determine if they could help improve the
AL-based approach. Judging the experimental re-
sults, we choose the synthetic minority oversampling
technique (SMOTE) as the rebalancing technique
(Chawla et al., 2002). SMOTE is an oversampling
method that adds samples by creating minority class
samples. The process of creating new samples by

SMOTE is as follows: for each sample xi in the mi-
nority class, SMOTE searches for its nearest neigh-
bors using the Euclidean distance and randomly se-
lects one neighbor xn. Then, a random number δ in
[0, 1] is generated. The new sample xnew is created
as

xnew = xi + (xn − xi) · δ. (1)

SMOTE can effectively solve sample imbalance
by adding minority class samples.

4 Study design

For our research, we have three research goals.
The first is to determine the best configuration for
the AL-based approach. The second is to find a
suitable training set size for the AL-based approach.
The third is to compare the AL-based approach with
the TSL-based approach. We primarily address the
following questions:

1. What is the best configuration for the AL-
based approach?

We aim to determine the combination of rebal-
ancing techniques and classification algorithms to
achieve the best performance of the AL-based ap-
proach. We measure performance in terms of F-
score, calculated as the weighted average between
precision and recall. The purpose of balancing pre-
cision and recall is to retrieve as many correct links
as possible while keeping a low effort to discard false
positives.

2. What should the size of the training set be
for the AL-based approach?

To save manpower, the size of the training set
should be as small as possible while ensuring the
performance of the AL-based approach. We compare
the AL-based approach with the IR-based approach
(baseline) in terms of F-score.

3. Does the AL-based approach provide supe-
rior support for automatic traceability link recovery
compared with the TSL-based approach?

Supposing the suitable training set size is Ns, we
directly compare the AL- and TSL-based approaches
in terms of F-score.

4.1 Experimental metrics

We use the traceability matrix (TM) to ver-
ify the correctness of traceability link classifica-
tion. Table 1 shows four possible classification types.
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Table 1 Traceability link classification

Classification TM
Validation

Correctness
result

Valid Valid TP Correct
Invalid Valid FN Incorrect
Valid Invalid FP Incorrect

Invlaid Invalid TN Correct

Among them, true positive (TP) and true negative
(TN) represent the correct classification. False posi-
tive (FP) and false negative (FN) represent wrong
classification. Precision and recall are two com-
mon metrics for measuring the performance of TLR
approaches:

precision =
TP

TP + FP
× 100%, (2)

recall =
TP

TP + FN
× 100%. (3)

Precision is the ratio of the number of links cor-
rectly classified as valid to the number of links clas-
sified as valid, and recall is the ratio of the number
of links correctly classified as valid to the number of
valid links in TM. Precision and recall are orthogo-
nal metrics used to measure two different concepts.
An aggregate measure, F-score, is used to obtain a
balance between them:

F-score = 2× precision · recall
precision + recall

. (4)

We compare mainly the performance of different
approaches in terms of F-score.

4.2 Data collection

To answer the three research questions men-
tioned earlier, we use seven datasets from five soft-
ware projects. We apply the typical preprocessing
steps employed in TLR on artifacts in these datasets
(Kuang et al., 2017). The artifacts are normalized by
standard preprocessing techniques, including split-
ting identifiers, special token elimination, stop word
removal, and stemming. Table 2 depicts the dataset
information, including the numbers of invalid and
valid traceability links and artifact types in each
dataset. Note that, as described in Section 3.3, the
data is highly unbalanced and the average ratio of
invalid to valid is approximately 11:1.

4.3 Baseline approach

We use an IR-based approach as the baseline
approach. IR-based approaches require humans set

Table 2 Datasets used in the evaluation

Dataset
Number of Number of Artifact type

invalid links valid links Source Target

eAnci 7091 554 UC CC
SMOS 5656 1044 UC CC
MODIS 890 41 HighR LowR
EasyClinic (TC-UC) 1827 63 TC UC
EasyClinic (TC-CC) 2757 204 TC CC
EasyClinic (ID-TC) 1177 83 ID TC
eTour 6363 365 UC CC

Total 25 761 2354 – –

HighR: high-level requirements; LowR: low-level require-
ments; UC: use cases; CC: code classes; ID: interaction
diagrams; TC: test cases

a similarity threshold to select valid traceability
links (Marcus and Maletic, 2003). Researchers have
to determine an optimal threshold that retrieves as
many correct links as possible while keeping a low
effort to discard false positives. However, an optimal
threshold is difficult to identify, as it may change
with projects (Lucia et al., 2007). For each dataset,
we choose a number from 0.1 to 0.9 that can achieve
the highest F-score as the threshold. Traceability
links with similarity above this threshold are deemed
valid. There have already been some IR-based trace-
ability tools that can be directly used, such as Retro
(http://opensource.gsfc.nasa.gov/projects/RETRO)
and Tracelab (http://www.coest.org/). IR used
in our experiments is the vector space retrieval
provided by Retro. Vector space retrieval treats
each document in the document collection and each
query as a set of keywords (t1, t2, . . . , tn), where each
keyword tk (k = 1, 2, . . . , n) is given a weight wk

according to its importance in the document. Each
document di is represented as a vector of keyword
weights dddi = (wi1, wi2, . . . , win) and each query qqq is
represented as qqq = (wq1, wq2, . . . , wqn). The most
commonly used weight estimation formula is

wik = tf ik · idfk = tf ik ·
(
log

(
N

nk

)
+ 1

)
, (5)

where tfik is the frequency of the occurrence of key-
word tk in document di, N is the total number of
documents in the collection, and nk is the number of
documents containing tk. Given a document vector
dddi and a query vector qqq, the similarity between them
is calculated as the cosine of the angle between the
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two vectors:

sim(dddi, qqq) = cos(dddi, qqq) =

n∑
k=1

wikwqk

√
n∑

k=1

w2
ik

n∑
k=1

w2
qk

. (6)

4.4 Answering question 1: determining the
best configuration of the AL-based approach

We combine the commonly used rebalancing
techniques with classification algorithms (Table 3)
to implement the AL-based approach. We evaluate
each implementation of the AL-based approach with
every dataset independently, running 10-fold cross
validations 10 times and averaging the results. The
configuration that achieves the highest average F-
score across all datasets is the best configuration.
After determining the best configuration, we use the
Mann-Whitney U test (a nonparametric test that
does not assume samples from normally distributed
populations) to calculate a statistically significant
difference between the best configuration and other
configurations.

Table 3 Classification algorithms and rebalancing
techniques

Category Variable Note

RF Classifier that uses a
multitude of RF

Naive Bayes Naive Bayes classifier using
Classification estimator classes
algorithms Logistic Regression model with a

ridge estimator
SVM Support vector machine

classifier

SMOTE Adding minority class
samples

Rebalancing Undersampling Reducing majority class
techniques samples

None No rebalancing technique
is applied

4.5 Answering question 2: determining a
suitable training set size for the AL-based
approach

We use training sets of different sizes to imple-
ment the AL-based approach. We set five training
set sizes: 2%, 4%, 6%, 8%, and 10% of dataset size.

We assume that the training set size is N . We ran-
domly select N/2 samples for labeling to initialize a
training set, and then select N/2 samples from the
unlabeled sample set based on the pool-based sam-
ple selection strategy for labeling and add them to
the training set. We aim to make the training set
as small as possible and the trained classifier have
high performance. We compare the AL-based ap-
proach using training sets of different sizes with the
IR-based approach.

4.6 Answering question 3: comparing the AL-
based approach with the TSL-based approach

We obtain a suitable training set size Ns in ques-
tion 2. For the AL-based approach, we randomly
select Ns/2 samples for labeling to initialize a train-
ing set, and then label Ns/2 samples selected by the
pool-based sample selection strategy and add them
to the training set. For the TSL-based approach, we
randomly select Ns samples for labeling as a training
set. The AL- and TSL-based approaches have train-
ing and test sets of the same size. We train a classifier
on the training set and use the test set to test the
performance of the classifier. Both the training sets
of the AL- and TSL-based approaches are generated
by random sampling. To mitigate the effect of sam-
pling bias, we run 10 trials of each approach on each
dataset and average the results. Finally, for each
dataset, we compare the average F-score obtained
by the two approaches and use the Mann-Whitney
U test to calculate the significant difference (at the
0.05 significance level).

5 Results

5.1 Question 1: determining the best configu-
ration of the AL-based approach

Table 4 shows the average F-score achieved by
each combination of rebalancing techniques and clas-
sification algorithms across all of the datasets in
this study. The configuration with the highest F-
score is displayed in bold and chosen as a default
configuration used in questions 2 and 3. The results
show that RF significantly outperforms all other clas-
sification algorithms and achieves the best results
when using SMOTE for data rebalancing. There-
fore, the combination of RF and SMOTE is the best
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Table 4 Average F-score achieved by the implemen-
tation of the AL-based approach across all datasets

Rebalancing Average F-score (%)

technique RF Naive Bayes Logistic SVM

None 76.02 37.66∗ 46.00∗ 40.52∗

SMOTE 79.41 35.02∗ 51.78∗ 49.25∗

Undersampling 53.66∗ 32.46∗ 37.64∗ 36.63∗

The bold font represents the best configuration. * performs
statistically significantly worse than the best configuration
(at the 0.05 significance level)

one. The RF classification algorithm with SMOTE
rebalancing is the best configuration of the AL-based
approach for all datasets in terms of F-score.

5.2 Question 2: determining a suitable train-
ing set size for the AL-based approach

Table 5 shows that for all datasets, as the size
of the training set increases, the F-score of the AL-
based approach also gradually increases. It is found
that when we use 2% or 4% of the dataset as the
training set, the performance of the AL-based ap-
proach does not significantly improve compared to
that of the IR-based approach (the average F-score
increases by no more than 6%). However, when we
use 6%, 8%, or 10% of the dataset as the training set,
the AL-based approach significantly outperforms the
IR-based approach (the average F-score increases by
more than 15%). In other words, using 6%, 8%,
or 10% of the dataset as the training set could en-
sure the performance of the AL-based approach. We
consider not only the performance of the AL-based
approach, but also the size of the training set. To
save manpower, the training set should be as small
as possible. Therefore, 6% is more suitable than 8%
or 10%. When we use 6% of the dataset as the train-
ing set, the AL-based approach outperforms the IR-
based approach for all datasets except eTour. The
AL-based approach improves the performance for six
of the seven datasets by more than 11% in terms of
F-score. For eTour, the F-score of the AL-based ap-
proach is only 6.6% lower than that of the IR-based
approach. Overall, the AL-based approach using 6%
of the dataset as the training set outperforms the
IR-based approach by more than 15% in terms of
the average F-score. The 6% dataset size is a suit-
able training set size for the AL-based approach.

5.3 Question 3: comparing AL- and TSL-
based approaches

Table 6 shows a comparison of precision, recall,
and F-score between AL- and TSL-based approaches
for each dataset. When we use 6% of the dataset as
the training set, the AL-based approach outperforms
the TSL-based approach in terms of precision, recall,
and F-score for each of the seven datasets. There are
some differences in the performance improvements
provided by the AL-based approach. For example,
in the cases of SMOS and MODIS, the AL-based ap-
proach outperforms the TSL-based approach by less
than 10% in terms of F-score. However, the AL-
based approach improves the performance for Easy-
Clinic (TC-UC) and EasyClinic (TC-CC) by more
than 24% in terms of F-score. Overall, the AL-based
approach outperforms the TSL-based approach by
more than 16% in terms of the average F-score. Fi-
nally, the performance of the AL-based approach is
statistically significantly better than that of the TSL-
based approach at the 0.05 significance level in terms
of F-score for each dataset. When we use 6% of the
dataset as the training set, the AL-based approach
significantly outperforms the TSL-based approach
for all the seven datasets in terms of F-score.

6 Threats to validity

A possible threat is the randomness of exper-
imental results. For the AL- and TSL-based ap-
proaches, we consider that good results might purely
be obtained by chance through only one trial. There-
fore, we run multiple trials of each approach on each
dataset and then average the results. Finally, we
use statistical tests to add rigor to the analysis of
experimental results.

Another possible threat is the extent to which
we can generalize the results of our studies. It is diffi-
cult to find a large software system with a large num-
ber of artifacts and a high-quality TM. Therefore, we
cannot claim that our research results can be general-
ized to large software systems. However, our findings
are still meaningful since we have evaluated seven
datasets extracted from five different medium-sized
software systems. Moreover, these datasets were cre-
ated by domain experts and have been used many
times in previous traceability studies.
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Table 5 Average F-score achieved by the implementation of the AL-based approach using training sets of
different sizes

Average F-score (%)

Dataset AL
IR*

2% 4% 6% 8% 10%

eAnci (CC-UC) 24.24 50.07 55.05 (+30.50) 60.02 64.24 24.55
SMOS (CC-UC) 39.75 32.88 39.13 (+12.17) 40.47 42.62 26.96
MODIS (HighR-LowR) 26.77 29.13 38.18 (+11.31) 39.78 40.51 26.87
EasyClinic (TC-UC) 25.57 33.96 59.81 (+16.06) 62.89 75.65 43.75
EasyClinic (TC-CC) 51.97 66.01 76.56 (+29.82) 83.53 90.41 45.74
EasyClinic (ID-TC) 50.42 55.64 64.50 (+16.53) 74.39 81.45 47.97
eTour (CC-UC) 38.98 42.09 46.09 (−6.60) 47.48 47.83 52.69

Average 36.96 44.25 54.19 (+15.83) 58.37 63.24 38.36

* Baseline (IR: information retrieval). The number in the parentheses represents the difference of F-score between the AL- and
IR-based approaches

Table 6 Precision, recall, and F-score of the AL- and TSL-based approaches

Dataset
Precision (%) Recall (%) F-score (%)

AL TSL AL TSL AL TSL

eAnci (CC-UC) 73.37 50.95 44.05 37.27 55.05 (+12.00) 43.05
SMOS (CC-UC) 57.78 52.39 29.58 24.92 39.13 (+5.35) 33.78
MODIS (HighR-LowR) 72.41 32.04 25.93 30.69 38.18 (+6.83) 31.35
EasyClinic (TC-UC) 95.05 75.44 43.64 28.76 59.81 (+18.16) 41.65
EasyClinic (TC-CC) 89.97 71.45 66.63 40.29 76.56 (+25.03) 51.53
EasyClinic (ID-TC) 87.56 67.79 51.06 25.83 64.50 (+27.09) 37.41
eTour (CC-UC) 68.98 59.40 34.60 18.56 46.09 (+17.81) 28.28

Average 77.87 58.50 41.59 29.48 54.19 (+16.04) 38.15

The number in the parentheses represents the difference of F-score between the AL- and TSL-based approaches

7 Conclusions and future work

For projects without traceability information,
the TSL-based approach for establishing traceability
links consumes too much manpower. To solve this
problem, we propose an AL-based approach for au-
tomatic TLR. First, we empirically derive the best
configuration of the AL-based approach on seven
datasets commonly used to evaluate new approaches
to TLR. Then, we choose a suitable training set size
for the AL-based approach. Finally, we compare the
AL-based approach with the IR- and TSL-based ap-
proaches. It is shown that the AL-based approach
outperforms the other two approaches in terms of
F-score.

Because some IR-related features have been
used, the AL-based approach also suffers from the
“vocabulary mismatch” problem. Jin et al. (2017)
proposed two query augmentation techniques to
solve this problem: (1) replacing the original query
terms with terms learned through web-mining; (2)
using a domain ontology to augment query terms.

In the future, we will improve the IR-related features
using these techniques.
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