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Abstract: This study is concerned with probabilistic Boolean control networks (PBCNs) with state feedback
control. A novel definition of bisimilar PBCNs is proposed to lower computational complexity. To understand
more on bisimulation relations between PBCNs, we resort to a powerful matrix manipulation called semi-tensor
product (STP). Because stabilization of networks is of critical importance, the propagation of stabilization with
probability one between bisimilar PBCNs is then considered and proved to be attainable. Additionally, the transient
periods (the maximum number of steps to implement stabilization) of two PBCNs are certified to be identical if these
two networks are paired with a bisimulation relation. The results are then extended to the probabilistic Boolean
networks.
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1 Introduction

First introduced by Kauffman (1969), Boolean
networks (BNs) have become a highly active focus of
study in the past few decades. In particular, BNs are
used mostly in the bio-medical domain. Specifically,
studying the behavior of genes has always been a
prevalent trend and BNs have been proved to be
an ideal tool to model genetic regulatory networks.
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For this reason, biologists use BNs to characterize
the dynamics. Simulating neural networks (Wang
et al., 1990) and lac operon’s behaviors (Veliz-Cuba
and Stigler, 2011) by BNs are important cases in
point. Actually, BNs are logical systems consisting
of a cluster of nodes and a set of logic functions
that help connect scattered nodes into a network.
In general, only two states (0 represents “off” and 1
represents “on”) are assigned to each node and the
status updated at any point in time is governed by
some logic functions.

When BNs’ behaviors are also dependent on
some control inputs besides the nodes contained
in this network, the classical BN is extended to a
model called the Boolean control network (BCN).
The emergence of BCNs is partly owing to the

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1900447&domain=pdf


Jiang et al. / Front Inform Technol Electron Eng 2020 21(2):268-280 269

demand of artificially controlling BNs, for example,
steering BNs out of undesirable states to desirable
ones uses external controls. More extensive research
on BCNs has not sprung up until the semi-tensor
product (STP) of matrices was put forward (Cheng
et al., 2010b; Lu et al., 2018a). Taking advantage
of STP, the logical form of BNs (or BCNs) can be
converted to an algebraic representation, which en-
ables algebraic operations to be applied to the in-
vestigation of BNs (or BCNs). STP facilitates the
exploration of a number of essential and significant
properties enjoyed by BNs and BCNs, such as fixed
points, cycles, and basin of attractors of BNs (or
BCNs) (Cheng et al., 2010b), as well as some control
problems, i.e., disturbance decoupling (Liu Y et al.,
2017), controllability (Lu et al., 2016; Zhu QX et al.,
2019), observability (Cheng and Qi, 2009; Fornasini
and Valcher, 2012), optimal control (Zhu QX et al.,
2018), output tracking control (Li YY et al., 2019),
network synchronization (Li FF and Yu, 2016), and
stabilization (Lu et al., 2018b; Li BW et al., 2019;
Sun et al., 2020).

Many results on BN (or BCN) control problems
have been recently obtained. Nonetheless, BNs (or
BCNs) are settled once the logic functions are given.
This may make BNs (or BCNs) be unadaptable to
certain situations. In reality, the genetic regulation
process has the property of uncertainty. Moreover,
researchers often have to collect data with unavoid-
able random errors. Inspired by this, probabilistic
BNs (PBNs) as well as probabilistic BCNs (PBCNs)
(Shmulevich et al., 2002) were proposed to take the
stochastic phenomena into account and cut down the
experimental errors. As a matter of fact, PBNs (or
PBCNs) can be viewed as an extension of BNs (or
BCNs) because of the original characteristics they in-
herit from BNs (or BCNs). PBNs and PBCNs have

been well studied and widely employed in the field
of control engineering (Zhu SY et al., 2019), gene
regulation (Liang JH and Han, 2012), and model-
ing of some phenomena of disease (Ma et al., 2008).
Also, related control problems have captured the at-
tention of researchers, such as stabilization (Huang
et al., 2020), optimal control (Ching et al., 2009),
and controllability (Tong et al., 2018a).

Lately, PBCN has become a research hotspot.
Various categories of controllers have been used to
regulate PBCNs. At the very start, free control se-
quences were put in use with input-state controllers,
which rely on the input network. Then, another kind
of controller determined by the current states of BNs,
named the state feedback controller, was proposed.
Since then, state feedback controllers have been in
the highest flight of control topics. On the strength
of state feedback controllers, multiple forms of con-
trol systems have then been devised. Some late-
model controls include, but are not limited to, out-
put feedback control, pinning control, and optimal
control. Some important studies applying the con-
trollers mentioned above are summarized in Table 1.

Stabilization of PBCNs has received particular
research attention, since stabilization of a network,
to a large extent, is equivalent to the convergence of
discrete iterations (Huang et al., 2018; Xiong et al.,
2019). In addition, stabilizing to achieve desirable
goals is of vital importance in practice, e.g., modeling
some diseases, where seeking out therapeutic meth-
ods and helping patients maintain fitness afterwards
are ultimate objectives. Accordingly, studying the
stabilization is worthwhile. Up to now, some studies
have already covered the stabilization problems with
respect to multifarious networks. We classify some
influential studies on stabilization according to the
networks in Table 2.

Table 1 A short overview of the literature using diverse controllers

Class of controllers Subclass of controllers Literature

Free control sequence Optimal control Ching et al. (2009) and Fornasini and Valcher (2014)
Free sequence Cheng and Qi (2009), Cheng et al. (2010a), and

Laschov and Margaliot (2012)
Feedback control State feedback control Li R et al. (2014a), Li HT and Wang (2016), Liu RJ et al. (2016),

and Liang JL et al. (2017)
Output feedback control Bof et al. (2015)

Pinning control Chen et al. (2016) and Huang et al. (2020)
Input-state control Cheng (2009) and Cheng and Qi (2009)
Event-triggered control Tong et al. (2018a) and Zhu SY et al. (2018)
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Table 2 A brief classification of studies on stabilization in terms of various kinds of networks

Network Studies

BN Cheng et al. (2011) proposed a necessary and sufficient condition for the stability of BNs. Li FF (2016)
gave a necessary and sufficient condition for the stability of BNs, and invented a method of
designing the corresponding pinning controllers

BCN Bof et al. (2015) found a way to examine the existence of output feedback controllers satisfying the
stabilization of BCNs. Guo et al. (2015) established a necessary and sufficient condition to set
stabilization and carried out a procedure of finding all the stabilizers

PBN Li R et al. (2014a) devised a state feedback law to accomplish the stabilization of PBNs
PBCN Tong et al. (2018b) proposed a necessary and sufficient condition for context-sensitive PBCNs

with static output feedback to set stabilization and a constructive technique to find such
identified controllers

BN: Boolean network; BCN: Boolean control network; PBN: probabilistic Boolean network; PBCN: probabilistic
Boolean control network

However, most previous studies neglect compu-
tational complexity, and thus to a certain degree,
these preceding results are unsatisfactory. Li FF
and Xie (2019) involved the process of choosing part
of the pinning nodes to put in controls, which un-
fortunately includes various ways. To choose the
minimum number of nodes, the method of exhaus-
tion may be applied, which can definitely increase
the computational complexity. Moreover, Li R et al.
(2014b) required the locating of the target fixed
point, which may demand a huge and expensive ef-
fort when PBCNs (or PBNs) reach a certain scale.
Likewise, Li YY et al. (2018) required to examine all
the possible initial states to identify their transient
periods, which presumably requested considerable
computing power and time. Naturally, researchers
may want to match the states and trajectories of a
comparatively large network to those of a relatively
small one, so that we can go into the characteristics of
the larger network by studying a smaller one instead.
Therefore, the concept of bisimulation arises (Li R
et al., 2018), and a framework of analyzing bisimula-
tion relation between BCNs was set up. More impor-
tantly, it verified the possibility of inferring certain
control properties, i.e., controllability and stabiliza-
tion, of a complicated network by investigating a po-
tentially simpler network via bisimulation relations.
However, Li R et al. (2018) focused only on BCNs
and the theorems are not necessarily appropriate for
PBCNs.

Motivated by the above discussion, we dedicate
our study to PBCNs with a state feedback controller,
which is the most commonly used controller in in-
dustry, and then we intend to develop an approach
to examine bisimulation relations of PBCNs. Doing

our utmost to diminish computational complexity is
the primary goal. Therefore, in parallel to Li R et al.
(2018), we try to find a way to simulate such a PBCN
with another one of the same kind so that the scale
problem may not be a hindrance. To the best of our
knowledge, this issue has not been touched upon by
other researchers. Using the bisimulation relation,
propagation of stabilization then enters into our con-
sideration, where a small-scale PBCN may simulate
certain characteristics of the original one. Similar to
Li R et al. (2018), we reckon that a complex PBCN
can become stabilizable to a state set if and only
if the bisimilar small-scale PBCN is stabilizable to
a fixed point, which calls for less labor in analysis.
Thus, based on the bisimilar simpler PBCN, we can
determine whether the large-scale PBCN is stabiliz-
able to a certain state set and whether these two
PBCNs can simultaneously achieve stabilization. In
a nutshell, the issues we are going to cope with in
this study include:

1. How can we generalize the bisimulation re-
lation between BCNs to PBCNs? In short, it is un-
known whether we can make a decent definition of
the bisimulation relation between PBCNs.

2. Can we prove the presence of necessary
and sufficient conditions for a relation between two
PBCNs is a bisimulation relation? After determining
the definition, we are supposed to present a condi-
tion to test whether a given relation is a bisimulation
relation between PBCNs, which is full of uncertainty.

3. Is it feasible to deduce the set stabilization of
a larger PBCN with probability one by analyzing a
smaller BPCN through the bisimulation relation? To
be more specific, our preliminary conjecture is that
if a smaller PBCN is stabilizable to a certain point
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with probability one, then through a bisimulation
relation, a more complex PBCN can be stabilized to
a state set, which is determined by the stationary
point of the former network.

4. Do bisimilar PBCNs share the same transient
period? Transient period is the smallest number of
steps for a network to reach a steady point or set.
If two networks that are matched by a bisimulation
relation exhibit the same transient period, we can
get to know the larger PBCN’s transient period by
studying the smaller one.

To tackle the four problems above, we use STP
to describe PBCNs in their algebraic forms. To sim-
plify the system, state feedback controllers are also
expressed in the algebraic representations such that
PBCNs can be shown in forms similar to those of
BCNs, which makes the analysis easier. Addition-
ally, at the end of this study, we further extend the
definition of the bisimulation relation and the neces-
sary and sufficient conditions to PBNs.

The novelties of this study include:
1. As far as we know, the concept of bisimula-

tion relation between PBCNs is first proposed.
2. Using Boolean product, necessary and suf-

ficient conditions involving the skeleton matrices of
PBCNs and a certain logical matrix are given to test
bisimulation relations between two PBCNs.

3. Using bisimulation relations, the stabilization
of PBCNs with probability one is then propagated.

4. We prove that if two PBCNs are matched
by a bisimulation relation, then they share the same
transient period.

5. The results are generalized to PBNs.
However, it has been proved in Li R et al. (2018)

that checking a bisimulation relation is an NP-hard
problem that cannot be solved in polynomial time.
Unfortunately, we are yet to find a more effective
way to examine a bisimulation relation in polyno-
mial time. Hence, the results obtained in this study
may not necessarily contribute to the reduction of
computational complexity, but once the efficiency is
improved, these results can be significant. Now we
will just leave this matter as future work.

Throughout this paper, IIIn represents an
n-dimensional identity matrix and δδδin is its ith

column. Δn denotes a set containing the vectors
δδδ1n, δδδ

2
n, . . . , δδδ

n
n. Rm×n stands for the set of all m× n

real matrices. Lm×n signifies the set of all m × n

logical matrices in which each column belongs

to Δm. L denotes the set of logical matrices of
arbitrary dimensions. We denote δδδn[i1, i2, . . . , ik]

as a matrix with its jth column being δδδijn . For a
matrix MMM , its (i,j)-entry is denoted by (MMM)ij . A
matrix with its entries being either 0 or 1 is called
a Boolean matrix. Assume that AAA is an m × l

Boolean matrix and BBB is an l × n Boolean matrix,
the Boolean product of AAA and BBB, denoted by AAA�BBB,
is an m×n Boolean matrix with its (i,j)-entry being
l∨

t=1
[(AAAit) ∧ (BBB)tj ]. If AAA and BBB are m × l Boolean

matrices, the Boolean sum of AAA and BBB, denoted
by AAA ∨ BBB, is then an m × l Boolean matrix with
the (i,j)-entry being (AAA)ij ∨ (BBB)ij . Given a pair
of sets S1 and S2, a subset R of S1 × S2 is called
a relation on S1 × S2. With regard to the relation
R ⊆ S1 × S2, we denote R−1 as the inverse relation
of R, where R−1 = {(s2, s1) : (s1, s2) ∈ R}. We
define a power-reducing matrix asMMM r = δδδ4[1, 4]. For
xxx ∈ Δ2, the equation xxx�xxx =MMM r �xxx is a tautology.
A swap matrix WWW [m,n] is an mn × mn matrix and
is defined as follows. Its rows and columns are
labeled by the double index (ij). The columns
are arranged by the ordered multi-index, i.e.,
[(11), (21), . . . , (m1), (12), (22), . . . , (m2), . . . , (1n),

(2n), . . . , (mn)], and the rows are ar-
ranged in the order like [(11), (12), . . . , (1n),

(21), (22), . . . , (2n), . . . , (m1), (m2), . . . , (mn)].
Then, the element at position [(I, J), (i, j)] is

w(I,J),(i,j) =

{
1, I = i and J = j,

0, otherwise.

ΦΦΦn =
n∏

i=1

III2i−1 ⊗ [(III2⊗WWW [2,2n−1])�MMM r] is called the

group power-reducing matrix. If XXX = xxx1�xxx2� . . .�

xxxn, where n ≥ 1 and xxxi ∈ Δ2 (i = 1, 2, . . . , n), then
XXX �XXX = ΦΦΦn �XXX.

2 Preliminaries

PBCNs with state feedback control are studied
in this section. We first give the formal description
of PBCNs.
Definition 1 A PBCN can be presented as

XXX(t+ 1) = fi
(
UUU(t),XXX(t)

)
, (1)

where XXX(t) is the state variable at time t taking val-
ues in {0, 1}n, t = 0, 1, 2, . . . , and i = 1, 2, . . . , r.
UUU(t) = h

(
XXX(t)

)
∈ {0, 1}m denotes the input at time
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t with h : {0, 1}n → {0, 1}m being a fixed logic func-
tion. fi : {0, 1}m+n → {0, 1}n is a logic function
chosen from f1, f2, ..., fr at time t with probability
pi > 0. The relation

∑r
i=1 pi = 1 must be satisfied.

However, it is more useful to describe Eq. (1) in
an algebraic form using STP. Consequently, we will
introduce the definition and some properties of STP
first.
Definition 2 LetAAA ∈ Rp×q, andBBB ∈ Rm×n. STP
of AAA and BBB is defined as (Cheng et al., 2010b)

AAA�BBB =
(
AAA⊗ III l

q

)(
BBB ⊗ III l

m

)
,

where l denotes the least common multiple of q

and m, and ⊗ stands for the Kronecker product of
matrices.

Note that if q = m, then AAA �BBB = AAABBB. There-
fore, STP can be regarded as an extension of the
conventional matrix product. Using STP, a logical
system can be described in an algebraic represen-
tation. Let the canonical vectors δδδ12 and δδδ22 denote
the Boolean values 1 and 0, respectively. Then, a
logic function of {1, 0}n → {1, 0}m can be equiv-
alently expressed as a mapping from Δ2n to Δ2m ,
since the mapping from (Δ2)

n to Δ2n converting
(xxx1,xxx2, . . . ,xxxn) to xxx1 � xxx2 � . . . � xxxn (xxxi ∈ Δ2) is
bijective.

Then, we will lead up to a technique to trans-
form a logical system into an algebraic expression.
Lemma 1 Consider the logic function f :

{0, 1}n → {0, 1}m. Let f(XXX1,XXX2, . . . ,XXXn) =

(YYY 1,YYY 2, . . . ,YYY m), where XXXi ∈ {0, 1} (i =

1, 2, . . . , n) and YYY j ∈ {0, 1} (j = 1, 2, . . . ,m). Then,
there exists a unique logical matrixLLL ∈ L2m×2n such
that (Cheng et al., 2010b)

yyy1 × yyy2 � . . .� yyym = LLL� xxx1 � xxx2 � . . .� xxxn,

where LLL is called the structure matrix of f and
xxxi ∈ Δ2 and yyyj ∈ Δ2 are the corresponding vector
representations of XXXi and YYY j , respectively.

Now, consider Σ and Σ̃ as two different PBCNs
in the form of Eq. (1). Then, these two PBCNs can
be modeled by Lemma 1 in their algebraic forms as

Σ : xxx(t+ 1) = LLLi � uuu(t)� xxx(t), (2)

Σ̃ : zzz(t+ 1) = L̃LLj � vvv(t)� zzz(t), (3)

where xxx(t) ∈ ΔN , uuu(t) ∈ ΔM , zzz(t) ∈ Δ
˜N , and

vvv(t) ∈ Δ
˜M

. LLLi ∈ LN×MN and L̃LLj ∈ L
˜N×˜M ˜N

(i = 1, 2, . . . , r and j = 1, 2, . . . , k) are structure ma-
trices in accordance with the logic functions picked at
time t; i.e.,LLLi (L̃LLj) can be deemed structure matrices
chosen from a pool of candidate structure matrices
in terms of a given probability distribution.

Likewise, the control systems of Σ and Σ̃ can
be represented as

uuu(t) =HHH � xxx(t), HHH ∈ LM×N , (4)

vvv(t) = H̃HH � zzz(t), H̃HH ∈ L
˜M× ˜N

, (5)

where HHH and H̃HH will not change with time.
This study aims at figuring out the indispens-

able condition so that two PBCNs can mutually sim-
ulate each other. In other words, the purpose of
this study is to find out under what circumstances
there would be a bisimulation relation between two
PBCNs. Therefore, it is helpful to give the defini-
tions of the (bi)simulation relation first.
Definition 3 Consider PBCNs Σ and Σ̃ as in
Eqs. (2) and (3), respectively. A relation R ⊆ ΔN ×
Δ

˜N is a simulation relation of Σ by Σ̃ if the following
two conditions are satisfied:

1. For every xxx ∈ ΔN , there exists a zzz ∈ Δ
˜N

such that (xxx,zzz) ∈ R.
2. For every (xxx,zzz) ∈ R and every possible choice

of LLLi with uuu = HHH � xxx being the present input of Σ,
there exists an L̃LLj such that (LLLi�uuu�xxx, L̃LLj�vvv�zzz) ∈ R

with vvv = H̃HH � zzz being the input of Σ̃.
Definition 4 Consider PBCNs Σ and Σ̃ as in
Eqs. (2) and (3), respectively. The relation R ⊆
ΔN ×Δ

˜N is a bisimulation relation between Σ and
Σ̃ if R is a simulation relation of Σ by Σ̃ and R−1 is
a simulation relation of Σ̃ by Σ.

If we construct a mapping CCC : ΔN → Δ
˜N be-

tween the state sets of Σ and Σ̃, and regard CCC as
a logical matrix in LLL

˜N×N , then a relation R can be
described as

R = {(xxx,zzz) : zzz = CCC � xxx, xxx ∈ ΔN , zzz ∈ Δ
˜N}. (6)

According to the definitions above, CCC must be a
surjection if R is a bisimulation relation between Σ

and Σ̃. In the next section, a necessary and sufficient
condition will be imposed to ensure that R can be a
bisimulation relation between Σ and Σ̃.
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3 Bisimilar PBCNswith state feedback
controller

Consider PBCNs Σ and Σ̃ as in Eqs. (2) and
(3) with their state feedback controllers as given
in Eqs. (4) and (5), respectively. Then, these two
PBCNs can be modeled by Lemma 1 as

Σ : xxx(t+ 1) =LLLi � uuu(t)� xxx(t)

=LLLi �HHH � xxx(t)� xxx(t)

=LLLi �HHH �ΦΦΦN � xxx(t), (7)

Σ̃ : zzz(t+ 1) = L̃LLj � H̃HH �ΦΦΦ
˜N � zzz(t), (8)

where i = 1, 2, . . . , r, j = 1, 2, . . . , k. Let FFF i = LLLi �

HHH�ΦΦΦN and F̃FF j = L̃LLj �H̃HH�ΦΦΦ
˜N . Then, we construct

two square matrices called the skeleton matrices of
Σ and Σ̃:

QQQF = FFF 1 ∨FFF 2 ∨ . . . ∨FFF r, (9)

QQQ
˜F = F̃FF 1 ∨ F̃FF 2 ∨ . . . ∨ F̃FF k. (10)

As for an m-dimensional skeleton matrix, its
(i, j)-entry equals 1 if and only if there exists a one-
step transition from δδδjm to δδδim. Hence, the skeleton
matrices defined as in Eqs. (9) and (10) indicate all
the possible one-step state transitions of Σ and Σ̃.
Theorem 1 Consider PBCNs Σ and Σ̃ as in
Eqs. (7) and (8) with their state feedback control
systems as given in Eqs. (4) and (5), respectively.
Let QQQF and Q̃QQ

˜F be the skeleton matrices and CCC ∈
L

˜N×N . Then the relation R defined in Eq. (6) is a
bisimulation relation between Σ and Σ̃ if and only if

CCC �QQQF =QQQ
˜F �CCC. (11)

Proof Necessity (=⇒): Suppose that the relation
R is a bisimulation relation between Σ and Σ̃.

First, R is a simulation relation of Σ by Σ̃. Ac-
cording to Definition 3, for any xxx(t) ∈ ΔN , there
exists zzz(t) ∈ Δ

˜N such that (xxx(t), zzz(t)) ∈ R. Then
by Eq. (6), we have zzz(t) = CCC � xxx(t). Condition (2)
in Definition 3 should also be satisfied. That is, for
any given state xxx(t) and arbitrary structure matrix
LLLi, there is a structure matrix L̃LLj of Σ̃ satisfying

zzz(t+ 1) =CCCxxx(t+ 1) = CCC �LLLi �HHH �ΦΦΦN � xxx(t),

zzz(t+ 1) =L̃LLjH̃HHΦΦΦ
˜Nzzz(t) = L̃LLj � H̃HH �ΦΦΦ

˜N �CCC � xxx(t).

We then have

CCC �LLLi �HHH �ΦΦΦN = L̃LLj � H̃HH �ΦΦΦ
˜N �CCC,

=⇒ CCC � (LLLi �HHH �ΦΦΦN ) = (L̃LLj � H̃HH �ΦΦΦ
˜N )�CCC.

Equivalently,
CCCFFF i = F̃FF jCCC, (12)

=⇒ CCC �FFF i = F̃FF j �CCC. (13)

Note that the multiplied matrices in Eq. (12)
have compatible sizes. Hence, the symbol of STP
is omitted here. The conversion from Eq. (12) to
Eq. (13) is trivial. In view of the fact that (CCC �
FFF i)pq = 1 if (CCCFFF i)pq > 0, Eq. (13) is absolutely
satisfied. All in all, for any FFF i with xxx(t) being the
current state, we can find an F̃FF j such that Eq. (13)
holds. In consequence, for a given FFF i regardless of
the present state, there are at most min{k,N} F̃FF j ’s
so that Eq. (13) can be satisfied. This is because for
an FFF i, the choice of F̃FF j is dependent on the value
of xxx(t). Because there are N alternative values of
xxx(t), the number of F̃FF j ’s that correspond to a given
FFF i should be no larger than N . When taking the
number of F̃FF j ’s into account, the minimum values of
N and k are taken.

Second, R−1 is a simulation relation of Σ̃ by Σ.
Given any zzz ∈ Δ

˜N , there is at least one xxxi ∈ ΔN

(1 ≤ i ≤ N), so that (zzz,xxxi) ∈ R−1. This is because
CCC is a surjection from ΔN to Δ

˜N . Consequently, we
define a set Si (1 ≤ i ≤ Ñ) as

Si = {δδδjN : CCC � δδδjN = δδδi
˜N
}, (14)

with di being its cardinality. Therefore, for any
zzz(t) = δδδi

˜N
, there exists xxx(t) ∈ Si. It immediately

follows that (zzz(t),xxx(t)) ∈ R−1.
Similarly, for a given pair (zzz(t),xxx(t)) ∈ R−1 and

any L̃LLj , we can find an LLLi satisfying

L̃LLj � H̃HH �ΦΦΦ
˜N � zzz(t) = zzz(t+ 1)

= CCC � xxx(t+ 1)

= CCC �LLLi �HHH �ΦΦΦN � xxx(t).

As defined in Eq. (14), zzz(t) = CCC � xxx(t) when
xxx(t) ∈ Si. Thus, we have

L̃LLj � H̃HH �ΦΦΦ
˜N � zzz(t) = L̃LLj � H̃HH �ΦΦΦ

˜N �CCC � xxx(t)

= CCC �LLLi �HHH �ΦΦΦN � xxx(t),

or

CCC �LLLi �HHH �ΦΦΦN = L̃LLj � H̃HH �ΦΦΦ
˜N �CCC,

=⇒ CCC �FFF i = F̃FF j �CCC. (15)

Accordingly, with regard to any F̃FF j with zzz =

δδδi
˜N

being the present state, similar to the previous
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analysis, there are at most min{r, di} FFF i’s satisfying
Eq. (15). Thus, for a random F̃FF j , there exist at most
min{r, d1} + min{r, d2} + . . . + min{r, d

˜N} FFF i’s by
which Eq. (15) can be established.

To conclude, if R is a simulation relation of Σ
by Σ̃, then for any FFF i, there are some F̃FF j ’s so that
Eq. (13) holds. Thus,

CCC �QQQF = CCC � (FFF 1 ∨FFF 2 ∨ . . . ∨FFF r)

= (CCC �FFF 1) ∨ (CCC �FFF 2) ∨ . . . ∨ (CCC �FFF r)

= (F̃FF k1 ∨ F̃FF k2 ∨ . . . ∨ F̃FF kr)�CCC

⊆QQQ
˜F �CCC. (16)

Analogously, if R−1 is a simulation relation of Σ̃
by Σ, for any F̃FF j , various FFF i’s can be found so that
Eq. (15) is true. As a result,

QQQ
˜F �CCC = (F̃FF 1 ∨ F̃FF 2 ∨ . . . ∨ F̃FF k)�CCC

= CCC � (FFF r1 ∨FFF r2 ∨ . . . ∨FFF rk)

⊆ CCC �QQQF .

(17)

Combining Eqs. (16) and (17), we conclude that
if R is a bisimulation relation between Σ and Σ̃, then
CCC �QQQF =QQQ

˜FFF
�CCC.

Sufficiency (⇐=): Assume thatCCC�QQQF = Q̃QQ
˜FFF
�

CCC. Then, we must show that the relation R is a
bisimulation relation between Σ and Σ̃. Observe
that Eq. (11) is equivalent to the statement that for
any 1 ≤ i ≤ Ñ and 1 ≤ j ≤ N , (CCC�QQQF )ij = 1 if and
only if (QQQ

˜F � CCC)ij = 1. According to the Boolean
matrix product defined, we have

(CCC �QQQF )ij =

N∨

t=1

[(CCC)it ∧ (QQQF )tj ] ,

(QQQ
˜F �CCC)ij =

˜N∨

l=1

[
(QQQ

˜F )il ∧ (CCC)lj)
]
.

Hence, if (CCC �QQQF )ij = 1, there exists some t

(1 ≤ t ≤ N) such that

(CCC)it = (QQQF )tj = 1.

If (QQQ
˜F � CCC)ij = 1, then we can find some l

(1 ≤ l ≤ Ñ) such that

(CCC)lj = (QQQ
˜F )il = 1.

First, we show that R is a simulation relation
of Σ by Σ̃. Condition (1) in Definition 3 is clearly

satisfied. To show that condition (2) in Definition 3
is also satisfied, let xxx = δδδjN for some j (1 ≤ j ≤ N).
For this j, we can find (QQQF )tj = 1 for some t (1 ≤
t ≤ N). Hence, Σ admits a one-step transition from
δδδjN to δδδtN , i.e., the conditional probability P{xxx(1) =
δδδtN | xxx(0) = δδδjN ,uuu(0) = HHH � δδδjN} > 0. For xxx =

δδδtN , we can find (CCC)it = 1 for some i (1 ≤ i ≤
Ñ). Thus, (CCC � QQQF )ij = 1 indicates that (QQQ

˜F �
CCC)ij = 1. Accordingly, we have (CCC)lj = (QQQ

˜F )il =

1, for some l (1 ≤ l ≤ Ñ). This means that, for
xxx = δδδjN , there is δδδl

˜N
satisfying (δδδjN , δδδl

˜N
) ∈ R since

(CCC)lj = 1. In addition, (QQQ
˜F )il = 1 suggests that

there is a one-step transition from δδδl
˜N

to δδδi
˜N
, or the

probability P{zzz(1) = δδδi
˜N
|zzz(0) = δδδl

˜N
, vvv(0) = H̃HH �

δδδl
˜N
} > 0. Since (CCC)it = 1, it follows that (δδδtN , δδδi

˜N
) ∈

R. Thus, condition (2) in Definition 3 is satisfied,
and we conclude that R is a simulation relation of Σ
by Σ̃.

Finally, we must prove that R−1 is a simulation
relation of Σ̃ by Σ. Condition (1) in Definition 3 is
obviously satisfied, since CCC is a surjection. It suffices
to show that for any (zzz,xxx) ∈ R−1 and any L̃LLj with
the input vvv = H̃HH � z, there exist LLLi and uuu = HHH � xxx

such that (L̃LLj � H̃HH � ΦΦΦ
˜N � zzz,LLLi �HHH � ΦΦΦN � xxx) ∈

R−1. Let zzz = δδδl
˜N

and (QQQ
˜F )il = 1 for some i and l

(1 ≤ i, l ≤ Ñ). It follows that there is a one-step
transition from δδδl

˜N
to δδδi

˜N
or P{zzz(1) = δδδi

˜N
|zzz(0) =

δδδl
˜N
, vvv(0) = H̃HH × δδδl

˜N
} > 0. For this l, there exists

some xxx ∈ Sl. Supposing that δδδjN ∈ Sl (1 ≤ j ≤ N),
then (CCC)lj = 1 and (δδδl

˜N
, δδδjN ) ∈ R−1. Hence, we have

(QQQ
˜F �CCC)ij = 1. It follows from Eq. (11) that (CCC �

QQQF )ij = 1. Thus, we can find some t (1 ≤ t ≤ N)
so that (CCC)it = (QQQF )tj = 1. When (QQQF )tj = 1, the
state transition probability P{xxx(1) = δδδtN | xxx(0) =

δδδjN ,uuu(0) = HHH � δδδjN} > 0. That is to say, Σ has
a state transition from δδδjN to δδδtN in one step. In
addition, (δδδi

˜N
, δδδtN) ∈ R−1 since (CCC)it = 1.

Remark 1 Given a complex PBCN and a pre-
determined surjection between the state sets, the
structure matrix of the simpler PBCN can be con-
structed. Let MMM = CCC �QQQF . Then QQQ

˜F can be ob-
tained through the relation QQQ

˜F � CCC = MMM . If we
denote CCC = δδδ

˜N [α1, α2, . . . , αN ], where αi ≤ Ñ and
i = 1, 2, . . . , N , then the multiplying law indicates
that MMM = [ColColColα1(QQQ ˜F ),ColColColα2(QQQ ˜F ), . . . ,ColColColαN (QQQ

˜F )].
Note that CCC is nonsingular since it is a surjection,
which implies that the matrix MMM contains all the
columns in QQQ

˜F . Hence, QQQ
˜F can be recovered.
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We then introduce a practical example to
illustrate the validity of Theorem 1.
Example 1 Let us consider a BCN. It is a reduced
model of the lac operon in the Escherichia coli. The
model contains the following logical variables: XXX1,
XXX2, and XXX3 are state variables representing the lac
mRNA, the lactose in high concentrations, and the
lactose in medium concentrations, respectively. UUU1,
UUU2, and UUU3 are input variables denoting the extra-
cellular glucose, the high extracellular lactose, and
the medium extracellular lactose, respectively. The
model is expressed as

Σ :

⎧
⎪⎪⎨

⎪⎪⎩

XXX1(t+ 1) =¬UUU1(t) ∧ (XXX2(t) ∨XXX3(t)) ,

XXX2(t+ 1) =¬UUU1(t) ∧UUU2(t) ∧XXX1(t),

XXX3(t+ 1) =¬UUU1(t)∧
(
UUU2(t)∨

(
UUU3(t)∧XXX1(t)

))
.

(18)
If we assume that the state variable XXX3(t) in

Eq. (18) may be constant at some time and let the
input variable UUU1 = 0, then the model can be de-
scribed as a PBCN. The PBCN is given as

Σ:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

XXX1(t+ 1) =XXX2(t) ∨XXX3(t),

XXX2(t+ 1) = UUU1(t) ∧XXX1(t),

XXX3(t+ 1)=

{
UUU1(t)∨

(
UUU2(t)∧XXX1(t)

)
, P =α,

XXX3(t), P = 1− α,

(19)
where P = 1 − α denotes the probability that XXX3

remains intact at each time point, 0 < α < 1, and
UUU1 and UUU2 are used to signify the high extracellular
lactose and the medium extracellular lactose, respec-
tively. Then consider another PBCN as

Σ̃ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P =β :
{
ZZZ1(t+ 1) = ¬

(
VVV (t) ∧ZZZ2(t)

)
,

ZZZ2(t+ 1) = ZZZ1(t) ∧ZZZ2(t).

P =1− β :
{
ZZZ1(t+ 1) = ¬VVV (t) ∨

(
ZZZ1(t) ∧ ¬ZZZ2(t)

)
,

ZZZ2(t+ 1) =
(
¬ZZZ1(t) ∨ZZZ2(t)

)
∧ VVV (t),

(20)
where 0 < β < 1, ZZZ(t)1, ZZZ(t)2 ∈ {0, 1} are state
variables, and VVV (t) ∈ {0, 1} is an input variable.

Vector forms of these logical variables are used
to define xxx(t) = xxx1(t) � xxx2(t) � xxx3(t), uuu(t) =

uuu1(t) � uuu2(t), and zzz(t) = zzz1(t) � zzz2(t) with
xxx1(t),xxx2(t),xxx3(t),uuu1(t),uuu2(t), zzz1(t), zzz2(t), vvv(t) ∈ Δ2.
Then by Lemma 1, the algebraic forms of Eqs. (19)

and (20) can be obtained:

Σ :

{
xxx(t+ 1)=LLL1 � uuu(t)� xxx(t), P =α,

xxx(t+ 1)=LLL2 � uuu(t)� xxx(t), P =1−α,
(21)

where LLL1 and LLL2 are structure matrices chosen with
a given probability distribution.

LLL1 = δδδ8[1, 1, 1, 5, 3, 3, 3, 7, 1, 1, 1, 5, 3, 3, 3, 7,

3, 3, 3, 7, 4, 4, 4, 8, 4, 4, 4, 8, 4, 4, 4, 8],

and
LLL2 = δδδ8[1, 2, 1, 6, 3, 4, 3, 8, 1, 2, 1, 6, 3, 4, 3, 8,

3, 4, 3, 8, 3, 4, 3, 8, 3, 4, 3, 8, 3, 4, 3, 8].
With regard to Eq. (20), its algebraic represen-

tation is

Σ̃ :

{
zzz(t+ 1)=L̃LL1 � vvv(t)� zzz(t), P =β,

zzz(t+ 1)=L̃LL2 � vvv(t)� zzz(t), P =1−β,
(22)

where L̃LL1 = δδδ4[3, 2, 4, 2, 1, 2, 2, 2], L̃LL2 = δδδ4[3, 2, 3, 3,

2, 2, 2, 2].

Since the control systems of Σ and Σ̃ are state
feedback control systems with the current state vari-
ables being the input, as previously discussed, these
control systems can also be described in their alge-
braic forms as in Eqs. (4) and (5).

Let HHH and H̃HH be the structure matrices of
Eqs. (4) and (5), respectively. Suppose that HHH =

δδδ4[1, 4, 1, 4, 4, 4, 4, 3] and H̃HH = δδδ2[1, 1, 2, 1]. Thus,
Eqs. (21) and (22) can be further converted to

Σ :

{
xxx(t+ 1) = LLL1HHHΦΦΦ3xxx(t) = FFF 1xxx(t), P = α,

xxx(t+ 1) = LLL2HHHΦΦΦ3xxx(t) = FFF 2xxx(t), P = 1− α.

Σ̃ :

{
zzz(t+ 1) = L̃LL1H̃HHΦΦΦ2zzz(t) = F̃FF 1zzz(t), P = β,

zzz(t+ 1) = L̃LL2H̃HHΦΦΦ2zzz(t) = F̃FF 2zzz(t), P = 1− β.

According to Eqs. (9) and (10), the two PBCNs’
skeleton matrices, denoted by QQQF and QQQ

˜F , can be
calculated:

QQQF = [δδδ18, δδδ
4
8, δδδ

1
8, δδδ

8
8, δδδ

3
8 + δδδ48, δδδ

4
8, δδδ

3
8 + δδδ48, δδδ

8
8],

QQQ
˜F = [δδδ34, δδδ

2
4, δδδ

2
4, δδδ

2
4 + δδδ34].

Based on the skeleton matrices, we depict their
state transition graphs as shown in Figs. 1 and 2.
Note that numbers on these arrows are the cor-
responding transition probabilities. Let CCC =

δδδ4[2, 1, 2, 3, 4, 1, 4, 2]. By Eq. (6), relation R is

R =
{
(δδδ18, δδδ

2
4), (δδδ

2
8, δδδ

1
4), (δδδ

3
8, δδδ

2
4), (δδδ

4
8, δδδ

3
4), (δδδ

5
8, δδδ

4
4),

(δδδ68, δδδ
1
4), (δδδ

7
8, δδδ

4
4), (δδδ

8
8, δδδ

2
4)
}
.
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Fig. 1 State transitions of PBCN Σ

δ4

δ4

δ4

δ4

1 1

1

β

1−β

21

3 4

Fig. 2 State transitions of PBCN ˜Σ

We then have

CCC �QQQF =

⎡

⎢
⎢
⎣

0 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

0 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎦ =QQQ

˜F �CCC.

By Theorem 1, R should be a bisimulation rela-
tion between Σ and Σ̃. According to Figs. 1 and 2,
it is easy to verify that R is a bisimulation between
Σ and Σ̃. Taking (δδδ18, δδδ

2
4) for instance, there is a

single one-step transition from δδδ18 to δδδ18; i.e., as for
any LLLj (j ∈ {1, 2}), P{xxx(1) = δδδ18|xxx(0) = δδδ18,uuu(0) =

HHH � δδδ18} = 1. Obviously, there exists a unique
one-step transition from δδδ24, such that P{zzz(1) =

δδδ24|zzz(0) = δδδ24, vvv(0) = H̃HH � δδδ24} = 1. Then for any FFF j ,
we have (FFF j�HHH�δδδ18, F̃FF i�H̃HH�δδδ24) = (δδδ18, δδδ

2
4) ∈ R. A

similar pattern can be seen in other pairs belonging
to R, which implies that R is a simulation relation
of Σ by Σ̃. Similarly, it can be certified that R−1 is
a simulation relation of Σ̃ by Σ as well.

4 Propagation of stabilization with
probability one

After obtaining the necessary and sufficient con-
ditions for a relation R to be a bisimulation relation,
we may want to go further and use the property
of bisimulation relation to propagate some features
of one network to another. In this section, we will
explore whether two bisimilar PBCNs exhibit a uni-
form stabilization property and whether they can be
stabilizable with probability one.

Definition 5 Consider Σ as in Eq. (2) with the
control system as in Eq. (4). Σ is stabilizable to
xxx∗ ∈ ΔN with probability one if for every xxx ∈ ΔN

and a positive integer K, every possible t -step tran-
sition from xxx can reach the state xxx∗. Expressed in
a mathematical way, the condition below must be
satisfied:

∑

xxx(1),xxx(2),...,xxx(t−1)

P
{
xxx(t) = xxx∗|xxx(0) = xxx,uuu0 =HHH � xxx,

uuu1 =HHH � xxx(1), . . . ,uuut−1 =HHH � xxx(t− 1)
}
= 1,

whenever t ≥ K. (uuu0,uuu1, . . . ,uuut−1) is the corre-
sponding control sequence.
Definition 6 Consider Σ as in Eq. (2) with the
control system as in Eq. (4). Let W be a subset of
ΔN . Σ is stabilizable to W with probability one if
for every xxx ∈ ΔN and a positive integer K, every
t -step transition from xxx will fall in the state set W .
More formally,

∑

xxx(1),xxx(2),...,xxx(t−1)

P
{
xxx(t) ∈ W |xxx(0) = xxx,uuu0 =HHH � xxx,

uuu1 =HHH � xxx(1), . . . ,uuut−1 =HHH � xxx(t− 1)
}
= 1,

for t ≥ K. (uuu0,uuu1, . . . ,uuut−1) is the control sequence.
Theorem 2 Given PBCNs Σ and Σ̃ as in Eqs. (2)
and (3) with their state feedback control systems as
given in Eqs. (4) and (5), respectively. Let zzz∗ ∈ Δ

˜N

and W = {xxx ∈ ΔN : CCC �xxx = zzz∗}. Suppose that the
relationR defined in Eq. (6) is a bisimulation relation
between Σ and Σ̃. CCC ∈ L

˜N×N is a surjection. Then,
Σ is stabilizable to W with probability one if and
only if Σ̃ is stabilizable to zzz∗ with probability one.
Proof Necessity (=⇒): Suppose that Σ is stabiliz-
able to W with probability one. Let zzz ∈ Δ

˜N . Then
there exists xxx ∈ ΔN such that (xxx,zzz) ∈ R since CCC is
a surjection. As Σ is stabilizable to W with prob-
ability one, we can find a positive integer K such
that

∑

xxx(1),xxx(2),...,xxx(t−1)

P
{
xxx(t) ∈ W|xxx(0) = xxx,uuu0 =HHH � xxx,

uuu1=HHH � xxx(1), . . . ,uuut−1=HHH � xxx(t− 1)
}
=1, (23)

for all t ≥ K. Since R is a simulation relation, there
exists a t -step transition from zzz to zzz(t), i.e.,

P
{
zzz(t)|zzz(0) = zzz,vvv0 = H̃HH � zzz,vvv1 = H̃HH � zzz(1),

. . . , vvvt−1 = H̃HH � zzz(t− 1)
}
> 0,
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where (vvv0, vvv1, . . . , vvvt−1) is a control sequence
in accordance with the trajectory and satisfies
(
xxx(t), zzz(t)

)
∈ R.

It follows from Eq. (6) that zzz(t) = CCC�xxx(t) = zzz∗,
as xxx(t) ∈ W . Then, we have to show that for all
possible t -step transitions from zzz,

∑

zzz(1),zzz(2),...,zzz(t−1)

P
{
zzz(t) = zzz∗|zzz(0) = zzz,vvv0 = H̃HH � zzz,

vvv1 = H̃HH � zzz(1), . . . , vvvt−1 = H̃HH � zzz(t− 1)
}
= 1.

If
∑

zzz(1),zzz(2),...,zzz(t−1)

P
{
zzz(t) = zzz∗|zzz(0) = zzz,vvv0 = H̃HH �

zzz,vvv1 = H̃HH � zzz(1), . . . , vvvt−1 = H̃HH � zzz(t − 1)
}


= 1,

there must be some trajectory from zzz to zzz′, e.g.,
zzz′ ∈ Δ

˜N with P
{
zzz(t) = zzz′|zzz(0) = zzz,vvv0 = H̃HH�zzz,vvv1 =

H̃HH�zzz(1), . . . , vvvt−1 = H̃HH�zzz(t−1)
}
> 0. Since R−1 is

a simulation relation of Σ̃ by Σ and (zzz,xxx) ∈ R−1, it
follows that there is a t -step transition fromxxx to xxx′ so
that (zzz′,xxx′) ∈ R−1 with P

{
xxx(t) = xxx′|xxx(0) = xxx, u0 =

HHH � xxx,uuu1 =HHH � xxx(1), . . . ,uuut−1=HHH � xxx(t− 1)
}
>0.

However, xxx′ /∈ W , since zzz′ 
= zzz∗ is in contradiction
with Eq. (23). Thus, the relation

∑

zzz(1),zzz(2),...,zzz(t−1)

P
{
zzz(t) = zzz∗|zzz(0) = zzz,vvv0 = H̃HH � zzz,

vvv1 = H̃HH � zzz(1), . . . , vvvt−1 = H̃HH � zzz(t− 1)
}
= 1

has been proved.
Sufficiency (⇐=): Assume that Σ̃ is stabilizable

to zzz∗ with probability one. Let xxx ∈ ΔN and zzz =

CCC �xxx. Then (zzz,xxx) ∈ R−1. With regard to this zzz, we
can find a positive integer K such that

∑

zzz(1),zzz(2),...,zzz(t−1)

P
{
zzz(t) = zzz∗|zzz(0) = zzz,vvv0 = H̃HH � zzz,

vvv1 = H̃HH � zzz(1), . . . , vvvt−1 = H̃HH � zzz(t− 1)
}
=1 (24)

for t ≥ K. Since R−1 is a simulation relation
of Σ̃ by Σ, Σ admits a t -step transition from xxx

to xxx(t), satisfying
(
zzz∗,xxx(t)

)
∈ R−1. Then, we

have P
{
xxx(t)|xxx(0) = xxx,uuu0 = HHH � xxx,uuu1 = HHH �

xxx(1), . . . ,uuut−1 = HHH � xxx(t − 1)
}

> 0. According to
Eq. (6), we have CCC � xxx(t) = zzz∗, and thus xxx(t) ∈ W .
Next, we must demonstrate that

∑

xxx(1),xxx(2),...,xxx(t−1)

P
{
xxx(t) ∈ W|xxx(0) = xxx,uuu0 =HHH � xxx,

uuu1 =HHH � xxx(1), . . . ,uuut−1 =HHH � xxx(t− 1)
}
= 1,

concerning all the t -step transitions from xxx.

∑

xxx(1),xxx(2),...,xxx(t−1)

P
{
xxx(t) ∈ W|xxx(0) = xxx, u0 =

HHH �xxx,uuu1 =HHH �xxx(1), . . . ,uuut−1 =HHH �xxx(t− 1)
}

= 1

indicates that there is a t -step transition from xxx to
some xxx′ (xxx′ /∈ W). Since R is a bisimulation rela-
tion, we have (xxx,zzz) ∈ R with R being a simulation
relation of Σ by Σ̃. Thus, there is a t -step transi-
tion from zzz to some zzz′, where zzz′ ∈ Δ

˜N or P
{
zzz(t) =

zzz′|zzz(0) = zzz,vvv0 = H̃HH � zzz,vvv1 = H̃HH � zzz(1), . . . , vvvt−1 =

H̃HH�zzz(t− 1)
}
> 0 such that (xxx′, zzz′) ∈ R. As xxx′ /∈ W ,

then zzz′ 
= zzz∗ contradicts Eq. (24).
Next, we set about considering the maximum

number of steps needed by a PBCN to realize stabi-
lization with probability one. Analogous to Cheng
et al. (2010b), we redefine the transient period of a
PBCN, which indicates the maximum number of req-
uisite steps (all the states) for the whole network to
achieve stabilization. In a similar manner, the tran-
sient period of a given state is the maximum number
of steps needed to shift this state to stabilization.
Then, we will test whether two bisimilar PBCNs are
able to achieve synchronous stabilization.
Corollary 1 Given PBCNs Σ and Σ̃ as in Eqs. (2)
and (3) with their state feedback control systems as
given in Eqs. (4) and (5), respectively. Let zzz∗ ∈ Δ

˜N

and W = {xxx ∈ ΔN : CCC � xxx = zzz∗} with zzz∗ being
the state to which Σ̃ stabilizes. Suppose that the
relationR defined in Eq. (6) is a bisimulation relation
between Σ and Σ̃. CCC ∈ L

˜N×N is a surjection. Then,
the transient periods of Σ and Σ̃ are identical.
Proof For any (xxx,zzz) ∈ R, let the transient period
of xxx, denoted by T (xxx), be T0. Then, it suffices to
prove that the transient period of zzz, denoted by T (zzz),
equals T0.

Assume that T (zzz) = T̃0. Since (xxx,zzz) ∈ R and
T (xxx) = T0, this implies that there is a T0-step transi-
tion from xxx to xxx(T0) that belongs to the steady state
set W . Hence, there also exists a T0-step transition
from zzz to zzz(T0) satisfying CCC � xxx(T0) = zzz(T0) = zzz∗.
Thus, we can infer that T (zzz) ≤ T0.

Because R−1 is a simulation relation of Σ̃ by Σ

and (zzz,xxx) ∈ R−1, for any T̃0-step transition from zzz,
denoted by zzz(T̃0), we can find a T̃0-step transition
from xxx, denoted by xxx(T̃0), such that

(
zzz(T̃0),xxx(T̃0)

)
∈

R−1. Similarly, since zzz(T̃0) = zzz∗, we have xxx(T̃0) ∈
W . Thus, T (xxx) = T0 ≤ T (zzz) = T̃0. To conclude,
T (xxx) = T (zzz).

Then we will give an illustration of the applica-
tion of Theorem 2 and Corollary 1.
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Example 2 Consider PBCNs and the logical ma-
trix CCC as in Example 1. According to Fig. 2, it is not
difficult to find out that Σ̃ is stabilizable to δδδ24 with
probability one. For example, let zzz0 = δδδ44 and zzz0 has
a couple of two-step transitions from δδδ44:

P
{
zzz(2) = δδδ24|zzz(0) = δδδ44, vvv(τ) = H̃HH � zzz(τ), τ = 0, 1

}

=P
{
zzz(1) = δδδ24|zzz(0) = δδδ44, vvv(0) = H̃HH � δδδ44

}

· P
{
zzz(2) = δδδ24|zzz(1) = δδδ24, vvv(1) = H̃HH � δδδ24

}

+ P
{
zzz(1) = δδδ34|zzz(0) = δδδ44, vvv(0) = H̃HH � δδδ44

}

· P
{
zzz(2) = δδδ24|zzz(1) = δδδ34, vvv(1) = H̃HH � δδδ34

}

=β × 1 + (1 − β)× 1

=1.

Since δδδ24 stabilizes to itself with probability one,
δδδ44 is stabilizable to δδδ24 with probability one after two
steps. Similarly, we can verify that the remaining
states of Σ̃ are stabilizable to δδδ24 with probability
one. We list the probabilities

(
P{zzz(T ) = δδδ24|zzz(0) =

zzz0, vvv(τ) = H̃HHzzz(τ)}
)

of all the state transitions in Σ̃

to δδδ24 in Table 3, from which we can conclude that Σ̃
reaches stabilization after two steps.

By Theorem 2, if Σ̃ is stabilizable to δδδ24, Σ

should be stabilizable to a state set W = {xxx ∈ Δ8 :

CCC � xxx = δδδ24} = {δδδ18, δδδ
8
8}. It has been proved in Li R

et al. (2014b) that Σ is stabilizable to {δδδ18, δδδ
8
8}. Here,

we give the probabilities
(
P{xxx(T ) ∈ {δδδ18, δδδ

8
8}|xxx(0) =

xxx0,uuu(τ) = HHHxxx(τ)}
)

of all the state transitions in Σ

to {δδδ18, δδδ
8
8} in Table 4.

Table 3 State transition probabilities of ˜Σ to δδδ2
4

Initial state zzz0
State transition probability

T = 1 T = 2

δδδ14 0 1
δδδ24 1 1
δδδ34 1 1
δδδ44 β 1

Table 4 State transition probabilities of Σ to {δδδ18, δδδ8
8}

Initial state xxx0
State transition probability

T = 1 T = 2

δδδ18 1 1
δδδ28 0 1
δδδ38 1 1
δδδ48 1 1
δδδ58 0 1
δδδ68 0 1
δδδ78 0 1
δδδ88 1 1

Note that both Σ and Σ̃ achieve stabilization
after two steps, which implies that if two PBCNs are
matched by a bisimulation relation, they not only
can realize stabilization with probability one in com-
pany with each other, but also can be stabilizable si-
multaneously, which means that they share the same
transient period. In addition, if Σ̃ does not stabilize
to a point, e.g., δδδ14, Σ can never be stabilizable to the
set {xxx : CCC � xxx = δδδ14} = {δδδ28, δδδ

6
8}. This supports the

converse proposition of Theorem 2.
So far, we have discussed the definitions of

(bi)similar PBCNs with a state feedback controller.
The necessary and sufficient conditions for two
PBCNs to be bisimilar and the problem of propa-
gating stabilization between two bisimilar PBCNs
have been produced. In fact, when we consider the
control input to PBCNs as a constant variable, a new
kind of network can be obtained.
Definition 7 A PBN can be described mathemat-
ically as

xxx(t+ 1) = LLLi � xxx(t), t = 0, 1, . . . , i = 1, 2, . . . , r,

where LLLi is the structure matrix selected from
LLL1,LLL2, . . . ,LLLr with probability pi > 0 at time t. The
equation

∑r
i=1 pi = 1 must be satisfied. xxx(t) is the

state variable at time t, which is an n-dimensional
column vector that takes value in Δn. Consider two
PBNs as

Ω : xxx(t+ 1) = LLLi � xxx(t), (25)

Ω̃ : zzz(t+ 1) = L̃LLj � zzz(t), (26)

where xxx(t) ∈ ΔN , zzz(t) ∈ Δ
˜N , LLLi ∈ LN×N , L̃LLj ∈

L
˜N× ˜N , i = 1, 2, . . . , r, and j = 1, 2, . . . , k. Then

define their skeleton matrices as FFF = LLL1 ∨LLL2 ∨ . . .∨
LLLr, and F̃FF = L̃LL1 ∨ L̃LL2 ∨ . . . ∨ L̃LLk.

Since PBNs are special cases of PBCNs, the two
theorems proposed above are also satisfied by PBN.
Corollary 2 Consider PBNs Ω and Ω̃ as in
Eqs. (25) and (26), respectively. Let FFF and F̃FF be
the skeleton matrices of Ω and Ω̃, respectively. Let
CCC ∈ L

˜N×N . Then, the relation R defined in Eq. (6)
is a bisimulation relation between Ω and Ω̃ if and
only if

CCC �FFF = F̃FF �CCC.

Corollary 3 Consider PBNs Ω and Ω̃ as in
Eqs. (25) and (26), respectively. zzz∗ ∈ Δ

˜N and
W = {xxx ∈ ΔN : CCC � xxx = zzz∗}. Suppose that the
relation R defined in Eq. (6) is a bisimulation rela-
tion between Ω and Ω̃. CCC ∈ L

˜N×N is a surjection.
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Then, Ω is stabilizable to � with probability one if
and only if Ω̃ is stabilizable to zzz∗ with probability
one. In addition, they have the identical transient
period.

5 Conclusions

In this study, PBCNs with state feedback con-
trollers have been investigated. To begin with, a
bisimulation relation of PBCNs has been proposed.
As far as we know, this is the first time this has been
done. After converting PBCNs to their algebraic
forms using STP, the skeleton matrices, which can
be understood as the state transient matrices, have
been constructed, through which necessity and suf-
ficiency have been observed to examine bisimulation
relations. Moreover, the propagation of stabiliza-
tion with probability one between bisimilar PBCNs
comes to the center of our attention. We have proved
our hypothesis that if two PBCNs are coupled with
a bisimulation relation, then one can achieve stabi-
lization to a state set with probability one if and
only if the other can realize stabilization to a fixed
point with probability one. Additionally, these two
bisimilar PBCNs have been verified to possess the
same transient period, which represents the maxi-
mum number of steps required to reach stabilization.
To show the effectiveness of our results, a real-world
example has been given. Finally, two other corol-
laries have been revealed to generalize our results to
PBNs. However, testing the bisimulation relation
cannot be accomplished in polynomial time. This
cast a cloud on the results obtained. We hope the
problem will be solved in future work.
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