
222 Shen et al. / Front Inform Technol Electron Eng 2021 22(2):222-231

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Stability ofBoolean networkswith state-

dependent random impulses∗

Ya-wen SHEN, Yu-qian GUO‡, Wei-hua GUI
School of Automation, Central South University, Changsha 410083, China

E-mail: shenyawen@csu.edu.cn; gyuqian@csu.edu.cn; gwh@csu.edu.cn

Received Aug. 30, 2019; Revision accepted Oct. 27, 2019; Crosschecked Apr. 28, 2020; Published online Aug. 6, 2020

Abstract: We investigate the stability of Boolean networks (BNs) with impulses triggered by both states and random
factors. A hybrid index model is used to describe impulsive BNs. First, several necessary and sufficient conditions
for forward completeness are obtained. Second, based on the stability criterion of probabilistic BNs and the forward
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1 Introduction

Boolean networks (BNs) were first proposed by
Kauffman (1969) to describe genetic regulatory net-
works, and have attracted a lot of attention since
then. However, due to the lack of powerful math-
ematical tools for logical systems, studies of BNs
were limited to a certain extent until Cheng and Qi
(2010) proposed the semi-tensor product (STP) of
matrices. Under the framework of STP, many chal-
lenging problems in BNs have been studied (Cheng
et al., 2009, 2011b, 2018; Cheng, 2011; Li F and
Sun, 2011a; Zhao et al., 2011; Li R and Chu, 2012;
Laschov et al., 2013; Li HT and Wang, 2013; Xu XR
and Hong, 2013; Fornasini and Valcher, 2014; Liu Y
et al., 2014, 2015, 2016, 2017; Guo et al., 2015, 2017;
Lu et al., 2015; Li HT et al., 2016; Meng et al., 2018;
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Zhu QX et al., 2018; Li YY et al., 2019; Wu et al.,
2019).

In nature, social life, and production, many dy-
namic systems may experience abrupt changes of
state (Shah et al., 2018). For example, injection of a
drug causes abrupt changes in the number of bacte-
ria in an organism. When we describe a system in a
relatively large timescale, these abrupt changes can
be regarded as ideal impulsive disturbances. BNs
with impulsive effects have been studied over the
last decade (Li F and Sun, 2011b; Zhong et al., 2014;
Chen H et al., 2015; Chen HW et al., 2016; Xu XJ
et al., 2018). In particular, Guo et al. (2019a) studied
the finite-time stability of BNs with state-triggered
impulses. Note that most of the research is con-
cerned with time-triggered impulsive systems. How-
ever, in fact, impulses may be triggered by not only
time, but also the state and environmental factors
(Chellaboina and Haddad, 2002; Ambrosino et al.,
2008; Jiao and Zheng, 2016; Li LL et al., 2019). In
addition, environmental factors introduce random-
ness into the state-triggered impulses. For instance,
in a state-triggered impulsive system, the state space
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is usually partitioned into two disjoint subsets, called
the flow and jump sets. An impulse is triggered
whenever the state falls in the jump set. However,
near the boundary of the jump set, due to the distur-
bance and noise, both the flow and jump behaviors
are possible when one detects that the state is in
the jump or flow set. To the best of our knowledge,
BNs with impulses triggered by both state and ran-
dom factors have not been investigated. Besides, it
is well known that stability is a fundamental require-
ment of any real system. Motivated by these factors,
we investigate the stability of state-triggered random
impulsive BNs (SRIBNs).

In this study, a hybrid index model is used to
characterize SRIBNs, based on which the finite-time
stability with probability one and the asymptotical
stability in distribution are investigated. Compared
with conventional models for impulsive BNs, the hy-
brid index model can better characterize the instan-
taneousness of an impulse, which is the essential
characteristic of impulsive systems. In addition to
the time index, the impulse index is introduced into
the hybrid index model to indicate the number of
impulses. Assume that the whole state space con-
sists of jump and step subsets. The system might
be disturbed by impulses only when the state falls
into the jump subset. In addition, to characterize
the randomness of the state-triggered impulses, we
allow that there exists an overlap between these two
subsets. When the state falls into the overlap, the
system randomly triggers the impulses subject to a
state-dependent probability distribution.

A state-triggered impulsive system may exist
with the Zeno phenomenon; that is, there are in-
finitely many successive impulses occurring at a sin-
gle time instant. However, a practical system should
be forward complete in the sense that there is no
Zeno phenomenon. One natural problem is under
the condition that an impulsive BN described by the
hybrid index model is forward complete. We prove
that a BN is forward complete if and only if it can
step to the next moment with probability one. We
decompose the transition probability matrix (TPM)
into the stepping and jumping parts, called the step-
ping probability matrix (SPM) and jumping proba-
bility matrix (JPM), respectively, and prove that an
SRIBN is forward complete if and only if the JPM is
a nilpotent matrix.

The finite-time stability with probability one

and the asymptotical stability in distribution for
SRIBNs are investigated herein. Note that the sta-
bility of ordinary probabilistic BNs (PBNs) has been
studied in recent years (Chen H and Sun, 2014; Li
R et al., 2014; Li Z et al., 2014; Zhao and Cheng,
2014; Guo et al., 2019b; Liu JY et al., 2019; Zhu SY
et al., 2019; Huang et al., 2020). The main differ-
ence between the stabilities of a PBN and an SRIBN
is that the stability of an SRIBN requires the sys-
tem be forward complete. Based on the forward
completeness obtained in this study and the existing
stability analysis methods for PBNs in the litera-
ture, several necessary and sufficient conditions are
obtained for the finite-time stability with probability
one and the asymptotical stability in distribution for
SRIBNs. Notations used in this paper are listed in
Table 1.

Table 1 Notations used in this paper

Notation Definition

D Logic domain {0, 1}
� STP of matrices
Lm×n Set of all m× n logical matrices
δδδin The ith column of identity matrix IIIn
Δn Set of {δδδin|i = 1, 2, · · · , n}
M \ N Set of {x /∈ N|x ∈ M}
Z
+ Nonnegative integers

[M : N ] Set of integers n satisfying M ≤ n ≤ N

Coli(MMM ) The ith column of matrix MMM

Rowj(MMM) The jth row of matrix MMM

[M ]i,j The (i, j)-element of matrix MMM

2 Preliminaries and problem setting

2.1 A hybrid index model for random impul-
sive BNs

An n-node BN can be described as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X1(t+ 1) =f1[X1(t), X2(t), . . . , Xn(t)],

X2(t+ 1) =f2[X1(t), X2(t), . . . , Xn(t)],

...

Xn(t+ 1) =fn[X1(t), X2(t), . . . , Xn(t)],

(1)

where Xi ∈ D (D = {0, 1}, i = 1, 2, . . . , n) denotes
the state of the ith node and fi : Dn → D is a
logical function. The vector of the logic variable Xi

is defined as xxxi := δδδ2−Xi

2 ∈ Δ2. Using the theory of
STP of matrices (Cheng et al., 2011a), Eq. (1) can
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be expressed in the equivalent algebraic form as

xxx(t+ 1) = LLLxxx(t), (2)

where xxx := xxx1�xxx2� . . .�xxxn ∈ Δ2n andLLL ∈ L2n×2n .
In this study, we consider BNs with random im-

pulsive disturbances subject to the state-dependent
probability distribution. When the system is not dis-
turbed by impulses, the state updates according to
Eq. (2), which is called the “step process.” When
impulses occur, the state updating time is much less
than the unit time in the step process. Thus, we
call this instantaneous change of the state the “jump
process” and use xxx+(t) to denote the new state after
jumping. The jump process can be described as

xxx+(t) =GGGxxx(t), (3)

where GGG ∈ L2n×2n is a logical matrix. Assume that
the system can enter the jump process when the state
belongs to the jump subset J ⊂ Δ2n . When the
state belongs to the step subset S ⊂ Δ2n , the system
can enter the step process. The whole state space is
covered by the union of the jump and step subsets,
i.e., J ∪S = Δ2n . Aside from that, we consider that
there exists an overlap between the jump and step
subsets, i.e., J ∩ S �= ∅. When the state falls into
the overlapping part of the jump and step subsets,
the system randomly enters the jump or step process.
In general, assume that the state of the network is
updated by the following laws:

1. When xxx(t) = δδδi2n ∈ J ∩ S, the system enters
the jump process with probability pi (0 < pi < 1),
and enters the step process with probability qi :=

1− pi.
2. When xxx(t) ∈ J \ S, the system enters the

jump process with probability one.
3. When xxx(t) ∈ S \ J , the system enters the

step process with probability one.
Although Eq. (3) describes the instantaneous-

ness of the jump process well, it is inconvenient for
analysis. Thus, we introduce an impulse index j

which represents the number of impulses, and re-
denote the state xxx(t) as xxx(t, j), which is defined on
the hybrid index space. Then, the SRIBN consid-
ered in this study can be described as the following
hybrid index model:

{
xxx(t+ 1, j) = LLLxxx(t, j), γt,j = 0,

xxx(t, j + 1) =GGGxxx(t, j), γt,j = 1,
(4)

where γt,j is a series of double-indexed Boolean
random variables that obey the following state-
dependent probability distribution:

pi = Pr{γt,j = 1|xxx(t, j) = δδδi2n}, ∀i ∈ [1 : 2n]. (5)

Note that pi = 1 for any δδδi2n ∈ J \ S and pi = 0

for any δδδi2n ∈ S \ J . Obviously, the value of γt,j
determines whether the state triggers the impulses.
When γt,j = 0, the system is not affected by impulses
and enters the step process where the state updates
according to the first equation of Eq. (4). Besides,
the number of impulses remains unchanged and the
time index t is added by 1 during each step process.
When γt,j = 1, a state-triggered impulse occurs and
the system enters the jump process, where the state
updates according to the second equation of Eq. (4).
Due to the instantaneousness of the jump process,
assume that the time index t remains unchanged and
that the impulse index j is added by 1 during each
jump process.

2.2 Definitions and problem setting

Definition 1 A stochastic sequence xxx(tk, jk), k ∈
Z
+, is called a solution to SRIBN given by Eq. (4),

if the following two conditions are satisfied:
1. If γt,j = 0, then tk+1 = tk+1, jk+1 = jk, and

xxx(tk+1, jk+1) = LLLxxx(tk, jk).
2. If γt,j = 1, then tk+1 = tk, jk+1 = jk+1, and

xxx(tk+1, jk+1) =GGGxxx(tk, jk).
Denote the solution with the initial state xxx0 by

xxx(tk, jk;xxx0) and the stochastic sequence of time in-
dex tk for the solution with the initial state xxx0 by
tk(xxx0).
Definition 2 SRIBN is said to be forward complete
if any xxx0 ∈ Δ2n and any T ∈ Z

+, and there exists a
nonnegative integer K such that

Pr{tk(xxx0) ≥ T } = 1, ∀k ≥ K.

Remark 1 For a system with state-dependent im-
pulses, the Zeno phenomenon means that infinitely
many jumps may happen at a single time instant.
However, for a practical system, the process of a sud-
den change in the state is not ideally instantaneous.
Instead, each jump process takes some time. Thus,
the Zeno phenomenon should not occur in a practical
system. Before stability analysis, we should investi-
gate under which conditions an SRIBN is forward
complete (that is, no Zeno phenomenon occurs).
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Definition 3 SRIBN is said to be finite-time xxxd-
stable with probability one, if it is forward complete
and if, for any xxx0 ∈ Δ2n , there exists a nonnegative
integer K such that

Pr{xxx(tk, jk;xxx0) = xxxd} = 1, ∀k ≥ K.

Definition 4 SRIBN is said to be finite-time M-
stable with probability one, if it is forward complete
and if, for any xxx0 ∈ Δ2n , there exists a nonnegative
integer K such that

Pr{xxx(tk, jk;xxx0) ∈ M} = 1, ∀k ≥ K.

Definition 5 SRIBN is said to be asymptotically
xxxd-stable in distribution, if it is forward complete
and if

lim
k→∞

Pr{xxx(tk, jk;xxx0) = xxxd} = 1, ∀xxx0 ∈ Δ2n .

Definition 6 SRIBN is said to be asymptotically
M-stable in distribution, if it is forward complete
and if

lim
k→∞

Pr{xxx(tk, jk;xxx0) ∈ M} = 1, ∀xxx0 ∈ Δ2n .

Definition 7 Suppose that xxxk is a homogeneous
Markov chain, which is characterized by the 1-step
TPM PPP , expressed as

[P ]i,j = Pr{xxxk+1 = δδδi2n |xxxk = δδδj2n}.

A subset C ⊆ Δ2n is called a PPP -invariant subset of
xxxk, if

Pr{xxxk ∈ C|xxx0 ∈ C} = 1, ∀k ∈ Z
+.

The union of all PPP -invariant subsets contained in
M ⊆ Δ2n is called the largest PPP -invariant subset,
denoted by IPPP (M).

2.3 Transition probability matrices

The jump probability of the state δδδi2n can be
expressed as

pi =Pr{tk+1 = tk|xxx(tk, jk) = δδδi2n}
=Pr{γtk,jk = 1|xxx(tk, jk) = δδδi2n}. (6)

For simplification, denote

pppJ = [p1, p2, . . . , p2n ]

and
pppS = [1− p1, 1− p2, . . . , 1− p2n ].

Define the 1-step JPM PPP J as

[PJ ]i,j =Pr
{
γtk,jk = 1,xxx(tk+1, jk+1) = δδδi2n

∣
∣ xxx(tk, jk)

= δδδj2n
}
, ∀k ∈ Z

+ and ∀i, j ∈ [1 : 2n].

It is easy to see that

PPP J =GGG · diag(pppJ ).

In the same way, define the 1-step SPM PPPS as

[PS ]i,j =Pr
{
γtk,jk = 0,xxx(tk+1, jk+1) = δδδi2n

∣
∣ xxx(tk, jk)

= δδδj2n
}
, ∀k ∈ Z

+ and ∀i, j ∈ [1 : 2n].

Then,
PPPS = LLL · diag(pppS).

Since at each step, the state is updated through ei-
ther a jump process or a step process, the 1-step
TPM PPP can be expressed as

PPP = PPP J +PPPS . (7)

3 Forward completeness

In this section, we investigate the forward com-
pleteness of the SRIBN.
Lemma 1 For any k ∈ N

+ and any i, j ∈ [1 : 2n],
it holds that

[P k
J ]i,j = Pr{tk = t0,xxx(tk, jk) = δδδi2n |xxx(t0, j0) = δδδj2n}.

(8)
Proof Obviously, Eq. (8) holds for k = 1. Assume
that Eq. (8) holds for k = ξ > 1, that is,

[P ξ
J ]i,j = Pr{tξ = t0,xxx(tξ, jξ) = δδδi2n |xxx(t0, j0) = δδδj2n},

for any i, j ∈ [1 : 2n]. Then for any i, j ∈ [1 : 2n],

Pr{tξ+1 = t0,xxx(tξ+1, jξ+1) = δδδi2n |xxx(t0, j0) = δδδj2n}

=

2n∑

α=1

Pr{tξ = t0,xxx(tξ, jξ) = δδδα2n |xxx(t0, j0) = δδδj2n}

· Pr{tξ+1 = tξ,xxx(tξ+1, jξ+1) = δδδi2n |xxx(tξ, jξ) = δδδα2n}

=

2n∑

α=1

[P ξ
J ]α,j[PJ ]i,α

=

2n∑

α=1

[PJ ]i,α[P
ξ
J ]α,j

= [P ξ+1
J ]i,j ,

implying that Eq. (8) holds for k = ξ+1. Therefore,
Eq. (8) holds for any k ∈ N

+ and any i, j ∈ [1 : 2n].
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Theorem 1 SRIBN is forward complete if and only
if there exists a nonnegative integer K such that

Pr{tk(xxx0) ≥ 1} = 1, ∀k ≥ K, ∀xxx0 ∈ Δ2n . (9)

Proof The necessity is obviously true. We need to
prove only the sufficiency. We suppose that Eq. (9)
holds and prove that for any T ∈ Z

+,

Pr{tTk(xxx0) ≥ T } = 1, ∀k ≥ K, ∀xxx0 ∈ Δ2n . (10)

Obviously, Eq. (10) holds for T = 1. Provided that
Eq. (10) holds for T = s > 1, that is,

Pr{tsk(xxx0) ≥ s} = 1,

then

Pr{t(s+1)k(xxx0) ≥ s+ 1}

≥
2n∑

i=1

Pr{tsk ≥ s,xxx(tsk, jsk) = δδδi2n |xxx(t0, j0) = xxx0}

· Pr{t(s+1)k ≥ tsk + 1|xxx(tsk, jsk) = δδδi2n}

=

2n∑

i=1

Pr{tsk ≥ s,xxx(tsk, jsk) = δδδi2n |xxx(t0, j0) = xxx0}

= Pr{tsk ≥ s|xxx(t0, j0) = xxx0}
= 1,

implying that Eq. (10) holds for T = s+1. Therefore,
Eq. (10) holds for any T ∈ Z

+. Then we have

Pr{tK(xxx0) ≥ T } = 1, ∀xxx0 ∈ Δ2n , ∀K ≥ Tk,

implying that SRIBN is forward complete.
Theorem 2 SRIBN is forward complete if and
only if PPP 2n

J = 000.
Proof We need to prove only that PPP 2n

J = 0 is
equivalent to the condition in Theorem 1. According
to the condition in Theorem 1, SRIBN is forward
complete if and only if

Pr{tk(δδδj2n) = 0} = 1− Pr{tk(δδδj2n) ≥ 1} = 0

holds for any k ≥ K and any j ∈ [1 : 2n]. Besides,

Pr{tk(δδδj2n) = 0}

=
2n∑

i=1

Pr{tk = 0,xxx(tk, jk) = δδδi2n |xxx(t0, j0) = δδδj2n}

=

2n∑

i=1

[P k
J ]i,j .

Then, the forward completeness is equivalent to
[P k

J ]i,j = 0 for any k ≥ K and any i, j ∈ [1 : 2n],
and thus is equivalent to PPP k

J = 0 ∀k > K. Thus, we
need to prove only that there exists a nonnegative
integer K such that PPP k

J = 0 ∀k ≥ K if and only if
PPP 2n

J = 0.
Sufficiency. Suppose that PPP 2n

J = 0. Then

PPP k
J = PPP 2n

J ·PPP k−2n

J = 0 ·PPP k−2n

J = 0

holds for any k ≥ 2n, implying that there exists a
nonnegative integer K such that PPP k

J = 0 ∀k ≥ K.
Necessity. Assume that there exists a nonneg-

ative integer K such that PPP k
J = 0 ∀k ≥ K. It is

obvious that PPPJ is a nilpotent matrix. As we know,
the nilpotent exponent of a nilpotent matrix is less
than or equal to its order. Note that PPP J is a 2n-order
matrix, and we observe that there exists a nonnega-
tive integer s ≤ 2n such that PPP s

J = 0. Then,

PPP 2n

J = PPP s
J ·PPP 2n−s

J = 0 ·PPP 2n−s
J = 0.

Example 1 Consider the SRIBN with LLL =

δδδ8[5, 6, 3, 5, 1, 4, 1, 7], GGG = δδδ8[8, 7, 7, 4, 1, 7, 3, 2], S =

{δδδ18, δδδ28, δδδ38, δδδ48, δδδ78}, J = {δδδ28, δδδ38, δδδ58, δδδ68, δδδ88}, p2 = 0.4,
and p3 = 0.5. The state transfer of the SRIBN
is shown in Fig. 1. Then, J ∩ S = {δδδ28, δδδ38},
J \ S = {δδδ58, δδδ68, δδδ88}, and S \ J = {δδδ18, δδδ48, δδδ78}. By
the definition of pi, we have p1 = p4 = p7 = 0, p5 =

p6 = p8 = 1, and pppJ = [p1, p2, p3, p4, p5, p6, p7, p8] =

[0, 0.4, 0.5, 0, 1, 1, 0, 1].

1 0.5

0.4

0.6
1

1

1

1

1

0.5

δ8
5 δ8

1

δ8
4 δ8

3 δ8
8

δ8
6

δ8
7 δ8

2

Fig. 1 State transfer graph of the SRIBN in
Example 1
Solid and dashed arrows represent the step and jump pro-
cesses, respectively

It is easy to check that the JPM of this SRIBN
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is

PPP J = GGG · diag(pppJ)
= δδδ8[8, 7, 7, 4, 1, 7, 3, 2]

·diag(0, 0.4, 0.5, 0, 1, 1, 0, 1)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0.4 0.5 0 0 1 0 0

0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

A simple calculation shows that PPP 8
J = 0. By Theo-

rem 2, this SRIBN is forward complete.

4 Stability analysis

In this section, we consider two kinds of stability
problems: finite-time stability with probability one
and asymptotical stability in distribution. According
to the definition of the TPM,

[P ]i,j = Pr{xxx(ts+1, js+1) = δδδi2n |xxx(ts, js) = δδδj2n}

holds for any s ∈ Z
+ and any i, j ∈ [1 : 2n]. Then, it

is obvious that

[P k]i,j = Pr{xxx(tk, jk) = δδδi2n |xxx(t0, j0) = δδδj2n} (11)

holds for any k ∈ Z
+ and any i, j ∈ [1 : 2n].

4.1 Finite-time stability with probability one

Theorem 3 Given xxxd ∈ Δ2n , SRIBN is finite-
time xxxd-stable with probability one, if and only if
xxxd ∈ S \ J and Colj[PPP

2n ] = xxxd ∀j ∈ [1 : 2n].
Proof Sufficiency. Assume that Colj [PPP

2n ] = xxxd

holds for any j ∈ [1 : 2n], which implies that
Rowi[PPP

2n ] = 1T
2n and xxxd = δδδi2n . Then,

Rowi[PPP
k] =Rowi[PPP

2n ·PPP k−2n ]

=Rowi[PPP
2n ] ·PPP k−2n

=1T
2n ·PPP k−2n

=1T
2n

holds for any k ≥ 2n, and is equivalent to

[P k
J ]i,j = 1, ∀j ∈ [1 : 2n], ∀k ≥ 2n.

According to Eq. (11), we find that

Pr{xxx(tk, jk;xxx0) = δδδi2n} = 1, ∀k ≥ 2n, ∀xxx0 ∈ Δ2n .

Due to xxxd ∈ S \ J , it is clear that t1(xxxd) = 1. Note
that

xxx(t2n , j2n ;xxx0) = xxxd, ∀xxx0 ∈ Δ2n ,

and we can easily have

Pr{t2n+1(xxx0) ≥ 1} = 1, ∀xxx0 ∈ Δ2n ,

meaning that SRIBN is forward complete. Thus,
SRIBN is finite-time xxxd-stable with probability one.

Necessity. Suppose that SRIBN is finite-time
xxxd-stable with probability one and xxxd = δδδi2n . By
Definition 3 and Eq. (11), we find that there exists a
nonnegative integer K such that

[P k
J ]i,j = Pr{xxx(tk, jk) = δδδi2n |xxx(t0, j0) = δδδj2n} = 1

holds for any j ∈ [1 : 2n] and any k ≥ K. As-
sume that K is the smallest nonnegative integer k

satisfying

Colj [PPP
k] = xxxd, ∀j ∈ [1 : 2n] and K ≥ 2n.

Then, there exists a K-length path from xxx0 to xxxd

and this path reaches xxxd only once. Because there
are only 2n elements in the state space, then there
exist k1, k2 ∈ [0,K) (k1 < k2) and α, i with α �= i,
such that

xxx(tk1 , jk1 ;xxx0) = xxx(tk2 , jk2 ;xxx0) = δδδα2n

and

Pr{xxx(tk2−k1 , jk2−k1) = δδδα2n |xxx(t0, j0) = δδδα2n} > 0.

Then,

Pr{xxx(tk1+(k2−k1)s, jk1+(k2−k1)s;xxx0) = δδδα2n}
≥ Pr{xxx(tk1 , jk1 ;xxx0) = δδδα2n}
· [Pr{xxx(tk2−k1 , jk2−k1 ;δδδ

α
2n) = δδδα2n}

]s

> 0

holds for any s ∈ Z
+. Thus, there exists an s such

that k1 + (k2 − k1)s > K and

Pr{xxx(tk1+(k2−k1)s, jk1+(k2−k1)s;xxx0) = δδδα2n} > 0,

which contradicts

Pr{xxx(tk, jk;x0) = δδδi2n} = 1, ∀k ≥ K.
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Thus, K must be less than or equal to 2n. According
to

[P k]i,j = 1, ∀j ∈ [1 : 2n], ∀k ≥ K,

it is obvious that

[P 2n ]i,j = 1, ∀j ∈ [1 : 2n],

which is equivalent to condition 2.
If SRIBN is finite-time xxxd-stable with probabil-

ity one, then it is forward complete and xxxd is a fixed
point. It is clear that Pr{t1(xxxd) = 1} = 1, which
implies that condition 1 holds.

Next, we consider finite-time set stability with
probability one. First, we give an algorithm to cal-
culate IPPP (M).
Lemma 2 (Guo et al., 2019b) Given M = {δδδj2n |j ∈
Λ0}, we suppose that PPP is 1-step TPM. Define a
sequence of subsets as

Λs =

{

j ∈ Λs−1|
∑

i∈Λs−1

[P ]i,j = 1

}

, s = 1, 2, . . . .

There must exist a k satisfying k ≤ |M| such that
Λk = Λk−1. In addition, IPPP (M) = {δδδj2n |j ∈ Λk}.
Theorem 4 Given M ∈ Δ2n with IPPP (M) =

{δδδj2n |j ∈ Λ}, then SRIBN is finite-time M-stable
with probability one, if and only if PPP 2n

J = 0 and
∑

i∈Λ Rowi[PPP
2n ] = 1T

2n .
Proof Sufficiency. Suppose that conditions 1 and
2 hold. By Theorem 2 and condition 1, it is easy
to see that SRIBN is forward complete. In addition,
condition 2 implies

Pr{xxx(t2n , j2n ;xxx0) ∈ IPPP (M)} = 1, ∀xxx0 ∈ Δ2n .

According to the property of IPPP (M), it holds that

Pr{xxx(tk, jk;xxx0) ∈ M} = 1, ∀xxx0 ∈ Δ2n , ∀k ≥ 2n.

As a result, the SRIBN is finite-time M-stable with
probability one.

Necessity. Suppose that the SRIBN is finite-
time M-stable with probability one. Then, there
must exist a nonnegative integer K such that

Pr{xxx(tk, jk;xxx0) ∈ IPPP (M)} = 1, ∀xxx0 ∈ Δ2n , ∀k ≥ K.

Otherwise, there exists xxx(tα, jα;xxx0) ∈ M\IPPP (M) for
α ≥ K. Then, there must exist an integer β > α such
that

Pr{xxx(tβ , jβ ;xxx0) ∈ M} < 1,

which contradicts the finite-time M-stability with
probability one. Thus, it holds that

Pr{xxx(tk, jk;xxx0) ∈ IPPP (M)} = 1, ∀xxx0 ∈ Δ2n , ∀k ≥ K,

implying that each initial state xxx0 can reach IPPP (M)

with probability one. Note that there are only 2n

states in the whole state space. Then the length of
the shortest path from xxx0 to IPPP (M) is less than 2n.
That is, there exists an integer k < 2n satisfying

Pr{xxx(tk, jk;xxx0) ∈ IPPP (M)} = 1, ∀xxx0 ∈ Δ2n .

Obviously, it holds that

Pr{xxx(t2n , j2n ;xxx0) ∈ IPPP (M)} = 1, ∀xxx0 ∈ Δ2n ,

which is equivalent to condition 2. In addition, con-
dition 1 directly follows the fact that SRIBN is for-
ward complete.

4.2 Asymptotical stability in distribution

Note that SRIBN can be regarded as a special
finite Markov chain evolving in the k-domain; that is,
the step number k instead of the time t is viewed as
the time parameter. Thus, the asymptotical stability
analysis is closely related to that of ordinary finite
Markov chains in Guo et al. (2019b).
Lemma 3 (Guo et al., 2019b) A finite Markov
chain xxx(t) ∈ Δ2n is asymptotically xxxd-stable in dis-
tribution; that is,

lim
t→∞Pr{xxx(t;xxx0) = xxxd} = 1, ∀xxx0 ∈ Δ2n ,

if and only if xxxd is a fixed point and for anyxxx0 ∈ Δ2n ,
there is an admissible path from xxx0 to xxxd.
Lemma 4 (Guo et al., 2019b) A finite Markov
chain xxx(t) ∈ Δ2n with TPM PPP is asymptotically M-
stable in distribution; that is,

lim
t→∞Pr{xxx(t;xxx0) ∈ M} = 1, ∀xxx0 ∈ Δ2n ,

if and only if IPPP (M) is nonempty and for any xxx0 ∈
Δ2n , there is an admissible path from xxx0 to IPPP (M).

Based on Lemmas 3 and 4 and the forward com-
pleteness criterion, the following necessary and suf-
ficient conditions for asymptotical stability in distri-
bution are obviously true.
Theorem 5 SRIBN is asymptotically δδδi2n -stable
in distribution, if and only if PPP 2n

J = 0, [P ]i,i = 1,
and Rowi[PPP

2n ] > 0.
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Theorem 6 Given M ∈ Δ2n with IPPP (M) =

{δδδj2n |j ∈ Λ}, SRIBN is asymptotically M-stable
in distribution if and only if PPP 2n

J = 0 and
∑

i∈Λ Rowi[PPP
2n ] > 0.

Example 2 Revisit the SRIBN in Example 1
with the target subset M = {δδδ18, δδδ28, δδδ58}. Check the
M-stability of the SRIBN. TPM of this SRIBN is
calculated as

PPP = PPP J +PPPS

= GGG · diag(pppJ) +LLL · diag(pppS)
= δδδ8[8, 7, 7, 4, 1, 7, 3, 2]

·diag(0, 0.4, 0.5, 0, 1, 1, 0, 1)
+δδδ8[5, 6, 3, 5, 1, 4, 1, 7]

·diag(1, 0.6, 0.5, 1, 0, 0, 1, 0)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1

0 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0.6 0 0 0 0 0 0

0 0.4 0.5 0 0 1 0 0

0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then,

PPP 8 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.4 0.664 1 0 1 0 0.6

0 0 0 0 0 0 0 0

0 0 0.004 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0.6 0.328 0 1 0 1 0.4

0 0 0 0 0 0 0 0

0 0 0.004 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By Lemma 2, we have IPPP (M) = {δδδ18, δδδ58} and Λ =

{1, 5}. It can be easily checked that
∑

i∈Λ

Rowi[PPP
2n ] = [1, 1, 0.992, 1, 1, 1, 1, 1].

Besides, it holds that SRIBN is forward complete.
Thus, by Theorems 4 and 6, SRIBN is not M-stable
with probability one in finite time, but it is asymp-
totically M-stable in distribution. The time-domain
simulation has been done, and three sample trajecto-
ries of the solution with initial state δδδ38 are shown in
Fig. 2, which verifies the convergence of the solution
to the target subset.
Remark 2 Note that

∑
i∈Λ Rowi[PPP

2n ] = 12n im-
plies

∑
i∈Λ Rowi[PPP

2n ] > 0. Thus, finite-time set sta-
bility with probability one implies asymptotical set

i(t
)

t

8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 10

Sample trajectory 1
Sample trajectory 2
Sample trajectory 3

Fig. 2 Three sample trajectories of solution x(t;δδδ38) =

δδδ
i(t)
8 over 0 ≤ t ≤ 10 for Example 2

stability in distribution. However, the inverse claim
does not hold in general, as shown by Example 2.

5 Summary

In this study, we studied the forward complete-
ness and stability of the state-triggered random im-
pulsive Boolean networks (SRIBNs). First, a hybrid
index model was introduced to describe SRIBNs.
Then, based on this model, several necessary and
sufficient conditions were presented for the forward
completeness of SRIBNs. Furthermore, several nec-
essary and sufficient conditions were provided for
finite-time stability with probability one and asymp-
totical stability in distribution. Finally, the rela-
tionships between these two kinds of stability were
discussed.
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