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Abstract: There has been a framework sketched for learning deep bidirectional intelligence. The framework has an
inbound that features two actions: one is the acquiring action, which gets inputs in appropriate patterns, and the
other is A-S cognition, derived from the abbreviated form of words abstraction and self-organization, which abstracts
input patterns into concepts that are labeled and understood by self-organizing parts involved in the concept into
structural hierarchies. The top inner domain accommodates relations and a priori knowledge with the help of the A-I
thinking action that is responsible for the accumulation-amalgamation and induction-inspiration. The framework
also has an outbound that comes with two actions. One is called I-S reasoning, which makes inference and synthesis
(I-S) and is responsible for performing various tasks including image thinking and problem solving, and the other
is called the interacting action, which controls, communicates with, and inspects the environment. Based on this
framework, we further discuss the possibilities of design intelligence through synthesis reasoning.
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1 Synthesis reasoning

The first wave of artificial intelligence in China
began in the early 1980s. During that time, studies
focusing on symbolic reasoning dominated the entire
international literature of artificial intelligence. In
contrast, Qian (1983) believed that image thinking
plays a leading role in intelligence and that study
on image thinking should be a future breakthrough
point, which has been followed and developed by
Pan (1996). Pan believed that reasoning research
started gradually from deductive logic to visual rea-
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soning and demonstrated such a loosening tendency
in the reasoning process, leading reasoning research
to thinking simulation. Also, Pan proposed a synthe-
sis reasoning model, which expounds the relationship
between image thinking and traditional reasoning
and compares the characteristics of image thinking
with traditional reasoning.

Following Pan (1996), Pan’s team has not only
explored synthesis reasoning based on a single source
or multiple sources, but also tried several applica-
tions in creativity and design to examine the pos-
sible point set in a synthesis space specified by one
or several known cases that correspond to examining
possible design sketches or prototypes accordingly.
Undoubtedly, synthesis reasoning plays an impor-
tant role in the study of design intelligence.

Unfortunately, like that building a traditional
expert system bases on a man-crafted rule base, an
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implementation of Pan (1996) relies on a synthesis
space specified by man-crafted sources, parts, struc-
tures, and fields, which hinders the further develop-
ment and applications. Nowadays, such a direction
may be reactivated by recent advances on bidirec-
tional deep learning.

Here we outline a proposal for learning deep
yIng-yAng bidirectional intelligence (IA-BI) that
performs cognition and problem solving with image
thinking, abstract thinking, and creative thinking,
with further details referred to a recent overview in
Xu (2019b). The subsequent two sections briefly
summarize and elaborate this deep IA-BI as illus-
trated in Fig. 1, echoing the views of Qian (1983) and
developing synthesis reasoning such that the synthe-
sis space is learned from data, and reasoning is driven
by data or cause, or both.

2 A-S cognition and image thinking

We begin by observing Fig. 1c. After doing the
action of acquiring information from data to form a
vector or image X, we perform the action of abstrac-
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tion and self-organization that abstracts X into a
much compressed code via a deep neural network by
supervised learning based on a set of paired samples
of X.

In the inner coding domain (shortly, I-domain),
the code is either a label v; that denotes a pat-
tern, a class, a concept, or a number of attributes
Y, = [ygl), y§2), e ,yfm)]T that describe the pattern,
class, and concept as a preliminary cognition. Also,
as suggested in Xu (2019a), there may be an icon
or primitive as the third coding type that encodes
the structural and topological property of X. How-
ever, aiming at merely an abstraction mapping, such
a top-down supervised learning just performs a pre-
liminary cognition.

Another preliminary function of cognition
comes from a bottom-up unsupervised learning as il-
lustrated in Fig. 1d, which cascades X — Y with an
inverting or inferring mapping Y — X (I-mapping,
for short) to generate one X as a reconstruction of
X, such that X - Y — X approximates an iden-
tical mapping. One earliest example is the autoen-
coder (AE) proposed by Ballard (1987) that cascades

Accumulation-amalgamation and induction-inspiration (Al) thinking

B

Dependency network
E(v1,v2 ..... vn|9)

*
Input x

25

N

X
\

Random sampling (RS) fast lane

(a)

(b) (o)

Fig. 1 Deep yIng-yAng bidi

Node(label v, Y=[/\")y2).... 4T, icon,::‘\)

Coding
/J\ 1
<7

Directed acyclic graph
q(v,,V,,...,V|0)

L8

A ° ® A 8 M
[} r.X R’
' Knowlecri]ge. | 8 =g 8 B
grap ils 140
AN o I
domain Inference and synthesis
& (I-S) reasoning

Oug[n u, /
Dot 4
25
z ~ \1/‘:///
¥
(d) (e) ) (9)

rectional intelligence (IA-BI)



560 Xu / Front Inform Technol Electron Eng 2020 21(4):558-562

two networks in a same architecture as illustrated in
Figs. 1c and le, in which all unknown parameters are
determined by the least mean square error (MSE)
E||X — X||2. Here, this unsupervised learning per-
ceives X by a much compressed code Y.

Initially proposed by Xu (1991, 1993), the
least mean square error reconstruction (Lmser) self-
organization overlaps the two networks in Figs. 1c
and le into the one at the center of Fig. 1d, making
the situation significantly different.

As illustrated in Fig. 2a, one layer Lmser per-
forms self-organization (Xu, 1991, 1993) such that
the downward reconstruction ug approximates the
input @, the weights of each unit learn a feature tem-
plate that detects a particular orientation, and the
upward mapping performs independent component
analysis (ICA), i.e.,
become mutually independent.

making the upper layer units
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Fig. 2 Lmser facilitates to form concept hierarchies

Recalling Sections 5(b) and 5(c) of Xu (1991),
it was also speculated that multilayer Lmser self-
organization makes the higher layers develop into
templates of higher-order features, while the top

layer forms certain concepts, which was echoed
and further developed in Hinton and Salakhutdinov
(2006). Asillustrated in Fig. 2b, they experimentally
showed multilayer developments of feature templates
by stacked restricted Boltzmann machines (RBMs)
that are quite similar to those of Lmser, with details
referred to Fig. 4 in Xu (2019b). Subsequently, Le
et al. (2011) found that the head and cat face emerge
via their computation in Google.

Following the well-known feature detection the-
ory by Hubel and Wiesel (1962), it is understood
that a concept is an organized hierarchy of parts or
components that form the concepts, as illustrated in
Fig. 2d. The promising nature of such a hierarchy
is that the son nodes become independent once their
common father node is given. Thus, as the super-
vision propagates from the top down to the bottom,
parts or components become mutually independent
layer by layer. Unfortunately, supervised learning by
back-propagation cannot enable this nature.

Promisingly, it follows from ICA, which is il-
lustrated in Fig. 2a, that a multilayer Lmser self-
organization attempts to make units per layer be-
come mutually independent from the bottom up
layer by layer, thus making concepts or components
become easier to organize. Together, the bottom-up
Lmser self-organization facilitates in forming such
hierarchies, while the top-down supervised learning
helps reallocate the hierarchies such that common
subtrees become effectively shared, as illustrated in
Fig. 2d.

Moreover, the overlap of two networks in
Figs. 1c and le into the one at the center of Fig. 1d
also results in several duality natures and favorable
characteristics, featuring not only skip connections
like those recently popularized U-Net, ResNet, and
DenseNet, but also feedback connections like those in
recurrent networks. Refer to Section 2 of Xu (2019Db)
for further details.

Furthermore, as suggested in Xu (2019a), a ran-
dom sampling (RS) fast lane, as illustrated in Fig. 1a,
obtains information by RS from the input pattern
and quickly delivers it to a higher or top layer to
form samples of low-resolution images, in which some
large-scale feature or topological nature can be cog-
nized and then propagated downward as attention to
coordinate the bottom-up self-organization.

Targeting at minimizing E|X — X2, both
AE and Lmser have not considered a priori
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knowledge about Y that is typically described by
a distribution ¢(Y) in the I-domain. Denoting
the I-mapping generally by ¢(X|Y), the task of
reconstructing X is made by the maximum like-
lihood (ML) on ¢(X) = [¢(X|Y)q(Y)dY, to-
ward which the A-mapping needs to be its posterior
p(Y|X) = ¢(X|Y)q(Y)/q(X) that is often com-
putationally intractable. Proposed by Dayan et al.
(1995), the Helmholtz machine and variational learn-
ing approximate ML by a p(Y'|X) in a prespecified
structure.

About the same period, Xu (1995) proposed
Bayesian Ying-Yang (BYY) learning that considers
either best matching or harmony between two dif-
ferent models of the joint distribution of X and Y.
One is ¢(X|Y)q(Y"), and the other is p(Y'|X)p(X)
with p(X) for the samples of X from the actual
world or shortly A-domain. Following the ancient
yIng-yAng (IA) philosophy (“Ying” is spelled “Yin”
in the current Chinese Pin Yin system that could
be backtracked over 400 years from the initiatives
of M. Ricci and N. Trigault. However, the length
of “Yin” loses its harmony with Yang; thus, “Ying”
is preferred since 1995 (Xu, 1995).), a visible do-
main is called the yAng domain, while the invisible
domain is called the yIng domain, which both coin-
cide with the A-domain and I-domain, respectively.
Also, an I-mapping from an inner DNA to a real
body coincides with the role of a yIng animal, and
an A-mapping from a real body to an inner DNA co-
incides with the role of a yAng animal. With ¢(X|Y)
for the I-mapping and p(Y'|X) for the A-mapping,
BYY learning also shares with the basic spirit of the
ancient Chinese IA concept. Readers are referred to
Xu (1995, 2010) for details about BYY learning and
to Section 3 of Xu (2019b) for its relations to ML
and variational learning.

Generally, a joint implementation of I-mapping
and A-mapping may be extended to X — Y —
[X, Z] that performs various transformations from
one pattern X to the other Z, as illustrated at the
bottom row in Fig. 1d, such as image to image, lan-
guage to language, text to image, text to sketch,
sketch to image, 2D image to 3D image, image to
sentence, music to dance, and past to future, all of
which are examples of image thinking, echo the views
of Qian (1983), and share with the main features of
synthesis reasoning by Pan (1996).

3 I-S reasoning vs. synthesis reasoning

Image thinking is characterized by simulta-
neously implementing A-mapping and I[-mapping,
while I-mapping is identified by performing either
a statistical inference Y — Z holistically via a neu-
ral network or a synthesis reasoning that synthesizes
Z from Y according to the hierarchical structures
learned for A-S cognition, but inversely along the
outward direction. Accordingly, we abbreviate the
term of such an inference and synthesis (I-S) process
into I-S reasoning. Also, instead of outputting the
pattern Z, the process may perform sequential deci-
sion with Z consisting of a sequence of a label z; that
indicates each choice. Alternatively, the process may
produce a reasoning tree that proves a statement.

This I-S reasoning action is followed by the in-
teracting action, which not only controls and com-
municates with the counterparts in the external
world, but also examines whether outcomes are good
enough. Also, communication may directly come
from A-I thinking through a shortcut, as illustrated
in Fig. 1g.

This I-S reasoning action is driven either di-
rectly by the outcomes of A-S cognition for perform-
ing the mapping X — Y — [X, Z] or indirectly
via the inner I-domain that accommodates relations
and a priori knowledge, featured by an integrated ac-
tion named A-I thinking that makes accumulation-
amalgamation and induction-inspiration (A-I), as il-
lustrated on the top of Fig. 1. Specifically, evidence
is accumulated to enhance or weaken the outcomes of
cognition. Also, cognitions and common knowledge
(e.g., feature map and knowledge graph) are amalga-
mated or united to form new concepts and analyze
dependence among nodes. Moreover, accumulation-
amalgamation may incur induction that discovers
causal relations to obtain a directed acyclic graph
(DAG). Occasionally, there are certain inspirations
that may emerge to drive I-S reasoning.

This I-S reasoning action provides opportunities
and possibilities of reactivating the study on synthe-
sis reasoning. In sequel, we give some discussions
related to both large- and small-sized samples.

In a circumstance of a large number of samples
about cases involved in a design task, we obtain a
learned deep TA-BI system as illustrated in Fig. 1,
in which the I-domain acts as the synthesis space
considered in Pan (1996), while the synthesis func-
tion SS(z, y, z) given by Definition 3 in Pan (1996) is
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generalized here by the I-mapping Y — Z that ac-
tually performs a synthesis function Z = SS(Y).

Synthesis reasoning is considered along two pos-
sible directions. First, interpolation is made by con-
sidering SS(Y;) with Y, coming from a linear or
nonlinear combination of a number of codes (e.g.,
Y4,Y5,Ye) obtained directly from the learned A-
mapping X — Y. Second, synthesis reasoning
SS(Y;) considers Y resulted from A-I thinking on the
knowledge graph, dependency network, and DAG.

In a circumstance of few exemplars, we may
consider transfer learning. First, we learn a deep
IA-BI system from a related task, with Lmser self-
organization and supervised learning jointly obtain-
ing the hierarchies as illustrated in Fig. 2d for I-
mapping. Second, we prune the extra links in the
hierarchies using causal analysis and knowledge from
few exemplars and then make an interpolation under
the constraints of hierarchies.

Based on knowledge from the exemplars, we
may even consider an architecture illustrated in
Fig. 2c as the architecture of Lmser, with each
node outputting multiple attributes not only to
indicate the node’s activating level but also to
describe the major features of the corresponding
component. That is, each node acts as a vector
function of multiple vectors. The function form may
be a man-crafted one according to the exemplar
structure (e.g., the structure of cat face), and
unknown parameters are learned jointly by Lmser
self-organization and supervised learning.
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