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Abstract: This paper addresses the problem of joint tracking and classification (JTC) of a single extended target with a complex 
shape. To describe this complex shape, the spatial extent state is first modeled by star-convex shape via a random hypersurface 
model (RHM), and then used as feature information for target classification. The target state is modeled by two vectors to alleviate 
the influence of the high-dimensional state space and the severely nonlinear observation model on target state estimation, while the 
Euclidean distance metric of the normalized Fourier descriptors is applied to obtain the analytical solution of the updated class 
probability. Consequently, the resulting method is called the “JTC-RHM method.” Besides, the proposed JTC-RHM is integrated 
into a Bernoulli filter framework to solve the JTC of a single extended target in the presence of detection uncertainty and clutter, 
resulting in a JTC-RHM-Ber filter. Specifically, the recursive expressions of this filter are derived. Simulations indicate that: (1) 
the proposed JTC-RHM method can classify the targets with complex shapes and similar sizes more correctly, compared with the 
JTC method based on the random matrix model; (2) the proposed method performs better in target state estimation than the 
star-convex RHM based extended target tracking method; (3) the proposed JTC-RHM-Ber filter has a promising performance in 
state detection and estimation, and can achieve target classification correctly. 
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1  Introduction 
 

Target tracking and target classification are in-
vestigated widely in most surveillance systems. Tar-
get tracking aims to estimate the target state (i.e., an 
estimation), and target classification is about deter-
mining the target class (i.e., a decision). Traditionally, 
target tracking and target classification are usually 
tackled by a separate two-step strategy (“decision- 
then-estimation” or “estimation-then-decision”). 
Such an approach is generally suboptimal, as target 

tracking and target classification are mutually influ-
ential steps. Therefore, they should be processed 
jointly, i.e., as joint tracking and classification (JTC) 
(Ristic et al., 2004; Angelova and Mihaylova, 2006; 
Jiang et al., 2015; Cao et al., 2016, 2018; Magnant  
et al., 2018). 

The process of JTC can make full use of infor-
mation on both target estimation and decision, as well 
as improve the accuracy of both. For example, using 
class information, the class-dependent motion models 
can be selected for target tracking. In return, target 
tracking results can be used as features for target 
classification. For JTC, classification can be deduced 
from only kinematic characteristics (Ristic et al., 
2004; Angelova and Mihaylova, 2006), or from 
complementary information provided by attribute 
sensors, such as electronic support measures (ESMs) 
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(Jiang et al., 2015; Cao et al., 2018). 
In traditional target tracking, targets are assumed 

to be point targets. However, with sensor resolution 
improving constantly, this assumption no longer 
holds. A single target will occupy multiple resolution 
cells and generate multiple measurements resulting in 
an extended target. The extended target tracking (ETT) 
methods have been studied extensively with prolific 
results (Granström et al., 2012, 2017; Mihaylova et al., 
2014; Beard et al., 2016; Eryildirim and Guldogan, 
2016; de Freitas et al., 2019). For ETT, not only the 
kinematic state (position, velocity, acceleration, etc.) 
but also the spatial extent state (shape, size, and orien- 
tation) should be estimated. Currently, there are two 
main types of approach for modeling the extent state: 
simple geometric shape based approaches, and 
star-convex shape based approaches. 

For the former, the extent state can be modeled 
as a stick (Gilholm and Salmond, 2005; Baum et al., 
2012), a circle (Baum et al., 2010), a rectangle 
(Granström et al., 2014; Knill et al., 2016), or an 
ellipse (Angelova et al., 2013; Yang and Baum, 2016, 
2017). The random matrix model (RMM) based 
methods (Koch, 2008; Feldmann et al., 2011; Lan and 
Li, 2016) have been studied widely by modeling the 
target shape as an ellipse. Star-convex shape based 
approaches are based on the random hypersurface 
model (RHM) (Baum and Hanebeck, 2014) or the 
Gaussian process model (Wahlström and Özkan, 2015; 
Hirscher et al., 2016). Simple geometric shape based 
approaches have proven to be effective in certain 
applications, e.g., tracking boats with elliptical shapes 
and cars with rectangular shapes. However, re-
al-world targets may have much more complex 
shapes. In addition, the more accurate the spatial 
extent state estimations, the more favorable to achieve 
target classification. 

Two main methods for tracking  extended targets 
with complex shapes are the non-ellipsoid-based ETT 
method (Lan and Li, 2014; Granström et al., 2015) 
and the star-convex RHM based ETT method (Baum 
and Hanebeck, 2014). In the non-ellipsoid-based ETT 
method, it is assumed that the number of sub-ellipses 
is known, while this method is not universal for dif-
ferent types of target; however, the star-convex RHM 
based ETT method can track targets with diverse 
shapes. 

Although the latter provides an effective way for 

tracking of an extended target with a complex shape, 
some problems remain to be solved. First, the prior 
shape of the target is initialized as a circle regardless 
of the true target shape. Although this shape can be 
approached gradually by recursive filtering, the real- 
time requirements of target tracking are not met.  
Second, the target state is modeled as a high- 
dimensional vector with the observation model being 
highly nonlinear. Thus, the performance of the 
star-convex RHM based ETT method will degrade 
when the target performs a maneuver. 

Compared with the JTC of point targets, that of 
extended targets aims to estimate kinematic and ex-
tent states, and to decide the target class simultane-
ously. Since different classes of extended targets have 
unique spatial extent forms, the extent state can be 
used as a feature for target classification (Lan and Li, 
2013; Hu et al., 2018; Sun et al., 2018). A JTC method 
based on RMM (JTC-RMM) that integrates the class- 
dependent extent information into the RMM-based 
ETT method was proposed by Lan and Li (2013). The 
extent state in the JTC-RMM method is modeled as 
an elliptical shape using a symmetric positive definite 
(SPD) matrix. Although the JTC-RMM method pro-
vides a novel mean for the JTC of extended targets, 
the drawback is that the performance of this method 
degrades when targets have similar sizes, as the extent 
state is simply modeled as an ellipse shape, with only 
the size feature used for target classification. 

To overcome the drawback of the JTC-RMM 
method, and to use the extent state as the classifica-
tion feature (both shape and size information) more 
effectively, we adopt the star-convex RHM in this 
study to model the extent state, and use the extent 
state as a classification feature. We propose a JTC 
method (called the “JTC-RHM method”) for ex-
tended targets with a complex shape. The proposed 
method models the target state with two vectors, and 
can solve the aforementioned two problems with the 
conventional star-convex RHM based ETT method. 
The main contributions of this study are summarized 
as follows:  

1. The proposed JTC-RHM method can classify 
targets correctly when targets have similar sizes but 
with different shapes using the class-dependent and 
received measurements. 

2. Under the nonlinear observation model, it is 
difficult to obtain an analytical solution for the  
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calculation of the class probability of target classes as  
Eq. (24) of the JTC-RMM method in Lan and Li 
(2013). Fourier descriptors are used to tackle this 
problem. Particularly, to alleviate the influence of the 
severe nonlinear observation model and high- 
dimensional state vector on target tracking in the 
conventional star-convex RHM based ETT method, 
the target state is modeled using two vectors and 
target estimation is thus improved. 

3. The proposed JTC-RHM method is integrated 
into the Bernoulli filter framework for the JTC of a 
single extended target in the presence of detection 
uncertainty and clutter, resulting in a JTC-RHM-Ber 
filter. Specifically, the expressions for the JTC-RHM- 
Ber filter recursions are derived and presented. 

 
 

2  Background 
 

In this section, the star-convex RHM based ETT 
method is presented first, and some basic models and 
formulations used in this study are introduced.  
We then present the Bayesian inference based JTC  
principle. 

2.1  Star-convex RHM based  ETT method 

For the star-convex RHM based ETT method, 
the target state at time k is modeled by a high- 
dimensional vector, denoted as xk. State xk consists of 
two parts: kinematic state k

kx  and extent state e ,kx  

i.e., 
Tk T e T( ) , ( ) .k k k  x x x  The kinematic state k

kx  

used in this study is a four-dimensional vector with a 
form of k p v T[ , ] ,k k kx x x  where p ( , )x yx  and v

k x  
( , )x y   are the position and velocity of the target cen-
troid, respectively. The dynamic evolution of kine-
matic state k

kx  is described by a linear Gaussian dy-
namic model as 

 
k k k k

1 ,k k k k+ = +x F x w                       (1) 
 

where k
kF  is the evolution matrix and k

kw  is a zero- 
mean Gaussian process noise with covariance matrix 

k .kQ  
For an extended target, there are multiple 

measurements at each sampling instant. At time k, a 

set of received measurements is denoted as k =  
z

, 1{ } ,k,n
k l l=z  where nk, z is the number of measurements at 

time k. It is assumed that each measurement zk, l is 
generated using a measurement source yk, l from the 
surface of an extended target: 

 
zk,l=yk,l+vk,l,                             (2) 

 
where vk,l is a zero-mean Gaussian observation noise 
with covariance matrix Rk. 

As shown in Eq. (2), the locations of measure-
ment sources are unknown. For the star-convex RHM 
based ETT method, the shape of the extent state is 
described by the star-convex shape, and the locations 
of measurement sources are modeled using RHM 
based on the assumption that measurement sources 
are on a scaled boundary of the true shape of the  
target. 
Definition 1 (Star-convex shape)    If all points on the 
line connecting an arbitrary point in set 

kx  and the 

centroid still belong to this set, the shape formed by 
set 

kx  is then a star-convex shape. 

A radial function r(φk) that describes the distance 
from the target centroid to the boundary point with 
angle φk can be used to represent the star-convex 
shape. Therefore, the star-convex shape can be ex-
pressed as 

 
p( ) ,

k kk kr φφ +x e x                       (3) 
 

where φk∈[0, 2π) is the angle between the positive 
direction of the x axis and the line connecting the 
centroid and a boundary point. Variable =

kφe  
T[cos sin ]k kφ φ,  is a two-dimensional (2D) vector 

with an angle φk. 
The radial function can be expanded by the 

Fourier series as  
 

F

,0 , ,
1,2 ,

( ) [ cos( ) sin( )].k k k n k k n k
n n

r a a n b nφ φ φ
=

= + +∑
，

 (4) 

 
Therefore, 

kx  can be parameterized by a vector 

composed of these Fourier coefficients e
,0 ,k kax  

F F

T

,1 ,1 ,2 ,2 , ,, , , , , , ,k k k k k n k na b a b a b   i.e., 
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e p ,
k k kk kφ φ +x r x e x                      (5) 

 
where [1, cos , sin , cos(2 ), sin(2 ), ,

k k k k kφ φ φ φ φ r

]F Fcos( ),sin( ) ,k kn nφ φ  and the dimension of target 
state xk is nx=5+2nF.  

The location of the measurement source can be 
written as 

 

, ,

e p
, , ,

k l k lk l k l k ks φ φ= +y r x e x                     (6) 

 
where sk,l∈[0, 1] is the scaling factor. 

Combining Eqs. (2) and (6), the observation 
model of the convex-star RHM based ETT method 
becomes 

 

, ,

e p
, , , .

k l k lk l k l k k k ls φ φ= + +z r x e x v                (7) 

 
Angle φk,l is unknown and can be estimated by 

the angle ,k̂ lφ  between the line from a received posi-
tion measurement zk,l to the estimated centroid and the 
positive direction of the x axis. Algebraic manipula-
tions are conducted to reduce the effect of ,k̂ lφ  on the 
state estimation, with a resulting new observation 
model of 

 

, , ,

2 e 2 e 2
, , , ,

p 2
,

0 2 || ||

|| || .
k l k l k lk l k k l k k l k l

k l k

s sφ φ φ= + +

− −

|| x r || x r e v v

z x  (8) 
 
The right part of Eq. (8) can be abbreviated as  
h*(xk, vk,l, sk,l, zk,l), where h*(∙) maps target state xk, 
observation noise vk,l, scaling factor sk,l, and meas-
urement zk,l into the pseudo-measurement 0. We use 
Eq. (8) as the observation model in this study. 

2.2  Bayesian inference based JTC 

It is assumed that there are nc different target 
classes in the surveillance area, and each target has a 
class label c∈, where ≜{1, 2, ∙∙∙, nc} is the class 
label set. Parameter μc≜p(c) is used to denote the 
class probability. According to Bayesian theory, JTC 
aims to obtain the probability density-mass function 
(PDMF) p(xk, c|k) based on measurements k at 

time k, and the prior PDMF p(xk−1, c|k−1) at time k−1. 

Using the conditional probability equation, p(xk, c|k) 
can be written as 

 
( , | ) ( | , ) ( | ),k k k

k kp c p c p c=x x          (9) 
 

where k=(1, 2,∙∙∙, k) denotes all measurements 
up to time k. 

For target tracking, the class-dependent proba-
bility density function (PDF) p(xk, c|k) can be ob-
tained by 

 
1

1

( | , ) ( | , )( | , ) ,
( | , )

k
k k k k

k k
k

p c p cp c
p c

−

−=
x xx  


 

   (10) 

 

where 1 1( | , ) ( | , ) ( | , )dk k
k k k k kp c p c p c− −=∫ x x x     

is the normalizing factor. 
For target classification, the probability mass 

function (PMF) ( | )c k
k p cµ    can be obtained by 

 
1 1

1

( | , ) ( | ) ,
( | )

k k
c k
k k

k

p c p c
p

µ
− −

−=
  

 
            (11) 

 

where 1 1 1

1
( | ) ( | , ) ( | )

cn
k k k

k k
c

p p c p c− − −

=

= ∑      is 

the normalizing factor. 
 
 
3  The proposed JTC-RHM method 

 
The JTC-RMM method uses only the size in-

formation contained in the extent state for target 
classification. When targets have similar sizes, the 
JTC-RMM method cannot correctly classify these 
targets. We proposed an RHM based  JTC (JTC-RHM) 
method to overcome this drawback, where the star- 
convex RHM is adopted to model the extent state to 
make full use of extent information. Different from 
the JTC-RMM method, we use the class-dependent 
feature points (rather than the SPD matrix) as the 
prior class-dependent measurement information, and 
incorporate this information into the star-convex 
RHM based ETT method. Due to the high nonlinear-
ity of the observation model (8), and the fact that the 
state is modeled as a high-dimensional vector, it is 
hard to obtain the analytical solution of the updated 
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target class probability, and thus the performance of 
state estimation will be deteriorated greatly. Therefore, 
we model the state using two vectors and use the 
Euclidean distance metric of the normalized Fourier 
descriptors to calculate the updated class probability. 

3.1  Prior class-dependent measurement infor-
mation 

The JTC method uses not only the measurements 
received through sensors, but also the prior class- 
dependent information. For a known class of an ex-
tended target, the positions of the feature points on the 
target contour can be acquired in advance. According 
to the principle of the star-convex RHM based ETT 
method, we can obtain an accurate shape estimate 
with these feature points by considering these points 
as the sources of measurement. The reason is that 
there is no need to consider the distribution of a 
scaling factor. Fig. 1 shows the estimation results of 
the extent state using two types of measurement. One 
type is generated by 24 feature points (denoted by red 
points), and others are 1000 measurements distributed 
randomly on the target surface (denoted by black 
points). The estimated extent state using the 24 fea-
ture points is similar to that using the 1000 random 
measurements.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
In this study, these feature points can be used as 

the prior information of the target class, which can be 
represented as 

,p,
1{ } , 1,2, , ,

cc c i n
i cc n= = z where nc,p 

is the number of feature points of the target class c. 
Using the origin of the coordinates as the reference 

point, we can obtain the position of prior class- 
dependent measurement information and prior class- 
dependent extent state e,

0 .cx  As the target moves, the 
prior class-dependent measurement information will 
change. Therefore, measurements at time k can be 
written as c

1{ ,{ } }.nc
k k k c=    

For target classification, the class probability c
kµ  

of the proposed JTC-RHM method is calculated by 
 

1 1

1

( , | , ) ( | )( | ) ,
( | )

c k k
c k k k
k k

k

p c p cp c
p

µ
− −

−=


   


 
  (12) 

 

where 1 1 1

1
( | ) ( , | , ) ( | )

cn
k c k k

k k k
c

p p c p c− − −

=

=∑       is 

the normalizing factor. 

3.2  Calculation of the updated class probability 

Due to the high dimensionality of state vectors 
and the nonlinearity of the observation model, it is 
difficult to derive the analytical solution of Eq. (12). 
For JTC of an extended target, the extent state can be 
used as the classification feature. Therefore, the 
proposed JTC-RHM method uses c

1{ ,{ } }nc
k k k c=    

to estimate extent state e.kx  By modeling the rela-

tionship between extent state e
kx  and the prior class- 

dependent extent state e,
0 ,cx  the proposed JTC-RHM 

method uses this relationship to substitute the calcu-
lation of 1( , | , ).c k

k kp c −    

If the received measurements k are originated 
by target class c, the difference between the updated 
extent state e

kx  and the prior distribution e,
0

cx  is 
minimal. In a 2D plane, the shape of an extended 
target can be described using a closed curve. The 
Fourier descriptors are the Fourier transform coeffi-
cients of the boundary closure curve (Zhao and 
Belkasim, 2012). Therefore, we use the Euclidean 
distance of Fourier descriptors to quantitatively de-
scribe the difference between the shapes represented 
by e

kx  and e,
0 .cx  The Fourier descriptors can be ob-

tained in two steps: 
1. The first step is to obtain a complex form us-

ing coordinates (xi, yi), i.e., ui=xi+jyi, where i=0, 1,…, 
nD−1 and j 1.= −  Here, (xi, yi) and nD denote the 
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True shape
Class-dependent measurements
Estimated shape by class-dependent measurements
Random measurements
Estimated shape by random measurements

 
Fig. 1  Estimation results of the extent state using two 
kinds of measurements (References to color refer to the 
online version of this figure)  
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point along the boundary closure curve and the 
number of these points, respectively. 

2. The second step is to apply the one- 
dimensional (1D) discrete Fourier transform (DFT) as  

 
D 1

0 D

2( ) exp j ,
n

m i i
i

imf u u
n

−

=

  p
= = −  

   
∑        (13) 

 
where m=0, 1,…, nD−1, ( )⋅  represents 1D DFT, and 
fm denotes the Fourier descriptors. 

To keep the Fourier descriptors invariant to 
translation and rotation, fm should be normalized. 
Thus, the normalized Fourier descriptors are written 
as 

 

D
1

|| ||
, 1,2, , 1,

|| ||
g

m

f
f m n

f
′= −






=            (14) 

 
where || ||⋅  denotes the modular operation. 

Therefore, the Euclidean distance of two nor-
malized Fourier descriptors 1

mf   and 2
mf   are used to 

describe the shape similarity of two targets: 
 

D 1
1 2 2

1
|| || .

n

m m
m

f fη
−

=

= −∑  



                    (15) 

 
If distance η=0, then two targets have the same con-
tour. The larger the distance η, the more significant 
the difference between the contours of two targets. 

If the received measurements k are generated 

using target class c, then 1( , | , )c k
k kp c −    of target 

class c in Eq. (12) should be larger than those of other 
classes. Hence, the proposed JTC-RHM method uses 
the Euclidean distance of the normalized Fourier 
descriptors to evaluate the relationship between ex-
tent state e

kx  and the prior class-dependent extent 

state e,
0 ,cx  and thus the calculation of 1( , | , )c k

k kp c −    
is substituted by 

 
D 1

2
,0 ,

1

1exp || || ,
n

c c c
k m m k

m
f fη

σ

−

=

 
 = − −
 
 

∑  



 

         (16) 

 
where ,0

c
mf   and ,

c
m kf


  are the normalized Fourier  

descriptors of the prior class-dependent extent state 
e,
0

cx  and estimated extent state e
kx  obtained by 

( , |c
k kp    1, )kc −  at time k, respectively, parameter 

σ is the weight parameter set at σ=10−2, whereas c
kη  is 

used to calculate the updated probability of the target 
class. 

Accordingly, Eq. (12) can be rewritten as 
 

1

1
1

.
c

c c
c k k
k n

c c
k k

c

η µµ
η µ

−

−
=

=

∑

 



 

                        (17) 

 

3.3  Main steps of the JTC-RHM method 

The observation model (7) can be rewritten as 
 

, ,

, ,

e p
, , ,

e k
, ,

k
, ,

k l k l

k l k l

k l k l k k k l

k l k k k l

k k l

s

s
φ φ

φ φ

= + +

= + +

= + 

z r x e x v

r x e Hx v

Hx v

           (18) 

 
where H=[Id, 0d×d], Id and 0d×d are the unit matrix and 
an all-zero matrix with a size of d×d, respectively. 
Here, d=2 is the dimension of the target motion space, 
while ,k lv  is a zero-mean Gaussian measurement 

noise with covariance matrix .k
R   

On one hand, the observation model for kine-
matic state k

kx  is linearly conditioned on the received 
measurements k  (model (18)). On the other hand, 
state vector xk is high-dimensional, and this will lead 
to a poor state estimation. For the state estimation of 
the proposed JTC-RHM, we are concerned about the 
estimation of density k e( , | , ).k

k kp cx x   Following the 
concept of conditional distribution, posterior class- 
dependent density k e( , | , )k

k kp cx x   can be decom-
posed into two conditional densities as 

 
k e e k k( , | , ) ( | , , ) ( | , ).k k k
k k k k kp c p c p c=x x x x x   (19) 

 
Furthermore, we use the same dynamic evolu-

tion for all targets. Thus, kinematic state k
kx  depends 

on only the received measurements ;k  i.e., 
k k( | , ) ( | ).k k
k kp c p=x x   Accordingly, Eq. (19) can 
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be written as  
 

k e e k k( , | , ) ( | , , ) ( | ).k k k
k k k k kp c p c p=x x x x x    (20) 

 
Therefore, the target state is not modeled as 

Tk T e T( ) ,( )k k k  x x x  in the proposed JTC-RHM 

method as opposed to the conventional star-convex 
RHM based ETT method, but it is modeled as 

k e( , ).k k kx x x  
According to Eq. (20), the Bayesian estimator 

for target tracking in the proposed JTC-RHM method 
is 

 

1 e k 1

k 1

k k 1

1

( | , )

( , | , , ) ( | , , )
( , | , , )

( | ) ( | ) ,
( | )

k
k

c k k
k k k k k

c k
k k k

k
k k k

k
k

p c

p c p c
p c

p p
p

− −

−

−

−

=

⋅

x

x x x
x

x x



   
  

 
 

 (21) 

with 
k 1

1 e k 1 e

( , | , , )

( , , , ) ( , , )d ,

c k
k k k

c k k
k k k k k k

p c

p c p c

−

− −= ∫
x

| x x | x x

  

   
(22) 

   1 k k 1 k( | ) ( | ) ( | ) d .k k
k k k k kp p p− −= ∫ x x x        (23) 

 
Remark 1    Such state modeling and decomposition 
will result in an analytical expression for the estima-
tion of kinematic state k ,kx  and a tractable approxi-

mation estimation of extent state e.kx  For the estima-

tion of kinematic state k ,kx  the linear observation 
model (18) is used. To ensure the equivalence of  
models (7) and (18), k

R  is assumed to be dependent 
on the target extension and observation error. Here we 
adopt the model proposed in Lan and Li (2016) to 
describe the covariance matrix of observation noise 

,k k k k


R B X B  where Xk and Bk are matrices with size 
d×d. Matrix Xk follows the inverse Wishart distribu-
tion ( ; , ),k k kv X V  and is used to describe the 
target extension. Matrix Bk describes the distortion of 
the target extension. Besides, target extension is con-
sidered for modeling the process noise, whereas the 
model in Lan and Li (2016) is used to describe the 
process noise covariance matrix k k ,k k k⊗

Q Q X  

where k
k
Q  is the covariance matrix of process noise in 

1D space, and ⊗ denotes the operation of Kronecker 
product. Specifically, we use a Kalman-like filter 
proposed by Lan and Li (2016) to obtain the kine-
matic state estimation. For the estimation of extent 
state e ,kx  the class-dependent measurements c

k  and 
the received measurements k  are processed se-
quentially by the unscented Kalman filter (UKF) with 
observation model (8). 

According to the dynamic evolution model (1) of 
kinematic state, the observation model (8) of the star- 
convex RHM based  ETT method, and the linear 
observation model (18) of kinematic state, the 
posterior class-dependent target state of the proposed 
JTC-RHM method follows a Gaussian–Gaussian 
distribution at time k−1: 
 

1
1

e k 1 k 1
1 1 1
e e, e, k k k

1 1 1 1 1 1

( | , )

( | , , ) ( | )

( ; , ) ( ; , ),

k
k

k k
k k k

c c
k k k k k k

p c

p c p

−
−

− −
− − −

− − − − − −

=

=

x

x x x

x m P x m P



 

 

 (24) 

 
where ( ; , )x m P  denotes the Gaussian PDF of a 
random vector x with mean m and covariance matrix 
P. Taking target extension into consideration in extent 
state estimation, k

1k−P  is modeled as k
1k − P  

k
1 1,k k− −⊗P X  where k

1k−
P  is the covariance matrix of 

the target kinematic state in the 1D space (Lan and Li, 
2016). 

The recursive process of the JTC-RHM method 
includes two steps: prediction and update. 
Proposition 1    Assuming that the posterior class- 
dependent target state 1k−x  follows a Gaussian– 
Gaussian distribution as in Eq. (24) at time k−1, under 
the dynamic evolution model of the kinematic state as 
in model (1), the predicted target state kx  also fol-
lows a Gaussian–Gaussian distribution: 

 
1

e e, e, k k k
| 1 | 1 | 1 | 1

( | , )

( ; , ) ( ; , ).

k
k

c c
k k k k k k k k k k

p c −

− − − −=

x

x m P x m P



 
 (25) 

 
We use the Kalman-like filter to predict the 

kinematic state. For covariance matrix k
| 1,k k−P  we 

focus on only its 1D representation for recursive  
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filtering. Therefore, the spatial PDF of the predicted 
kinematic state k

kx  is k k k
| 1 | 1( ; , )k k k k k− −x m P  with  

 
k k k
| 1 1,k k k k− −=m F m                        (26) 

k k k k T k
| 1 1( ) ,k k k k k k− −= +    P F P F Q               (27) 

 

where k
k
F  is the 1D representation of evolution ma-

trix k .kF  
Remark 2    In our proposed JTC-RHM method, only 
the kinematic state is handled recursively. Accord-
ingly, we predict only the kinematic state. To incor-
porate prior class-dependent measurement infor-
mation into the star-convex RHM based ETT method, 
and to ensure that the estimation results of these 
measurements are not affected by the received 
measurements up to time k, the extent state is pro-
cessed sequentially in the update step by only the 
prior class-dependent measurement information and 
received measurements at time k. Thus, the mean and 
covariance matrix of extent state e

kx  are reinitialized 
in the prediction step as 
 

e, e, e, e,
| 1 0 | 1 0, ,c c c c

k k k k− −= =m m P P                (28) 
 

where e,
0

cm  and e,
0

cP  are the mean and covariance 
matrices of the prior class-dependent extent state 

e,
0 ,cx  respectively. 

Proposition 2    If the predicted class-dependent state 
is a Gaussian–Gaussian distribution as in Eq. (25), the 
updated state also follows a Gaussian–Gaussian 
distribution as 
 

e e, e, k k k( | , ) ( ; , ) ( ; , ).k c c
k k k k k k kp c =x x m P x m P   (29) 

 
In our proposed JTC-RHM method, according to 

decomposition (20) of the posterior class-dependent 
density ( | , ),k

kp cx   we first use the mean kz  of the 
received measurements k  to update the predicted 

kinematic state k
kx  by the Kalman-like filter, where 

the update kinematic state is k k k( ; , )k k kx m P  with 
 

k k k k
| 1 | 1 | 1( ),k k k k k k k k− − −= + −m m K z Hm        (30) 

k k k k k T
| 1 | 1 | 1 | 1( ) ,k k k k k k k k k− − − −= −    P P K S K          (31) 

where 
k k k k T k 1
| 1 | 1 2 | 1 | 1 | 1, ( ) ,k k k k k k k k k k

−
− − − − −= ⊗ =    K K I K P H S   (32) 

2/
T

| 1 | 1
,

[det( )] ,
d

k
k k k k

kn− −= +   

z

BS HP H           (33) 

,z

1= ,
m
k k

m
k k

kn ∈
∑

z

z z


                         (34) 

 
where H  is the 1D representation of H.  

The prior class-dependent measurements and the 
received measurements are then processed sequen-
tially to update the extent state. Since the prior class- 
dependent measurements change as the target moves, 
the class-dependent measurements c

k  is obtained by 

the updated kinematic state k
kx  as 

 
k k

k k

k
k

k

cos( ) sin( )
,

sin( ) cos( )

(4)arctan .
(3)

c ck k
k

k k

k
k

k

θ θ
θ θ

θ

 −
= × 

 
 

=  
 

m
m

 

          (35) 

 
As the observation model (8) is nonlinear, nei-

ther the likelihood functions of these class-dependent 
measurements nor the received measurements have 
an explicit expression, and Eq. (12) has no explicit 
expression, either. Therefore, we resort to the UKF to 
estimate the target extent state. 

We use target position component p
kx  of the 

update kinematic state k
kx  to update the extent state, 

and denote it as pe p T e T T[( ) ,( ) ] .k k kx x x  For the aug-

ment vector aug pe T T T[( ) , , ] ,k k k ksx x v  its mean and co-
variance are given as 

 
pe, pe,
| 1 | 1

aug, aug, 2
| 1 | 1

2 1

, ,

c c
k k k k

c c
k k s k k s

k

µ σ
− −

− −

×

   
   = =   
      0

m P
m P

R
  (36) 

where  
pe, p T e, T T
| 1 | 1

pe, e,
| 1 2 | 1

[( ) , ( ) ] ,

blkdiag( , ).

c c
k k k k k

c c
k k k k

− −

− −

 =


=

m m m

P I P
              (37) 

 
Unscented transformation (UT) is performed on 

the augment vector to obtain 2naug+1 sampling points, 
where naug is the dimension of augment vector aug.kx  
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Use sampling point set 
augaug, aug, 2

| 1 | 1, 0={ }c c n
k k k k i i− − =m  and the 

corresponding weight sets to calculate the mean 
augm, m, 2

| 1 | 1, 0{ }c c n
k k k k i iω− − ==  and covariance matrix P,

| 1
c

k k − =  
augP, 2

| 1, 0{ }c n
k k i iω − =  as 

 
aug,
| 1,

aug,
| 1

aug, aug aug, aug
| 1 | 1

aug, aug aug, aug aug aug
| 1 | 1

, 0,

( ( ) ) , 1,2, , ,

( ( ) ) , 1, 2, ,2 ,

c
k k i

c
k k

c c
k k k k i

c c
k k k k i

i

n P i n

n P i n n n

g

g

−

−

− −

− −

=

 =

 + + =


− +   = + +







m

m

m

m

 

(38) 

aug
m,
| 1,

aug
aug

, 0,

1 , 1,2, ,2 ,
2( )

c
k k i

i
n

i n
n

g
g

ω

g

−

 = += 
 =
 +





        (39) 

2
aug

P,
| 1,

aug
aug

(1 ), 0,
( )

1 , 1,2, ,2 ,
2( )

c
k k i

i
n

i n
n

g a β
g

ω

g

−

 + − + = += 
 =
 +





     (40) 

 

where ( )iP  denotes the ith column of the square 
root of matrix P. Here, γ=α2(naug+κ)−naug, α, κ, and β 
are the parameters which control weight distribution.  

According to the observation model (8), the 
predicted pseudo-measurement set of these sampling 
points is 

aug2
| 1 | 1, 0={ } ,n

k k k k i i− − =y  where 
 

* pe,
| 1, | 1, , , ,( , , , ),c

k k i k k i k l k l k lh s− −= y m v z           (41) 
 

where pe, aug aug
| 1, | 1, (1: 3).c

k k i k k i n− − − 
m m  

Using the real value of the pseudo-measurement 
0, the mean pe,c

km and covariance matrix pe,c
kP of the 

updated state pe
kx  are 

 
pe, pe,

| 1 | 1ˆ(0 ),c c
k k k k k k− −= + −m m K z              (42) 
pe, pe, pe T

| 1 ( ) ,
k k

c c
k k k k y y k−= −P P K P K             (43) 

where 
1 ,

k k k kk
−= x y y yK P P                        (44) 

aug2
P, T
| 1, | 1, | 1 | 1, | 1

0

ˆ ˆ[ ][ ] ,
k k

n
c

k k i k k i k k k k i k k
i

ω − − − − −
=

= − −∑   y yP y z y z (45) 

aug2
P, pe, pe, T
| 1, | 1, | 1 | 1, | 1

0

ˆ[ ][ ] ,
k k

n
c c c

k k i k k i k k k k i k k
i

ω − − − − −
=

= − −∑   x yP m m y z (46) 

aug2
m,

| 1 | 1, | 1,
0

ˆ = .
n

c
k k k k i k k i

i
ω− − −

=
∑  z y                (47) 

 
Following Eqs. (36)–(47), the updated extent 

state e
kx  can be obtained by treating these measure-

ments sequentially. For the target class probability, 
the update equation of c

kµ  is the same as Eq. (17). 
The output of state estimation at time k  is cal-

culated as 
 

1

k e,

1

ˆ [ | ]

( | , ) ( | )

, .

c

c

k
k k

n
k k

k
c

n
c c

k k k
i

E

p c p c

µ

=

=

=

 
=  

 

∑

∑







 

x x

x

m m

          (48) 

 
The output of the target class probability is given as 

( | ) .k c
kp c µ=   

 
 
4  The proposed JTC-RHM-Ber filter 

 
For the tracking of a single extended target, the 

target state is time-varying due to the existence of 
target birth and death. The received measurements 
may be produced by clutter at each point of time. The 
random finite set (RFS) theoretical framework is a 
suitable means to solve such problems (Mahler, 2007, 
2014). Based on RFS, the Bernoulli filter consists of 
the exact Bayes filter for a single dynamic system. For 
details of the Bernoulli filter, please refer to Ristic  
et al. (2013). 

In this section, we integrate the proposed JTC- 
RHM method into the Bernoulli filter framework to 
present a JTC-RHM-Ber filter to track and classify a 
single extended target jointly in the presence of de-
tection uncertainty and clutter. 

For the proposed JTC-RHM-Ber filter, an ex-
tended target at time k−1 is modeled as 1k− = ∅  or 

1 1{ .}kk ξ −− =  The existence probability is denoted as 
qk−1 and 1 1( , ).k k cξ − − x  The estimation is imple-
mented by a Gaussian–Gaussian mixture as 
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1 1( ) ( | ) ( )k k c p cξ− −= x                                   

1
( ) e e, ,( ) e, ,( )

1 1 1

k k,( ) k,( ) ,( )
1 1 1 1

( ; , )
,

; )( ,

k
j c j c jJ

k k k

j j c j
j k k k

w

µ

− − −

= − − −

− 
=  

⋅  
∑







x m P

x m P
   (49) 

 
where Jk−1 is the number of Gaussian–Gaussian 
components, ( )

1
j

kw −  is the weight of the jth Gaussian– 

Gaussian component, and ,( )
1

c j
kµ −  is the probability of 

the jth Gaussian–Gaussian component with target 
class label c. 
Remark 3    The probability of target existence 
should not be affected by the prior class-dependent 
measurements and target classes. The kinematic state 
and extent state can be estimated separately according 
to Eq. (20). Therefore, we use only the received 
measurements to calculate the existence probability 
and the weight of each Gaussian–Gaussian compo-
nent. Covariance matrix k,( )

1
j

k−P  of kinematic state kx  

is modeled in the same way as in the JTC-RHM 
method; i.e., k,( ) k,( ) ( )

1 1 1 ,j j j
k k k− − −= ⊗ XP P  where k,( )

1
j

k−
P  is 

the 1D representation of k,( )
1

j
k−P  and ( )

1
j

k−X  describes 

the target extension. Parameter ( )
1
j

k−X  follows the in-

verse Wishart distribution with two parameters ( )
1
j

kv −  

and ( )
1 .j

k−V  Different from the JTC-RHM method, 
( )

1
j

k−X  is used to obtain the existence probability and 

the weight of each Gaussian–Gaussian component. 
Consequently, additional parameters ( )

1
j

kv −  and ( )
1
j

k−V  

are needed in the proposed JTC-RHM-Ber filter. 
The recursive expressions for the proposed 

JTC-GIW-Ber filter are derived under the following 
assumptions: 
Assumption 1    The kinematic state follows a linear 
Gaussian dynamical model (1) and a linear Gaussian 
observation model (18). 
Assumption 2    The clutter is modeled as a Poisson 
RFS with the Poisson average rate λc, and is inde-
pendent of target-originated measurements. The spa-
tial distribution of clutter is uniform, denoted by (z). 
Assumption 3    Target-originated measurements are 
modeled as a Binomial RFS; they are independent of 
one another. 
Assumption 4    Survival and detection probabilities 
are state-independent; i.e., pS(ξk−1)=pS and pD(ξk)=pD. 

Assumption 5     The birth probability and the PDF of 
birth targets are pB and a mixture of Gaussian– 
Gaussian components at time k, respectively: 
 

,B

,B ,B

( ) e e, ,( ) e, ,( )
,B ,B ,B

1

k k,( ) k,( ) ,( )
,B ,B ,B

( ) ( ) ( )

( ; ,

|

( )

)

; , ,

k

k k

j c j c j
k k k

j

j j c j
k k k

J

S S p c

w

cξ

µ
=

=  

= 

⋅ 

∑
m

x

x m P

x P





    (50) 

 
where Jk,B is the number of Gaussian–Gaussian 
components, ( )

,B
j

kw  is the weight of the jth Gaussian– 

Gaussian component, and ,( )
,B 1c j

k cnµ =  is the class 
probability of a new birth target with target class label 
c. Equation k,( ) k,( ) ( )

,B ,B ,B
j j j

k k k= ⊗ XP P  and two parameters 
( )
,B
j

kv  and ( )
,B
j

kV  are used to describe ( )
,B.j

kX  
The proposed JTC-RHM-Ber filter includes two 

steps: prediction and update. In this study, the 
superscript (j, ) denotes the jth updated Gaussian– 

Gaussian component using measurement set . 
Proposition 3    It is assumed that the spatial PDF 
k−1(ξ) is a Gaussian–Gaussian mixture at time k−1 
(Eq. (49)). The prediction step of the proposed JTC- 
RHM-Ber filter is then given by 
 

1

B 1 ,B
| 1 | 1

| 1

( ) e e, ,( ) e, ,( )S 1
1 | 1 | 1

1| 1

k k,( ) k,( ) ,( )
| 1 | 1 1

(1 ) ( )
( ) ( | ) ( )

( ; , )

; ) ,,(

k

k k
k k k k

k k

j c j c jk
k k k k k

jk k

j j c j
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p q
c p c

q

p q w
q

ξ
ξ ξ
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−

−
− −

−

−
− −

=−

−

−

− −

−
=  =

                 + 

                 ⋅ 

∑




 





x m P

x m P

(51) 

| 1 B 1 S 1(1 ) ,k k k kq p q p q− − −= − +               (52) 
 

where the first term on the right side of Eq. (51) cor-
responds to the prediction of birth targets, denoted as 
k|k−1,B(ξ), while the second term is the prediction of 

the existing targets, denoted as k|k−1,S(ξ). k|k−1,B(ξ) 

and k|k−1,S(ξ) can be calculated as 
 

,B
( ) e e, ,( ) e, ,( )

| 1,B | 1,B | 1,B | 1,B
1

k k,( ) k,( ) ,( )
| 1,B | 1,B ,B

( ) ( ; , )

; ), ,(

k
j c j c j

k k k k k k k k
j

j j c j
k k

J

k k k

wξ

µ

− − − −
=

− −

= 

⋅ 

∑


 x m P

x m P




  (53) 



Wang et al. / Front Inform Technol Electron Eng   2021 22(6):839-861 849 

1
( ) e e, ,( ) e, ,( )

| 1,S | 1,S | 1,S | 1,S
1

k k,( ) k,( ) ,( )
| 1,S | 1,S ,S

( ) ; ,

( ; ,

)

) .

(
k

j c j c j
k k k k k k k k

j

j j c j
k k k k k

J

wξ

µ

−

− − − −
=

− −

= 

⋅ 

∑


 x m P

x m P




   (54) 

 
For the prediction of new birth targets, the pa-

rameters of k|k−1,B(ξ) are given by 
 

( ) ( )B 1
| 1,B ,B

| 1

(1 ,)j jk
k k k

k k

p qw w
q

−
−

−

−
=               (55) 

k,( ) k,( ) k,( ) k,( )
| 1,B ,B | 1,B ,B, ,j j j j

k k k k k k− −= = P Pm m           (56) 
( ) ( ) ( ) ( )
| 1,B ,B | 1,B ,B, ,j j j j

k k k k k kv v− −= =V V            (57)  
e, ,( ) e, ,( ) e, ,( ) e, ,( )
| 1,B ,B | 1,B ,B, .c j c j c j c j

k k k k k k− −= =m m P P       (58) 
 

For the prediction of existing targets, the process 
is similar to that of the JTC-RHM method. For each 
Gaussian–Gaussian component, the kinematic pa-
rameters of k|k−1,S(ξ) are given by 
 

( ) ( )S 1
| 1,S | 1

| 1

,j jk
k k k k

k k

p qw w
q −

−
−

−

=                 (59) 

k,( ) k k,( )
| 1,S 1 ,j j

k k k kF− −=m m                  (60) 
k,( k, T k) k ( ) k
| 1,S 1 ( ,)k

j j
k k k k k−− = +    F P F QP            (61) 

( ) ( ) ( )
( ) 1 1 1
| 1 ( ) 2 ( )

1 1

2 1 1 2( )( )( )
( )

2 4,
( )

j j j
j k k k k

k k j j
k k k

v dd λ λ λ
λ λ d

− − −
−

− −

+ − −
= + +

+
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( )
| 1,S( ) ( ) T

| 1 1( )
1

2( 2
,

)j
k k kj j

k k k k kj
k

v dd
λ

−
− −

−

− −
=V A V A         (63) 

 
where ( ) ( )

1 1 2 2,j j
k kv dλ − −= − −  and δk is a scalar. The 

number of Gaussian–Gaussian mixtures for the pre-
diction target state is Jk|k−1=Jk−1+Jk,B. 

For prediction of the extent state, the mean and 
covariance matrices of the extent state are reinitial-
ized as 
 

e, ,( ) e,
| 1 0

e, ,( ) e,
|

,S

,S1 0

,

.

c j c
k k

c j c
k k

−

−

 =


=

m m

P P
                     (64) 

 
The Bernoulli filter for extended targets models 

target-originated measurements using binomial RFS, 
while the cardinality of this RFS follows a binomial 
distribution with parameter l. The number of target- 

originated measurements is denoted as lk at time k. 
Due to detection uncertainty, zero, one, or multiple 
target-originated measurements can be detected, 
meaning that the cardinality of received measure-
ments is ||=0, 1, …, lk. We use distance partition 
(Granström et al., 2012) to obtain all subsets of the 
received target-originated measurements, and denote 
subsets as P1:lk(k). The method in Eryildirim and 
Guldogan (2016) is used to obtain lk. 
Proposition 4    If the predicted spatial PDF k|k−1(ξ) 
of the proposed JTC-RHM-Ber filter is a Gaussian– 
Gaussian mixture:  
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   (65) 

 
then the updated spatial PDF k(ξ) is also a Gaussian– 
Gaussian mixture. The updated equations are given 
by 
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| 1
| 11

,1 k
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with 

1:

D
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| 1
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(68) 
| |
D

| |
D

! ,
( | |)! (1 ) k

k
k l

k

l p
l p

ψ −=
− −




                (69) 

 
where gk(z|ξ) is the likelihood function, which can be 
obtained via the observation model (18). 

According to Eq. (66), the posterior spatial PDF 
k(ξ) consists of two parts, the non-detection case 

k,ND(ξ) and the detection case k,D(ξ, ), namely 
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1:

,ND ,D
( )

( ) ( ) ( , ).+
l kk

k k k
P

ξ ξ ξ
∈

= ∑
 

           (70) 

 
For the posterior spatial PDF of the non- 

detection case, k,ND(ξ) is a Gaussian–Gaussian 
mixture, obtained by 
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with 
( ) ( )D
,ND | 1

(1
1

,) kl
j j

k k k
k

pw w
D −

−
=

−
              (72) 

k,( ) k,( ) k,( ) k,( )
,ND | 1 ,ND | 1, ,j j j j

k k k k k k− −= = m m P P           (73) 
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For the posterior spatial PDF of the detection 
case, ,D ( , )k ξ   is also a Gaussian–Gaussian mix-
ture, obtained by 
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Firstly, the received measurements are used to 

obtain the weight and parameters of each Gaussian– 
Gaussian component, as well as the probability of 
target existence using a Kalman-like filter: 
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where |∙| denotes the number of elements in a set, and 
Γd(∙) is a multivariate gamma function with dimen-
sionality d. 

Subsequently, class-dependent measurements 
and received measurements are used to update the 
extent state e

kx  using UKF, whereas parameters 
e, ,( , )
,D
c j

km   and e, ,( , )
,D

c j
kP   can be obtained by 

Eqs. (36)−(47). 
The update of the target class probability is 

conducted as 
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where ,( , )

,D
c j
kη   is the Euclidean distance of the nor-

malized Fourier descriptors between ,
0
e cm  and 

e, ,( , )
,D ,c j

km   which can be obtained by Eq. (16).  
For the state extraction of the JTC-GIW-Ber 

filter, it is judged at first whether the target exists or 
not. The existence of the target is confirmed if qk≥0.5, 
while the estimated state and class probability are 
obtained using the maximum a posterior (MAP)  
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criterion with 
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The number of Gaussian–Gaussian components 
in the proposed JTC-GIW-Ber filter will grow expo-
nentially. Therefore, the pruning and merging strategy 
in Granström et al. (2012) is adopted to reduce the 
computation burden. The main steps of the proposed 
JTC-GIW-Ber filter are given in the appendix.  

 
 

5  Simulations 
 
The proposed JTC-RHM method and the JTC- 

RHM-Ber filter are simulated to validate their effec-
tiveness in this section. Three simulation scenarios 
are considered to test the performance of the proposed 
JTC-RHM method and the JTC-RHM-Ber filter. To 
illustrate the advantages of the proposed JTC-RHM 
method in classifying targets with complex shapes, 
we compare the proposed JTC-RHM method with the 
JTC-RMM method (Lan and Li, 2013) in simulation 
scenario 1. We compare the proposed JTC-RHM 
method with the star-convex RHM based  ETT (ab-
breviated as RHM) method (Baum and Hanebeck, 
2014) in simulation scenario 2 to illustrate the ad-
vantages of the proposed JTC-RHM in estimating the 
target state. Simulation scenario 3 is conducted to 
verify the effectiveness of the proposed JTC-RHM- 
Ber filter in the presence of clutter and detection un-
certainty. Finally, we compare the proposed JTC- 
RHM method with the RHM method to analyze the 
algorithm complexity and time consumption.  

In simulation scenarios 1 and 2, there is only one 
extended target in the surveillance area. In simulation 
scenario 3, at most one extended target appears in the 
surveillance area.  

5.1  Simulation setup 

In the three simulation scenarios, we assume that 
two kinds of extended targets may exist in the sur-
veillance area. Target class 1 is composed of two 
orthogonal rectangles, with the length and width of 
the two rectangles being (34 m, 5 m) and (20 m, 5 m), 
respectively. The shape of target class 2 is a five- 
pointed star, and its circumscribed circle radius is  
10 m. Prior class-dependent measurements 1{ }nc

c=
c  

and the corresponding extent state e,
0

cx  are shown in 
Fig. 2. The class labels of targets A and B in the sim-
ulations are labels 1 and 2, respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
In the three simulation scenarios, the trajectory 

of the extended target centroid is shown in Fig. 3. The 
blue points denote the centroid position at each sam-
pling time point, whereas the arrow indicates the 
direction of target motion. The sampling interval is 
t=5 s. The number of received measurements follows 
a Poisson distribution with a measurement rate of 
λm=15. In scenario 3, the Poisson average clutter rate 
λc is set as 5, while the spatial distribution of clutter is 

( ) 1 / (15 1 000 ).2 0= ×z  The covariance matrix of 
observation noise in the three simulation scenarios is 

( ) 2diag [0.1, 0.1] mk =   R . For the proposed JTC-RHM 
method, JTC-RHM-Ber filter, and JTC-RMM 
method, the initial target class probabilities are 

1 2
0 0 1 / 2.c c= =  
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Fig. 2  The true shapes and prior information of target 
class 1 (a) and target class 2 (b) 
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The main parameters used in the proposed 

JTC-RHM method and the RHM method are as  
follows: 

The order of the Fourier series is nF=5. The 
process noise covariance of kinematic state is k

k =Q  
20.5 diag([2,1]).  The scale factor sk,l follows a 

Gaussian distribution with a mean of 0.7 and a vari-
ance of 0.08. Initial state 0x  and its covariance P0 are 

k e
0 0 0( , )=x x x and k e

0 0 0=( , ),P P P respectively, where 
e T
0 10 1[18, ] ,×=  0x k T

0 [1 m, 1 m, 8 m s, 8 m s] ,=        /  −  /x
k 2 2 2 2 2 2

0 =diag([1 m ,1 m ,1 m /s ,1 m /s ]),       P  and e
0 =P  

1 11diag([0.5 ]).××1  Vector 010×1 is an all-zero vector 
with a dimension of 10×1, while 11×11 is an all-one 
vector with a dimension of 1×11. For the proposed 
JTC-RHM-Ber filter, the survival and detection 
probabilities are pS(ξk−1)=0.99 and pD(ξk)=0.98, re-
spectively. The birth model is adopted as 

 
k T

1,B [0 m, 0 m, 7.8 m/s, 7.8 m/s] ,k− =    −  m       (89) 
k 2 2 2 2

1,B diag([10 ,1 ]),m m /sk− =    P        (90) 
T

1 10 1
e,1 e,1

1,B 1,B 11,[21, 2 diag( ),]k k×− − ×=  = × 10m P         (91) 
T

1 10 1
e,2 e,2

1,B 1,B 11,[15, 2 diag( ),]k k×− − ×=  = × 10m P     (92) 

1,B ,
2

1 B
1 1 / 2, 1 / 2.k kµ µ− −= =                 (93) 

  
Further parameters of the proposed JTC-RHM-Ber 
filter are the same as those of the proposed JTC-RHM 
method. 

The JTC-RMM method and the RMM method 
are used as a comparison group in simulation  
scenario 1. For the JTC-RMM method and the RMM 

method, the extended state is modeled by the SPD 
matrix Xk. The target state is denoted as (xk,RMM, Xk) 
with the same parameters used by Lan and Li (2013). 
Therefore, the process noise covariance is Qk,RMM= 
(Σ2(1−e−2t/θ)×diag([0, 0, 1]))⊗Xk, where Σ=10−3 m2/s 
and θ=8t. The initial kinematic state x0,RMM and its 
covariance matrix P0,RMM are x0, RMM=[1 m, 1 m,  
8 m/s, −8 m/s, 0, 0]T, and 2

0,RMM diag([10 m ,=P   
1 m2/s2, 1 m2/s4]), respectively. The initial parameters 
of the extent state X0 are v0=7 and V0=diag([52, 52]). 
The adopted prior information is the class-dependent 

SPD matrix with
2

p,1 2
2

17 0
m

0 10
 

=  
 

Z  and p,2 =Z  

2
2

2

10 0
m

0 10
 
 
 

. 

5.2  Simulation results 

We test the performance of the proposed JTC- 
RHM method and the JTC-RHM-Ber filter both for 
tracking and classification. 

5.2.1  Results for simulation scenario 1 

For simulation scenario 1, Figs. 4 and 5 show the 
tracking results of the JTC-RMM method and the 
proposed JTC-RHM method, respectively.  

The JTC-RMM method and the RMM method 
have nearly the same performance in estimating the 
target state (kinematic and extent states) (Fig. 4). 
However, the proposed JTC-RHM method performs 
better than the RHM method in estimating the target 
extent state (Fig. 5); this means that the latter is more 
effective in describing the target shape for a target 
with a complex shape. 

Classification results are shown in Fig. 6, where 
class probabilities are calculated by 100 Monte Carlo 
trials. As shown in Fig. 6a, the JTC-RMM method 
cannot correctly classify the target, where the true 
probability of target A should be 1; however, the es-
timated class probability is approximately equal to 0.1. 
Conversely, the proposed JTC-RHM method can 
obtain correct classification results (Fig. 6), where the 
estimated class probabilities of targets A and B are 
very close to the ground truth. In this simulation 
scenario, targets A and B have similar size infor-
mation. The JTC-RMM method models a target as an 
elliptical shape, and cannot correctly classify the 
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Fig. 3  The trajectory of the extended target centroid in 
simulation scenario 1 (a) and simulation scenarios 2 and 3 
(b) (References to color refer to the online version of this 
figure)  
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Fig. 4  Simulation results of target tracking using the JTC-RMM method for targets A (a) and B (b) in scenario 1 

JTC: joint tracking and classification; RMM: random matrix model. References to color refer to the online version of this figure 
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Fig. 5  Simulation results of target tracking using the proposed JTC-RHM method for targets A (a) and B (b) in scenario 1 
JTC: joint tracking and classification; RHM: random hypersurface model. References to color refer to the online version of this 
figure 
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Fig. 6  Simulation results of target classification for targets A (a) and B (b) in scenario 1 

JTC: joint tracking and classification; RMM: random matrix model; RHM: random hypersurface model. References to color refer 
to the online version of this figure 
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target when only the size information is used as a 
classification feature. In contrast, the proposed 
JTC-RHM method models a target as a star- 
convex shape and uses the contour shape as the clas-
sification feature. We can see that even if targets have 
similar size information, they can still be correctly 
classified using the proposed JTC-RHM method, as 
long as shapes are different. 

5.2.2  Results for simulation scenario 2 

Firstly, we qualitatively analyze the performance 
of the proposed JTC-RHM method in target tracking 
in scenario 2, with results shown in Fig. 7.  

As shown in Fig. 7, there are eight partially en-
larged subfigures, denoted by A–H. The proposed 
JTC-RHM method can significantly improve the 
estimation of the kinematic state and extent state, 
compared to the RHM method. 

Regardless of what the true target shape is, the 
RHM method assumes the initial target shape as a 
circle, as shown in Fig. 7 marked with a blue line 
(denoted by subfigure A). Although the estimated 
shape can gradually approach the true one with the 
recursions of the filter, the results obtained are not 
very desirable. The proposed JTC-RHM method can 
quickly approach the true target extent state, as shown 
in subfigures A and B in Fig. 7, where the shape rep-

resented by the red line is more consistent with the 
true target shape. 

As opposed to the RHM method, the proposed 
JTC-RHM method is more accurate in estimating the 
kinematic state and extent state when the target per-
forms the maneuver (Fig. 7), where the shape repre-
sented by the red line is more consistent with the true 
target shape, with the red points located almost near 
the target centroid (such as in subfigures C–H). 

Furthermore, we quantitatively evaluate the 
performance of the proposed JTC-RHM method on 
target tracking and target classification. Specifically, 
we use the root mean square error (RMSE) of the 
centroid position of the target to evaluate the kine-
matic state estimation. We also use the Euclidean 
distance of the normalized Fourier descriptors be-
tween the estimated extent state and the prior extent 
state (termed “shape similarity” in this study) to 
evaluate the extent state estimation. Quantitative 
evaluation results and class probabilities are obtained 
through 100 Monte Carlo trials, with results shown in 
Figs. 8 and 9. These results are shown in three aspects: 
kinematic state estimation, extent state estimation, 
and class probability. 

The performance of the proposed JTC-RHM 
method is better than that of the RHM method for 
kinematic state estimation (Figs. 8a and 9a). The 
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Fig. 7  Simulation results of the JTC-RHM method for targets A (a) and B (b) in scenario 2 
JTC: joint tracking and classification; RHM: random hypersurface model. References to color refer to the online version of this figure 
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proposed JTC-RHM method can significantly im-
prove the results of extent state estimation, especially 
when the target is maneuvering (Figs. 8b and 9b). The 
proposed JTC-RHM method can achieve an accurate 
target classification (Figs. 8c and 9c). 

5.2.3  Results for simulation scenario 3 

In scenario 3, the total time duration is k=70. The 
target appears at time k=5, and disappears at time 
k=65. Figs. 10 and 11 provide simulation results for a 
single run in the presence of clutter and detection 
uncertainty. Results show that the proposed JTC- 
RHM-Ber filter can obtain good performance in target 
detection and target state estimation (both in the 
kinematic state and extent state). 

Simulation results for the proposed JTC-RHM- 
Ber filter over 100 Monte Carlo trials are shown in 
Figs. 12 and 13. Since the proposed JTC-RHM-Ber 
filter can detect whether a target is present in the 
scene or not, we provide the estimated target cardi-
nality and use the optimal subpattern assignment 

(OSPA) distance (Schuhmacher et al., 2008) to  
evaluate the performance of kinematic state estima-
tion. If the target appears in the scene, we still use the 
Euclidean distance of the normalized Fourier de-
scriptors to evaluate the extent state estimation, as the 
proposed JTC-RHM method does.  

As demonstrated by Figs. 12 and 13, the pro-
posed JTC-RHM-Ber filter can estimate the target 
number, target state, and target class correctly. 

5.3  Algorithm complexity analysis 

We analyze only the time complexity of the 
proposed JTC-RHM method in this study as an ex-
ample. We compare the proposed JTC-RHM method 
with the RHM method. The time complexity analysis 
of the proposed JTC-RHM-Ber filter can be done in a 
similar way. 

The complexity of the PHD filter is (mn) 
(Mahler, 2014), where m and n are the numbers of 
measurements and targets, respectively. We adopt the 
expression of time complexity similar to that of the  
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descriptors; (c) class probability 
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Fig. 10  Simulation results of the JTC-RHM-Ber filter for 
target A in scenario 3: (a) total result for a single run; (b) 
partially enlarged subfigures of (a) 
JTC: joint tracking and classification; RHM: random hyper-
surface model; Ber: Bernoulli. References to color refer to the 
online version of this figure 

Fig. 11  Simulation results of the JTC-RHM-Ber filter for 
target B in scenario 3: (a) total result for a single run; (b) 
partially enlarged subfigures of (a) 
JTC: joint tracking and classification; RHM: random hyper-
surface model; Ber: Bernoulli. References to color refer to the 
online version of this figure 
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PHD filter. For the RHM method, all received meas-
urements are processed sequentially. The number of 
received measurements at time k is nk,z, and thus the 
algorithm complexity of the RHM method is 
RHM(nk,z). The number of prior class-dependent 
measurements for target class c is nc,p. The proposed 
JTC-RHM method also uses nc class-dependent RHM 
methods, with a corresponding algorithm complexity 

of ,p
JTC RHM ,

1
.

cn
c

c k z
c

n n n−
=

 
+ 

 
∑   

Simulations in this study are conducted using the 
MATLAB R2018a platform, and all experiments are 
performed on a computer with 3.60 GHz Intel® 
Core™ i7-7700 8 core CPU and 16 GB of RAM. 
With measurement rate λc=15, we conduct 100 Monte 
Carlo trials. The running time of the proposed JTC- 
RHM method and RHM method for target class A is 
2.79 s and 0.74 s, respectively. For target class B, 
these values are 2.82 s and 0.75 s, respectively. 

In this study, the number of target class is nc=2, 
and the numbers of prior class-dependent measure-
ments for the two class targets are n1,p=24 and n2,p=20, 
respectively. Fifteen measurements are processed 
sequentially for the RHM method, whereas 
2×15+24+20=74 measurements need to be processed 
sequentially for the proposed JTC-RHM method. 
Theoretically, the running time ratio of the two 

methods is 74/15≈5. In the simulations, the actual 
time-consuming ratio is 2.79/0.74≈3.8 or 2.82/0.75≈ 
3.8. The most computationally expensive operation of 
UKF is the unscented transformation. We model the 
target state using two vectors herein, and the un-
scented transformation is used only for the extent 
state. Thereby, the actual ratio of running time is less 
than that of the theoretical one. This further indicates 
the advantage of our state modeling method. 

 
 

6  Conclusions 
 
Due to the inherent relationship between target 

state estimation and class decision, target tracking and 
target classification should be processed simultane-
ously; i.e., joint tracking and classification needs to be 
performed. As the resolution of the sensor increases, a 
target may occupy multiple measurement cells and 
can be classified using the spatial extent state as fea-
ture information. When the target has a complex 
shape, it is not appropriate to model the target shape 
with a simple geometry (such as an elliptical shape). 
We used the star-convex RHM to model the extent 
state, and the class-dependent feature measurements 
were used as the prior information. Due to the high 
dimensionality of the state vector and the severe 
nonlinearity of the observation model, it is difficult to 
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Fig. 12  Simulation results of the JTC-RHM-Ber filter for 
target A in scenario 3 over 100 Monte Carlo trials: (a) 
OSPA distance; (b) cardinality estimation; (c) shape sim-
ilarity; (d) class probability 
JTC: joint tracking and classification; RHM: random hyper-
surface model; Ber: Bernoulli; OSPA: optimal subpattern 
assignment. References to color refer to the online version of 
this figure 

Fig. 13  Simulation results of the JTC-RHM-Ber filter for 
target B in scenario 3 over 100 Monte Carlo trials: (a) 
OSPA distance; (b) cardinality estimation; (c) shape simi-
larity; (d) class probability 
JTC: joint tracking and classification; RHM: random hyper-
surface model; Ber: Bernoulli; OSPA: optimal subpattern as-
signment. References to color refer to the online version of 
this figure 

 
 



Wang et al. / Front Inform Technol Electron Eng   2021 22(6):839-861 858 

obtain an analytical solution in class probability cal-
culation. Therefore, the target state was modeled by 
two vectors, and the modified Euclidean distance 
metric of the normalized Fourier descriptors was used 
to calculate the class probability. Simulation results 
showed that the proposed JTC-RHM method out-
performs the JTC-RMM method when targets have 
similar sizes. Compared with the conventional star- 
convex RHM based ETT method, the proposed 
JTC-RHM method can improve the estimation in both 
kinematic and extent states, whereas the JTC-RMM 
method can improve only the extent state estimation.  

To solve the problem of detection uncertainty 
and clutter, we integrated the JTC-RHM method into 
the Bernoulli filter framework to obtain the JTC- 
RHM-Ber filter. Experimental results showed that the 
proposed JTC-RHM-Ber filter can not only accu-
rately estimate the target number and target state, but 
also classify the target correctly. 
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Appendix: Main steps of the proposed JTC-RHM-Ber filter 
 
Algorithm A1    Main steps of the proposed JTC-RHM-Ber filter 
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m P V m P , target existence probability qk−1, received measure-

ments k, and prior class-dependent measurements c 
Step 1: birth target prediction 
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end 

To be continued 
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Algorithm A1 
Step 2: surviving target prediction 
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Step 4: detection part update 
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To be continued 
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(3 : end), (3 : end,3 : end);

,  is obtained by Eq. (16);
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−

+
+
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=
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k
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j
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end 
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k k k

k k k
q q
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−
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Step 5: merging and pruning (Granström et al., 2012) 
Step 6: state extraction 

if 0.5kq ≥  
(* )arg max ;k

j

jj w=  

* * *k,( ) e,( ) ,(

1

)ˆ , ;
c

j j c j
k k k k

n

c

µ
=

 
 =
 
 

∑ m mm  

end 

Output: ˆ km and 
*,( )c j

kµ  
 


