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Abstract: Urban modeling facilitates the generation of virtual environments for various scenarios about cities. It
requires expertise and consideration, and therefore consumes massive time and computation resources. Nevertheless,
related tasks sometimes result in dissatisfaction or even failure. These challenges have received significant attention
from researchers in the area of computer graphics. Meanwhile, the burgeoning development of artificial intelligence
motivates people to exploit machine learning, and hence improves the conventional solutions. In this paper, we
present a review of approaches to urban modeling in computer graphics using machine learning in the literature
published between 2010 and 2019. This serves as an overview of the current state of research on urban modeling
from a machine learning perspective.
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1 Introduction

Since the founding of the United Nations, a sig-
nificant urbanization process has reshaped the dis-
tribution of the world’s population. In 2018, 55% of
the people on this planet were living in urban areas,
and the proportion will probably increase to 68% by
the middle of the century (United Nations, 2018).
The trend transformed cities into an integral part
of human society, and therefore the demand for vi-
sualizing, simulating, and perceiving urban areas is
growing for numerous purposes. For instance, city
planners seek urban design tools to sketch plausible
blueprints for new towns according to policies, gov-
ernment decision-makers depend on socioeconomic
information to provide high-quality public services,
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and digital media professionals endeavor to create
virtual cities to produce vivid simulations. These
stakeholders continue to discover practical solutions
to urban modeling, which aims to generate the phys-
ical structure and appearance of a city.

A city demonstrates its spatiotemporal al-
terations in socioeconomic and cultural develop-
ment. The high visual and functional complexity
increases the difficulty of urban modeling using non-
computational approaches. In the area of computer
graphics, it is conventional to model analogous com-
plex systems using computational approaches, such
as a parallel rewriting system for synthesizing de-
tailed plant models that exchange information with
the environment (Měch and Prusinkiewicz, 1996).
Consequently, computer graphics researchers have
exploited similar approaches for generating urban
layouts (Lipp et al., 2011; Vanegas et al., 2012b;
Yang et al., 2013; Garcia-Dorado et al., 2014; Peng
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et al., 2016; Wu WM et al., 2018) and modeling land-
scape architectures (Vanegas et al., 2010; Musialski
et al., 2012; Bao et al., 2013a; Wu FZ et al., 2014;
Lienhard et al., 2017), which achieved remarkable
successes. It draws our attention that they are yet
not to completely outperform manual approaches re-
garding controllability and accuracy, due to the high
complexity of cities.

Along with the burgeoning development of com-
putational power, a series of breakthroughs in arti-
ficial intelligence (AI), especially one of its princi-
pal branches, machine learning, have enabled effi-
cient approximation of non-linear relationships and
prediction of trends. These contributions facilitate
urban modeling in terms of manipulating rules and
parameters to achieve satisfactory results. For exam-
ple, pre-trained machine learning models contribute
to discovering layout patterns in the real world and
reusing them to satisfy design requirements (Merrell
et al., 2010; Vanegas et al., 2012a; Feng et al., 2016).
Nevertheless, we have not found a significant survey
about the participation of machine learning in urban
modeling.

This paper provides a literature review on com-
putational approaches to urban modeling from a ma-
chine learning perspective. Instead of enumerating
the entire collection of related works, we intention-
ally limited the review to research articles in the area
of computer graphics, which were published between
2010 and 2019, while machine learning was acquiring
widespread adaption and popularity.

2 Algorithms in machine learning

Machine learning is known for its focus on data-
driven analysis and prediction by constructing com-
putational models from user-given inputs, and has
direct relationships with statistics and mathemati-
cal optimization. The rest of this section provides
a brief overview of the representative algorithms in
machine learning. We recommend several classics
(Bishop, 2006; Hastie et al., 2009; James et al., 2014)
for readers interested in a detailed introduction to
machine learning.

2.1 Categorization

The major types of machine learning algorithms
include supervised learning (Caruana and Niculescu-
Mizil, 2006), unsupervised learning (Khanum et al.,

2015), and reinforcement learning (Kaelbling et al.,
1996). The first two types differ in the use of train-
ing data with pre-existing labels. Specifically, a
supervised learning algorithm aims to learn func-
tion mapping input data to an output label based
on input-output pairs for classification or regression,
whereas an unsupervised learning algorithm models
probability densities over inputs without pre-existing
labels for clustering and dimensionality reduction.
As a variant related to supervised and unsupervised
learning, semi-supervised learning (Zhu and Gold-
berg, 2009) takes advantage of the partially labeled
data during training. In contrast to focusing on
whether the data is labeled, a reinforcement learning
algorithm is concerned with the paradigm, in which
agents take actions in an environment to maximize
rewards.

2.2 Traditional algorithms

The following traditional algorithms have been
widely used in the area of machine learning: In super-
vised learning, the support vector machine (SVM)
algorithm (Cortes and Vapnik, 1995) produces a gap
with the maximum margin of separation to distin-
guish training data for classifying test data, where
a kernel enabled a non-linear hyperplane as the gap
(Scholkopf and Smola, 2001). The k-nearest neigh-
bor (k-NN) algorithm (Cover and Hart, 1967) pre-
dicts the label of a test example from its k closest
training examples in the feature space. The random
forest (RF) algorithm (Ho, 1995) builds multiple de-
cision trees in randomly selected domains of the fea-
ture space. The adaptive boosting (AdaBoost) algo-
rithm (Schapire, 1999) converts a set of weak learners
into a strong one. In unsupervised learning, the k-
means algorithm (MacQueen, 1967) presumes k clus-
ters in the data and partitions each example into one
with the nearest centroid in the feature space, and
such cluster centroids are repeatedly updated until
the process converges.

2.3 Deep learning algorithms

In the last decade, the astonishing break-
throughs in high-performance computing enabled
general-purpose computing on graphics processing
units, and consequently revived several underes-
timated machine learning techniques (Fukushima,
1980; Hopfield, 1982) invented in the 1980s. These
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techniques were derived from neural networks (NNs)
(Hassoun, 1995) that follow the information process-
ing mechanism in biological systems. Researchers
have hence proposed numerous multi-layered archi-
tectures based on NNs, which were summarized as
deep learning (Goodfellow et al., 2016). They dif-
fer substantially from the traditional machine learn-
ing algorithms, because features can be discovered
at various levels of abstraction from data and pro-
cessed consecutively by layers, instead of being task-
specific. As a prevailing deep learning algorithm,
convolutional neural networks (CNNs) (Lecun et al.,
1998) are dominating the area of computer vision
and pattern recognition (Krizhevsky et al., 2017).
Among all the hidden layers in CNNs, convolutional
layers use neurons to localize visual features and spa-
tial coherences by convolution operations on the data
in the receptive fields. In comparison, autoencoders
(AEs) (Rumelhart et al., 1986) comprise an encoder
NN for code generation and a decoder NN for input
re-instantiation from the code, which enable dimen-
sionality reduction. The more recently introduced
generative adversarial networks (GANs) (Goodfel-
low et al., 2014) imitates a real-world data distri-
bution and generates similar examples from random
input noise. They are based on a zero-sum game and
contain two adversarial neural networks: the gen-
erator neural network produces fake examples that
are indistinguishable to the discriminator neural net-
work, which meanwhile recognizes real ones in the
training data. As a kind of supervised extension of
GANs, conditional generative adversarial networks

(Mirza and Osindero, 2014) train the generator and
the discriminator with additional labels, and are spe-
cialized for image-to-image synthesis (Isola et al.,
2016).

3 Problems in urban modeling

As an attractive direction in the area of com-
puter graphics, urban modeling spans plenty of re-
search problems. In a comprehensive review (Aliaga,
2012), research on the three-dimensional (3D) design
of smart cities was divided into geometrical model-
ing and behavioral modeling. In contrast, our review
focuses on urban structure and appearance. Ac-
cording to the classification of urban elements which
enable a city to be visibly organized and sharply
identified (Lynch, 1964), we categorize the related
problems into two application classes: layout mod-
eling and architectural modeling. In particular, the
layout modeling stage generates hierarchical paths
for movement and subdivides the urban area into
finer parcels for placing architecture; the architec-
tural modeling stage synthesizes geometries and tex-
tures to represent shapes and facades of buildings.

We collected in total 50 research articles re-
lated to the above-mentioned application classes,
which were published between 2010 and 2019, us-
ing Google Scholar. Table 1 lists them by appli-
cation class and participation of machine learning.
Most of these articles were accepted by outstanding
journals (e.g., ACM Transactions on Graphics and
Computer Graphics Forum) and conferences (e.g.,

Table 1 Research articles in the review by application class and participation of machine learning

Layout modeling Architectural modeling

With machine Vanegas et al. (2012a), Lafarge and Mallet (2011), Lin et al. (2013),
learning Hartmann et al. (2017) Demir et al. (2014), Guerrero et al. (2015),

Nan et al. (2015), Affara et al. (2016),
Nishida et al. (2016b), Kelly et al. (2017, 2018),
Kim et al. (2020), Newton (2019)

Without machine Galin et al. (2010, 2011), Lipp et al. (2011), Krecklau et al. (2010), Nan et al. (2010),
learning Emilien et al. (2012), Vanegas et al. (2012b), Vanegas et al. (2010), Zheng et al. (2010),

Yu and Steed (2012), Yang et al. (2013), Shen et al. (2011), Ceylan et al. (2012),
Beneš et al. (2014), Musialski et al. (2012), AlHalawani et al. (2013),
Garcia-Dorado et al. (2014, 2017), Bao et al. (2013a, 2013b),
Peng et al. (2014, 2016), Besuievsky and Patow (2013), Lin et al. (2013),
Nishida et al. (2016a), Zhang et al. (2013), Ceylan et al. (2014),
Fernandes and Fernandes (2018), Dang et al. (2014), Wu FZ et al. (2014),
Mathew et al. (2019) Ilčík et al. (2015), Kelly et al. (2015),

Schwarz and Müller (2015), Li ML et al. (2016),
Lienhard et al. (2017), Smith et al. (2018)
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ACM SIGGRAPH, ACM SIGGRAPH Asia and Eu-
rographics) in the area of computer graphics. Fig. 1
indicates the number of research articles in the re-
view by application class and year, which suggests
the increasing attention to architectural modeling
rather than layout modeling. We observed that ma-
chine learning was not to overshadow conventional
approaches in urban modeling, but acted as an aux-
iliary component in limited works. However, its
participation was expanding in recent years. Fig. 2
demonstrates this trend with the number of research
articles in our review by participation of machine
learning and year. Symbolic research articles in ur-
ban modeling, which do not involve machine learn-
ing, are also discussed in the review for comparison.
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Fig. 1 Number of research articles by application
class and year
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Fig. 2 Number of research articles by participation
of machine learning and year

4 Layout modeling

As the two-dimensional (2D) representation of a
city’s physical structure, an urban layout comprises
two parts: paths and parcels. The hierarchical paths

constitute a transport network that serves pedestri-
ans and vehicles with different capacities (e.g., in-
tercity highways, intracity arteries, and residential
streets). Upon the completion of the city’s skele-
ton, the transport network divides the urban area
into city blocks, which are the smallest zones sur-
rounded by paths and form the urban fabric as basic
units (Lynch, 1964). Each city block is then subdi-
vided into a set of finer parcels. Following a land-use
plan, a parcel can be owned publicly or privately
for constructing only one building in most cases. In
the area of computer graphics, the mainstream ap-
proaches to layout modeling are based on rules, ex-
amples, or objectives.

4.1 Rule-based approaches

Rule-based approaches to layout modeling were
derived from procedural modeling, a set of tech-
niques that allow fast production of specific contents
from input parameters and generative rules. They
have been exploited in the synthesis of textures and
virtual worlds (Smelik et al., 2014).

Parish and Müller (2001) proposed the pioneer-
ing work with procedural modeling for urban mod-
eling. Specifically, they used the L-system (Linden-
mayer, 1968), a parallel rewriting system, for plant
modeling. Thereafter, Galin et al. (2010) introduced
a procedural approach to road generation, which en-
ables the construction of bridges and tunnels; the
weighted anisotropic shortest path algorithm in the
approach considers impacts of water bodies, moun-
tains, and plants. Galin et al. (2011) extended it
with a subsequent attempt at a hierarchical road net-
work that connects cities and towns. With a focus
on topological validity, Lipp et al. (2011) proposed
a procedural urban layout editing method using a
layering system. Emilien et al. (2012) presented a
progressive method of village generation; it places
seeds iteratively following multiple criteria and cre-
ates roads given an input terrain, and each seed ex-
pands to a parcel. Instead of the L-system, Fernan-
des and Fernandes (2018) presented an alternative
approach to road layout generation inspired by an-
other plant generation algorithm, space colonization,
in which attraction points were used to expedite the
parameterization of a road layout.

Some researchers began to consider temporal
factors in rule-based approaches via simulation.
Vanegas et al. (2012b) proposed an algorithm that
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partitions a city block according to a simulation
progress along with parameter values; it starts with
the oriented bounding box of the block and sub-
divides the block iteratively based on the straight
skeleton of a generated polygon. Likewise, Beneš
et al. (2014) introduced a procedural method that
grows an urban layout over time by street expan-
sion and block subdivision with traffic and land-use
simulations; it contemplates the implications of wa-
ter transportation and neighboring cities. Besides
generation, Garcia-Dorado et al. (2014) devised a
traffic micro-simulation engine for procedural mod-
eling of a road network that considers travel time
and vehicle emissions, and Mathew et al. (2019) inte-
grated inverse procedural modeling with population
simulation to yield virtual urban environments with
walkability.

Although the works above contributes to layout
modeling, they are not to completely meet the crit-
ical challenge in procedural modeling (i.e., require-
ments for expertise and knowledge in the domain
from users for rule design and parameter configu-
ration). Machine learning has hence been used to
address this challenge. In the inverse procedural
method proposed by Vanegas et al. (2012a), user-
specified indicators about high-level design goals
drive the search for parameter values via a stochas-
tic optimization algorithm based on Markov chain
Monte Carlo (MCMC). It requires numerous state
changes in an iterative procedural system and leads
to huge computation against interactivity. There-
fore, the authors applied a multi-layer NN trained
on different ranges of parameter values and urban
scenarios to approximate the original search. This
method with machine learning brings a substantial
improvement in efficiency.

4.2 Example-based approaches

To circumvent the challenge in rule-based ap-
proaches, researchers analyzed real-world examples
for layout modeling. In particular, they focused on
characterizing existent data and reusing it for robust
synthesis. Yu and Steed (2012) proposed a road net-
work synthesis method that seeks the best real-world
counterpart regarding topological similarity at un-
finished nodes via neighborhood edge matching; it
ensures that the generated roads satisfy specific con-
straints, such as obstacle avoidance.

An example-based approach can collaborate

with a procedural model for realistic urban details.
Nishida et al. (2016a) introduced an interactive sys-
tem for urban road modeling; it specifies example
networks and extracts patches and statistical fea-
tures to drive procedural modeling without configur-
ing parameters.

Distinguished from the above works, a revolu-
tionary approach to road network generation pro-
posed by Hartmann et al. (2017) involves deep learn-
ing, GANs in particular. The authors trained GANs
on a set of rasterized real-world streets to synthesize
an image from input noise, and processed it into a
road network via a graph-based representation. It
avoids the extraction of example characteristics and
compliance with constraints, but is capable of gen-
erating structurally sound and visually reasonable
road networks.

4.3 Objective-based approaches

A significant concern of modeling tasks is to
ensure that results satisfy user-specified high-level
goals, which can be regarded as objectives. Conse-
quently, researchers solved layout modeling via opti-
mization according to the explicitly formulated ob-
jective functions. Such an objective function com-
prises multiple cost terms that address design goals
so as to drive the optimization, which edits an urban
layout iteratively considering specific constraints.

Yang et al. (2013) proposed a hierarchical split-
ting method for the generation of roads and parcels;
it includes a global optimization stage based on a
sparse linear system that improves the quality of lay-
outs regarding block regularity and road fairness, in
addition to a coarse-scale streamline-based splitting
and a fine-scale template-based splitting. Peng et al.
(2014) introduced a layout generation framework
based on domain tiling with deformable templates;
it focuses on accessibility and aesthetics via integer
programming, a deterministic linear optimization al-
gorithm. The authors extended it over the input’s
quad mesh and enabled the optimization algorithm
with respect to construction and travel costs (Peng
et al., 2016).

We failed to find an objective-based approach
to layout modeling with machine learning. In Sec-
tion 4.1, we discussed a method proposed by Vanegas
et al. (2012a) using machine learning to approximate
the procedural modeling parameters, which should
have been obtained via optimization, instead of the
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output layouts. The similar strategy of employ-
ing machine learning for approximation was found
in several objective-based approaches to other lay-
out generation problems. Merrell et al. (2010) pro-
posed an MCMC-based optimization method for res-
idential floorplan design; it exploits Bayesian net-
work, a supervised learning algorithm, towards se-
mantic structures in real-world examples; the trained
Bayesian network produces an architectural pro-
gram, which encodes a floorplan’s specification as
the input to the optimization that edits the floor-
plan regarding shape, floor, dimension, and accessi-
bility. Feng et al. (2016) introduced another MCMC-
based optimization method for mid-scale layout de-
sign (e.g., shopping malls and train stations); it re-
lies on RFs for the instant approximation of cost
terms concerning mobility, accessibility, and cozi-
ness, which should have been computed by crowd
simulation in a time-consuming manner.

5 Architectural modeling

The style of a virtual urban environment relates
predominantly to the architectural models that are
populated following layout modeling. An architec-
tural model is constituted by a 3D geometry for its
shape, and 2D textures for its facade (i.e., the front of
a building that faces a street or open space). Archi-
tectural modeling usually works with repeating pat-
terns observed in the real world. The mainstream ap-
proaches to architectural modeling are based on rules
or reconstructions in the area of computer graphics.

5.1 Rule-based approaches

Some early works (Wonka et al., 2003; Müller
et al., 2006) proved the popularity and strength
of rule-based approaches in architectural modeling
as that in layout modeling. Thereafter, Vanegas
et al. (2010) proposed a shape grammar that pro-
gressively produces architectural models from cali-
brated aerial images. Krecklau et al. (2010) pre-
sented a procedural modeling language, G2 (gener-
alized grammar), that generates architectural mod-
els with high descriptive power based on the con-
cepts of general-purpose programming languages.
Bao et al. (2013a) integrated heuristic search and
quadratic programming for grammar-based hierar-
chical segmentation and labeling that generate fa-
cades similar to given examples. The authors ex-

tended the approach with analysis of successful real-
world architectures so that it could characterize the
space of location variations and retain goodness (Bao
et al., 2013b). Besuievsky and Patow (2013) de-
vised a level-of-detail (LOD) user specification for
model reduction that helps procedural modeling of
architectures; it enables artists to create an archi-
tectural model without any programming rule. Wu
FZ et al. (2014) proposed an inverse method for
grammar extraction from a given layout via ap-
proximate dynamic programming; it is driven by
rule type and symbol sequence length. Ilčík et al.
(2015) introduced a facade generation method via
multiple overlapping layers that describe facade el-
ements with compact generator patterns; it solves
the interactivity problem due to the complexity of
facades in tree-based procedural approaches. Kelly
et al. (2015) proposed a guideline-based algorithm
that defines dimensioning lines for procedural mod-
els, which supports architectural modeling. Schwarz
and Müller (2015) presented a grammar language,
CGA++, that extended a previous work of CGA
(Müller et al., 2006); it aims at procedural model-
ing of architecture and overcomes several limitations,
such as the coordination of refinement decisions and
operations involving multiple shapes. Lienhard et al.
(2017) introduced a set of procedural rule-merging
algorithms for fine-grained variations for architec-
tural models.

An outstanding rule-based work with tradi-
tional unsupervised learning was proposed by Demir
et al. (2014), which converts an unlabeled 3D archi-
tectural model into a procedural representation via
similarity-based de-instancing and repetitive pattern
discovery; it performs a dissimilarity clustering of in-
put models using the k-means algorithm and deter-
mines the types of the hierarchical components.

Regarding the use of deep learning in rule-based
approaches, Nishida et al. (2016b) devised a proce-
dural architectural modeling method with two CNNs
that finds the best pre-defined grammar, snippet,
matching a user-input sketch with corresponding pa-
rameter values. More recently, Kelly et al. (2018)
proposed FrankenGAN, a GAN-based interactive
system that creates plausible details over procedu-
rally generated mass models at different scales and
produces consistent style distributions over buildings
and neighborhoods guided by exemplar images. In
an inverse procedural modeling system, Kim et al.
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(2020) employed GANs to create terrain and height
maps and CNNs to identify spatial properties of com-
ponent arrangements; the method can create a city
model that matches the style of an input street-view
image.

5.2 Reconstruction-based approaches

Nowadays, the acquisition of heterogeneous ur-
ban data costs much less since data collection devices
(e.g., laser scanners and RGB-D cameras) become
inexpensive. A very recent example is that Apple
equipped the latest model of its flagship tablet iPad
Pro with a LiDAR scanner (Aleotti et al., 2020).
This trend enables an alternative solution to archi-
tectural modeling via the reconstruction of shapes
and facades from images and point clouds.

Nan et al. (2010) introduced an interactive tool
that supports quick assembling of an architectural
model over a 3D point cloud from large-scale scan-
ning of an urban scene. Zheng et al. (2010) pro-
posed an urban scene reconstruction method with
non-local filtering by scanning LiDAR data repeat-
edly and completing the missing parts. Lafarge and
Mallet (2011) solved semantic architectural recon-
struction as non-convex energy minimization with
vegetation and complex grounds from unstructured
points. Shen et al. (2011) presented an adaptive fa-
cade partitioning method over LiDAR data; it out-
puts sub-facades that are described by various rec-
tilinear grids of patterns and can be merged follow-
ing their similarities for further operations. Ceylan
et al. (2012) presented an image-based framework
for architecture reconstruction; it uses the symme-
try priors from 3D input lines for edge detection.
The authors further proposed a regularity detection
method for calibrated urban facades using graph-
based optimization, which can also create 3D scenes
(Ceylan et al., 2014). AlHalawani et al. (2013) in-
troduced a method that extracts the representation
of factored facades based on repetitive patterns and
deformations at the level of windows; the output
encodings facilitate the interactive facade genera-
tion. Kuang et al. (2013) proposed an efficient struc-
ture to render detailed architectural models via non-
uniform grid-based subdivision of images and point
clouds. Zhang et al. (2013) devised a layered gen-
erative method that analyzes structures of irregular
facades and simplifies their representations. Dang
et al. (2015) presented an image-based facade-editing

framework that exploits topological jump and spatial
optimization for discrete and continuous modifica-
tions. Li ML et al. (2016) partitioned the point cloud
into a non-uniform grid to obtain well-aligned boxes
and then approximate an architectural geometry;
based on a novel Markov random field (MRF) for-
mulation, it supports multiple types of point clouds.
A recent work proposed by Smith et al. (2018) tar-
gets urban reconstruction from multi-view stereo
and addresses the challenge of automatic view and
path planning for aerial imaging based on unmanned
aerial vehicles; it is based on continuous optimization
using heuristics for multi-view stereo reconstruction
and enables quick generation of urban paths for large
scan areas.

The relationship between reconstruction and
computer vision tasks (i.e., semantic segmentation
and object recognition) enables the extensive partic-
ipation of machine learning. In the reconstruction-
based approaches to architectural modeling, unsu-
pervised learning algorithms contribute to prepro-
cessing of unlabeled raw data and diminishing the
difficulty of reconstruction, which is similar to a rule-
based approach proposed by Demir et al. (2014).
Musialski et al. (2012) introduced a coherence-based
facade-generation method that uses a hierarchical
agglomerative clustering algorithm for image split-
ting. Verdie et al. (2015) proposed an LOD method
that creates semantic architectural geometries and
performs an MRF clustering of super-facets from the
input mesh prior to reconstruction.

In comparison, supervised learning algorithms
are preferred upon the availability of labeled data.
Xiao et al. (2009) and Lin et al. (2013) exploited the
AdaBoost algorithm to classify image pixels and Li-
DAR data points for reconstructing street-side and
residential scenes. Guerrero et al. (2015) presented
a facade-generation method that learns and prop-
agates shape placements from user-given examples
using kernel regression. Nan et al. (2015) employed
linear regression to predict weights in template as-
sembly optimization, which reconstructs the shape
details of architectural models. Affara et al. (2016)
introduced SVMs trained on an urban image dataset
for the iterative update of priors, which guide the
detection of facade elements; the same problem was
solved by Kelly et al. (2017) via CNNs and the fusion
of heterogeneous data. In a recent survey, Newton
(2019) analyzed a variety of GAN-based methods
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about their contributions to the creation and design
of architectural models from specific styles.

6 Limitations and opportunities

Among the research articles in this review, we
observed that several of which resorted to unsuper-
vised learning algorithms instead of the preferred su-
pervised learning algorithms. It is likely due to the
shortage of meaningfully labeled urban data. Al-
though manual labeling consumes labor and causes
this situation, it could be assisted by task-specific
NNs, such as places-CNN (Zhou B et al., 2014), for
urban scene recognition. Hidden layers in such pre-
trained models can serve as labels for supervision
and features for clustering. Alternatively, people
may obtain labels from geo-tagged census data using
geo-spatial methods (Hu et al., 2015).

An urban modeling task is usually associated
with a huge solution space, especially when its solu-
tion depends on rules and objectives with non-linear
relationships and high-dimensional parameters. The
resulting complexity would increase the cost of com-
putation. Machine learning is believed to address
such a gap in various ways. For example, the de-
sign space of a procedural model can be downsized
to a lower-dimensional one using AEs (Yumer et al.,
2015); CNNs enable the efficient estimation of pa-
rameter values (Huang et al., 2017); the search space
of optimization shrinks if prior information (Merrell
et al., 2010) and initial arrangement (Vanegas et al.,
2012a) are provided via hierarchical machine learn-
ing algorithms.

Some early works attempted to solve urban
modeling problems with pre-defined behavioral data
(Vanegas et al., 2009) and high-level indicators
(Vanegas et al., 2012a). However, they were over-
simplified compared to the real-world complexity. In
the area of computer vision, we noticed that research
on urban perception (i.e., understanding the factors,
patterns, and mechanisms of urban areas) has in-
creased as well in recent years (Guo et al., 2017; Feng
et al., 2018; Goldblatt et al., 2018; Li HN et al., 2018).
This topic was expected to provide sophisticated and
in-depth information for urban modeling. Although
it is still hard to find articles that seamlessly inte-
grate both topics, we believe that such exploration
is worth further research attention.

7 Conclusions

The complexity of cities and the increasing
demand for urban-related purposes motivate re-
search in urban modeling regarding the effective-
ness and cost-efficiency. To face several challenges,
researchers have attempted different types of ap-
proaches to urban modeling, and discovered that,
for the implication of solution spaces, the use of ma-
chine learning could facilitate problem solving. We
reviewed 50 related research articles published be-
tween 2010 and 2019 in the area of computer graph-
ics with a focus on the participation of machine
learning. The approaches proposed in these articles
were briefly introduced and categorized by applica-
tion class. In addition, we discussed the observed
limitations, challenges, and corresponding opportu-
nities in urban modeling from a machine learning
perspective.
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