
Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725 1713

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Energy-efficient trajectory planning for a
multi-UAV-assistedmobile edge computing system∗

Pei-qiu HUANG1, Yong WANG‡1, Ke-zhi WANG2

1School of Automation, Central South University, Changsha 410083, China
2Department of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, UK

E-mail: pqhuang@csu.edu.cn; ywang@csu.edu.cn; kezhi.wang@northumbria.ac.uk

Received July 2, 2020; Revision accepted Sept. 9, 2020; Crosschecked Oct. 29, 2020

Abstract: We study a mobile edge computing system assisted by multiple unmanned aerial vehicles (UAVs), where
the UAVs act as edge servers to provide computing services for Internet of Things devices. Our goal is to minimize
the energy consumption of this system by planning the trajectories of UAVs. This problem is difficult to address
because when planning the trajectories, we need to consider not only the order of stop points (SPs), but also
their deployment (including the number and locations) and the association between UAVs and SPs. To tackle this
problem, we present an energy-efficient trajectory planning algorithm (TPA) which comprises three phases. In the
first phase, a differential evolution algorithm with a variable population size is adopted to update the number and
locations of SPs at the same time. In the second phase, the k-means clustering algorithm is employed to group the
given SPs into a set of clusters, where the number of clusters is equal to that of UAVs and each cluster contains
all SPs visited by the same UAV. In the third phase, to quickly generate the trajectories of UAVs, we propose a
low-complexity greedy method to construct the order of SPs in each cluster. Compared with other algorithms, the
effectiveness of TPA is verified on a set of instances at different scales.

Key words: Multiple unmanned aerial vehicles; Mobile edge computing; Trajectory planning; Differential
evolution; k-means clustering algorithm; Greedy method

https://doi.org/10.1631/FITEE.2000315 CLC number: TN929.5; TP301.6

1 Introduction

With the development of mobile communica-
tion technology and the popularization of Internet
of Things (IoT) devices, a considerable number of
resource-intensive applications are emerging, such as
face recognition, virtual reality, and online games
(Xu et al., 2018; Zhang J et al., 2019). Despite the
growing capabilities of IoT devices, their computing
and battery capacities remain insufficient due to

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61673397 and 61976225) and the Fundamental
Research Funds for the Central Universities of Central South
University, China (No. 2020zzts129)

ORCID: Pei-qiu HUANG, https://orcid.org/0000-0001-6278-
4566; Yong WANG, https://orcid.org/0000-0001-7670-3958
c© Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2020

physical size limitations. Therefore, it is a challenge
to execute resource-intensive tasks on IoT devices.

Mobile edge computing (MEC) is recognized as
a promising technology to address the above chal-
lenge. It provides computing services to IoT devices
by offloading tasks to edge servers at the edge of
the network (Jin et al., 2019; Wang KZ et al., 2019;
Huang PQ et al., 2020a). In this way, MEC can
reduce latency and energy consumption during task
execution. However, MEC still has some limitations.
For example, the locations of edge servers are usually
fixed and cannot be adjusted according to user re-
quirements. In addition, in large-scale natural disas-
ters, the existing terrestrial communication networks
could be destroyed, in which case it would be difficult
for MEC to provide timely services (Mozaffari et al.,

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.2000315&domain=pdf

1714 Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725

2019).
Unmanned aerial vehicles (UAVs), due to their

autonomy and flexibility, have been widely used in
various fields (Low et al., 2019; Zollars et al., 2019;
Zaini and Xie, 2020). Recently, some attempts have
been made to use UAVs to enhance the capabilities
of MEC systems. Zhang L et al. (2018) explored
the energy-aware dynamic resource allocation prob-
lem for a UAV-assisted MEC system over Internet
of vehicles. Du et al. (2019) optimized joint resource
and workflow scheduling in a UAV-enabled wirelessly
powered MEC system. Garg et al. (2018) investi-
gated the application of a UAV-empowered MEC
system in cyber-threat detection of smart vehicles.
In addition, to take full advantage of high mobility
of a UAV, some researchers have focused on trajec-
tory planning in UAV-assisted MEC systems. For in-
stance, Diao et al. (2019) optimized joint trajectory
and data allocation to minimize the energy consump-
tion. Jeong et al. (2018) studied bit allocation and
trajectory planning under latency and energy bud-
get constraints. Hu et al. (2019) developed a UAV-
assisted relaying and MEC system, where the UAV
can act as an MEC server or a relay, and then they
proposed a joint task scheduling and trajectory op-
timization algorithm to minimize the weighted sum
energy consumption of the system.

However, the above-mentioned studies consid-
ered only single-UAV-assisted MEC systems. In
fact, collaboration among multiple UAVs can im-
prove the capability of such systems (Chen J et al.,
2016). Therefore, some researchers have studied
multi-UAV-assisted MEC systems, where a group of
UAVs, rather than a single UAV, act as edge servers
to provide computing services for IoT devices (Li
et al., 2020; Zhang J et al., 2020). For example, Yang
et al. (2019) optimized the power consumption of a
multi-UAV-assisted MEC system by considering the
joint device association, power control, computing
capacity allocation, and location planning. Wang Y
et al. (2020) designed a two-layer optimization algo-
rithm for joint UAV deployment and task scheduling
in a multi-UAV-assisted MEC system. Chen WH
et al. (2019) investigated the quality of service in a
multi-UAV-assisted MEC system.

In this study, we investigate the trajectory
planning problem in a multi-UAV-assisted MEC
system. Compared with conventional trajectory
planning problems, e.g., traveling salesman problems

(Huang L et al., 2017) and vehicle routing problems
(Wang JH et al., 2016), the studied problem is more
challenging due to the fact that the deployment of
the stop points (SPs) of UAVs is unknown a priori.
In addition, different from trajectory planning prob-
lems in single-UAV-assisted MEC systems, in the
case of multiple UAVs, we need to consider the asso-
ciation between UAVs and SPs. That is, for a given
SP, we need to assign a specific UAV to visit it. The
main contributions of this paper are summarized as
follows:

1. A trajectory planning problem in a multi-
UAV-assisted MEC system is formulated with the
aim of minimizing the energy consumption of the
system by considering the deployment (including the
number and locations) of SPs, the association be-
tween UAVs and SPs, and the order of SPs.

2. An energy-efficient trajectory planning algo-
rithm, called trajectory planning algorithm (TPA), is
proposed to tackle the trajectory planning problem.
TPA consists of three phases. First, a differential
evolution (DE) algorithm with a variable population
is adopted to optimize the deployment of SPs. Sub-
sequently, the k-means clustering algorithm is used
to group the given SPs into several clusters, SPs in
each of which are associated with the same UAV to
be visited. Finally, a greedy method is proposed to
construct the order of SPs in each cluster.

3. Extensive experiments are carried out on a
set of instances with up to 200 IoT devices. The
experimental results demonstrate that TPA achieves
better performance compared with other algorithms.

2 System model and problem formula-
tion

As shown in Fig. 1, we consider a multi-UAV-
assisted MEC system involving n IoT devices (de-
noted as N = {1, 2, . . . , n}) andm rotary-wing UAVs
with edge servers (denoted as M = {1, 2, . . . ,m}).
In this system, each IoT device has a resource-
intensive task to be completed. For simplification,
the ith task (we refer to the task of the ith IoT device
as the ith task) is expressed as a two-tuple (Di, Si),
where Di and Si denote the size of the input data
of the ith task and the computing resource required
to complete a single bit in the ith task, respectively.
Due to the limited computing capacity, these tasks
are first offloaded to the MEC servers, and then their

Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725 1715

The first
IoT device

The second
IoT device

The third IoT device

The fourth
IoT device

The nth IoT
device

...

The first UAV The second UAV
The mth UAV...

Ɡ1 Ɡ2 Ɡm

Fig. 1 A multi-UAV-assisted MEC system involving
m rotary-wing UAVs and n IoT devices

results are returned to the IoT devices after the com-
putation is completed.

In this study, the UAVs can change their SPs to
reduce the distance from the IoT devices. We define
the set of SPs of the jth UAV as Kj = {1, 2, . . . , kj},
where kj is the number of SPs of the jth UAV and
it is unknown a priori. Moreover, the trajectory of
the jth UAV is represented as a sequence of SPs in
Kj : Gj = {(Xj1, Yj1), (Xj2, Yj2), . . . , (Xjkj , Yjkj)},
where (Xjl, Yjl) (l ∈ Kj) denotes the location of the
lth SP of the jth UAV. Like Huang PQ et al. (2020b)
and Wang Y et al. (2020), we assume that UAVs fly
at a fixed altitude H , and therefore we show only the
values on the x and y axes. In addition, all SPs in
Gj are visited by the jth UAV one by one, where the
first SP is visited first and the kthj SP is visited last.

We assume that the ith IoT device is located
at (xi, yi, 0). Therefore, the distance between the ith

IoT device and the jth UAV at the lth SP is expressed
as

dijl =
√
(xi −Xjl)2 + (yi − Yjl)2 +H2,

∀i ∈ N , j ∈ M, l ∈ Kj . (1)

To reduce the transmission time and energy con-
sumption, IoT devices always send their tasks to the
closest SP. We define variable aijl to represent the
association between the ith IoT device and the jth

UAV at the lth SP. Specifically, aijl = 1 if the ith

IoT device is served by the jth UAV at the lth SP,
and aijl = 0 otherwise. Thus, one can obtain

C1 : aijl =

⎧
⎨
⎩

1, if (j, l) = argmin
j∈M,l∈Kj

dijl,

0, otherwise.
(2)

Since each task cannot be further divided into

subtasks, the following constraint should be satisfied:

C2 :
m∑
j=1

kj∑
l=1

aijl = 1, ∀i ∈ N . (3)

Due to the bandwidth limitation, the jth UAV
at the lth SP can simultaneously serve at most M

IoT devices. Thus, one has

C3 :

n∑
i=1

aijl ≤ M, ∀j ∈ M, l ∈ Kj . (4)

Moreover, each UAV at each SP serves at least
one IoT device, and thus the total number of SPs of
all UAVs, denoted as k, should satisfy the following
constraint:

C4 : kmin ≤ k ≤ kmax, (5)

where k =
∑m

j=1 kj , kmin = � n

M
� (Here, �·� denotes

the rounding down operator), and kmax = n.
The transmission rate of the ith IoT device for

sending data to the jth UAV at the lth SP is expressed
as

rijl = Blog2

(
1 +

ptih0

σ2d2ijl

)
, ∀i ∈ N , j ∈ M, l ∈ Kj ,

(6)
where pti denotes the transmitting power of the ith

IoT device, h0 denotes the channel power gain at the
reference distance d0 = 1 m, σ2 denotes the white
Gaussian noise power, and B denotes the bandwidth.

The transmission time and energy consumption
of the ith IoT device for sending data to the jth UAV
at the lth SP are given by

T t
ijl =

Di

rijl
, ∀i ∈ N , j ∈ M, l ∈ Kj (7)

and

Et
ijl = ptiT

t
ijl =

ptiDi

rijl
, ∀i ∈ N , j ∈ M, l ∈ Kj . (8)

The whole energy consumption of all IoT devices
is expressed as (due to the fact that the size of the
output results is smaller than that of the input data
of the task, we omit the transmission time and energy
consumption of the output results)

EIoT =

n∑
i=1

m∑
j=1

kj∑
l=1

aijlE
t
ijl. (9)

1716 Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725

After receiving the input data, UAVs start to
execute the tasks. Given the computing resource
cijl, the computing time of the ith task on the jth

UAV at the lth SP can be obtained by

T c
ijl =

DiSi

cijl
, ∀i ∈ N , j ∈ M, l ∈ Kj . (10)

In fact, the jth UAV will not move to the next SP
until all tasks sent to the lth SP have been completed.
Therefore, the hovering time of the jth UAV at the
lth SP is equal to the maximum execution time of
all tasks (i.e., the sum of the transmission time and
computing time), which is given by

T h
jl = max

i∈N
{aijl(T t

ijl + T c
ijl)}, ∀j ∈ M, l ∈ Kj . (11)

Then, the hovering energy consumption of the
jth UAV is given by

Eh
j =

kj∑
l=1

phT h
jl, ∀j ∈ M, (12)

where ph is the hovering power of the UAV.
Furthermore, given the trajectory of the jth

UAV (i.e., Gj), the flight time and energy consump-
tion are expressed as

T f
j =

1

v

kj∑
l=2

√
(Xjl −Xj(l−1))2 + (Yjl − Yj(l−1))2

(13)
and

Ef
j = pfT f

j , (14)

where ∀j ∈ M, v is the flight speed of the UAV, and
pf is the flight power of the UAV.

The whole energy consumption of all UAVs con-
sists of the hovering energy consumption and flight
energy consumption (compared with the hovering
energy consumption and flight energy consumption
of UAVs, the computing energy consumption of the
UAVs is smaller (Wang L et al., 2019); thus, we omit
the computing energy consumption of UAVs), which
can be expressed as

EUAV =

m∑
j=1

(
Eh

j + Ef
j

)
. (15)

In this study, we aim to optimize the trajectories
of UAVs (i.e., G1,G2, . . . ,Gm) to minimize the energy
consumption of the system consisting of UAVs and

IoT devices. Thus, the problem can be formulated
as

min
G1,G2,...,Gm

(EUAV + αEIoT)

s.t. C1 : aijl ∈ {0, 1}, ∀i ∈ N , j ∈ M, l ∈ Kj ,

C2 :

m∑
j=1

kj∑
l=1

aijl = 1, ∀i ∈ N ,

C3 :

n∑
i=1

aijl ≤ M, ∀j ∈ M, l ∈ Kj ,

C4 : kmin ≤ k ≤ kmax,

C5 : Xmin ≤ Xjl ≤ Xmax, ∀j ∈ M, l ∈ Kj ,

C6 : Ymin ≤ Yjl ≤ Ymax, ∀j ∈ M, l ∈ Kj ,
(16)

where α ≥ 0 is the weight parameter between the
energy consumption of UAVs and IoT devices, Xmin

and Xmax are the lower and upper bounds of Xjl,
respectively, and Ymin and Ymax are the lower and
upper bounds of Yjl, respectively.

3 The proposed approach

3.1 Framework of the proposed approach

By analyzing problem (16), there are two chal-
lenges that need to be considered:

1. To address problem (16), we need to know
how many SPs are suitable and where they are lo-
cated, which UAV is assigned to visit the given SP,
and how to visit SPs in turn for each UAV. There-
fore, problem (16) can be decomposed into three
sub-problems: the deployment (including the num-
ber and locations) of SPs, the association between
UAVs and SPs, and the order of SPs. However, the
deployment of SPs, the association between UAVs
and SPs, and the order of SPs are coupled with each
other. Specifically, the association between UAVs
and SPs can be determined only after the deploy-
ment of SPs is obtained. Moreover, the order of SPs
can be constructed only after the association between
UAVs and SPs is determined. Therefore, if they are
optimized at the same time, it may lead to a poor
performance.

2. Since the number of SPs is unknown when
optimizing their deployment, the gradient infor-
mation is not available. As a result, traditional
gradient-based methods cannot optimize the deploy-
ment of SPs. As a class of gradient-free optimization

Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725 1717

methods, evolutionary algorithms (EAs) have po-
tential to optimize the deployment of SPs (Zhang
J et al., 2019). However, in EAs, each individual
typically represents an entire deployment. Due to
the fact that the number of SPs is unknown a priori,
the length of the individual is not fixed. However,
the commonly used crossover and mutation opera-
tors are designed for fixed-length individuals (Ry-
erkerk et al., 2019). Therefore, using conventional
EAs directly would be ineffective in optiming the
deployment of SPs.

To this end, we propose a trajectory planning
algorithm, called TPA, which has the following tech-
nical advantages:

1. Considering the strong coupling among the
deployment of SPs, the association between UAVs
and SPs, and the order of SPs, TPA plans the trajec-
tories of UAVs at each iteration through three phases:
update of the deployment of SPs, generation of the
association between UAVs and SPs, and construction
of the order of SPs.

2. As shown in Fig. 2, in TPA, each individual
represents the location of an SP; thus, the population
represents a whole deployment, rather than a set of
deployments. Since the lengths of individuals are the
same (i.e., two), we can directly adopt the commonly
used crossover and mutation operators to update the
deployment of SPs.

A population
(locations of all SPs)

An individual
(location of an SP)

X2

...

Xk Yk

Y2

X1 Y1

Fig. 2 Encoding mechanism used in this study

The framework of TPA is presented in Al-
gorithm 1. In the initialization, locations of
SPs of all UAVs are produced randomly, forming
an initial population P = {(X1, Y1), (X2, Y2), . . . ,

(Xkmax , Ykmax)} (line 3). Subsequently, the associ-
ation between UAVs and SPs in P is determined us-
ing the k-means clustering algorithm (which will be
described later), and the order of SPs for each UAV
is constructed using the greedy method (which will
be described later). After that, P is evaluated via
Eq. (16) (line 6). If P is feasible, the initialization is
produced successfully; otherwise, it is repeated un-
til P is feasible or the number of fitness evaluations

Algorithm 1 Framework of trajectory planning
algorithm
1: FEs=0
2: repeat
3: Produce randomly an initial population P
4: Determine the association between UAVs and SPs

in P via the k-means clustering algorithm
5: Construct the order of SPs of each UAV via the

greedy method
6: Evaluate P via Eq. (16)
7: FEs=FEs+1
8: until P is feasible or FEs≥MaxFEs
9: while FEs<MaxFEs do

10: Produce an offspring population Q via “DE/rand/
1” and the binomial operator of DE

11: for i = 1 : |Q| do
12: Construct three new populations P1, P2, and

P3 via Algorithm 2
13: for l = 1 : 3 do
14: Determine the association between SPs in Pl

and UAVs via the k-means clustering
algorithm

15: Construct the order of SPs of each UAV via
the greedy method

16: end for
17: Evaluate P1, P2, and P3 via Eq. (16)
18: FEs=FEs+3
19: if at least one feasible population exists among

P1, P2, and P3 then
20: Update P by the feasible population among

P1, P2, and P3 with the greatest perfor-
mance improvement against P

21: end if
22: end for
23: end while

(FEs) is not smaller than MaxFEs, where MaxFEs

denotes the maximum number of FEs. During the
evolution, an offspring population Q is first produced
via “DE/rand/1” and the binomial operator of DE
(line 10). Subsequently, three new populations P1,
P2, and P3 are constructed (line 12) via Algorithm 2.
Then, SPs in P1, P2, and P3 are associated with
UAVs (line 14) via the k-means clustering algorithm
in Algorithm 3, and the order of SPs for each UAV
is constructed (line 15) via the greedy algorithm in
Algorithm 4. Afterward, we evaluate P1, P2, and P3

via Eq. (16) (line 17). Finally, the feasible popula-
tion among P1, P2, and P3 with the greatest perfor-
mance improvement against P is used to replace P
if at least one feasible population exists among P1,
P2, and P3 (lines 19–21). The evolution continues

1718 Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725

until FEs≥MaxFEs. Fig. 3 illustrates the framework
of TPA.

Algorithm 2 Generation of three new populations
1: P1 ← Insert the ith individual in Q to P
2: P2 ← Replace a random individual in P by the ith

individual in Q
3: P3 ← Delete a random individual in P

Algorithm 3 k-means clustering algorithm for the
clustering of SPs
1: Initialize Cj = ∅ (∀j ∈M)

2: Randomly select an SP for each cluster
3: repeat
4: for i = 1 : k do
5: for j = 1 : m do
6: Calculate the distance dij from the ith SP to

the center of all SPs in the jth cluster
7: end for
8: j′ = argminj∈M dij
9: Add the ith SP into Cj′

10: end for
11: until the center of SPs in each cluster is no longer

changed
12: Associate the jth UAV with SPs in Cj (∀j ∈M)

Algorithm 4 Greedy method for constructing the
order of SPs
1: for j = 1 : m do
2: Select the location of a random SP from Cj as the

current SP of the jth UAV
3: for l = 1 : kj do
4: Move the current SP from Cj into Gj
5: Calculate the distances from the current SP to

all SPs in Cj
6: Find the closest SP from the current SP as the

new current SP
7: end for
8: end for
9: Output Gj (j ∈ M)

3.2 Update of the deployment of SPs

Updating the deployment of SPs consists of two
parts: the locations and the number of SPs. In TPA,
DE (Storn and Price, 1997) is used to update the
locations of SPs. The reason is that DE is a simple
and effective EA and has been successfully applied
in many fields (Xin et al., 2012; Wang BC et al.,

2018). Specifically, we first use “DE/rand/1” and
the binomial operator (Wang Y et al., 2011) of DE to
produce an offspring population Q consisting of the
locations of new SPs, and then adopt the individuals
in Q to update P . In this way, the locations of SPs
can be updated.

Since the location of each SP is treated as an in-
dividual in DE, the whole population represents the
locations of all SPs. Therefore, the population size
is equal to the number of SPs. To update the num-
ber of SPs, the population size should be variable
during the evolution. In other words, the population
size can be increased, kept unchanged, or reduced.
As a result, we first construct three populations of
different sizes via Algorithm 2. Specifically, for the
ith individual in Q, a new population P1 is con-
structed by incorporating it into P and another new
population P2 is constructed by using it to replace a
random individual in P . In addition, the third new
population P3 is constructed by removing a random
individual from P . It is clear that the population
sizes of P1, P2, and P3 are larger than, the same
as, and smaller than that of P , respectively. There-
fore, when P1, P2, or P3 is selected to update P , the
population size will be increased, kept unchanged,
or reduced, respectively. In this way, the number of
SPs can be updated.

3.3 Generation of the association between
UAVs and SPs

After generating a new population, we need to
determine the association between UAVs and SPs.
That is, these SPs are assigned to UAVs to be visited.
In this study, the k-means clustering algorithm (Jain,
2010) is used to group SPs into m clusters, where SPs
in each cluster are visited by the same UAV. The loss
function of the k-means clustering algorithm is given
as

min
Cj ,j∈M

∑
j∈M

∑
(Xl,Yl)∈Cj

√
(Xl − X̂j)2 + (Yl − Ŷj)2,

(17)

where X̂j =
1

|Cj |
∑

(Xl,Yl)∈Cj
Xl and Ŷj =

1

|Cj|
∑

(Xl,Yl)∈Cj
Yl.

From function (17), we can find that the k-
means clustering algorithm can group the closely
spaced SPs into the same cluster. Since SPs in the
same cluster are visited by the same UAV, the flying

Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725 1719

Update P

X2

...

Xk Yk

Y2

X1 Y1

X2

...

Xk Yk

Y2

X1 Y1

X2

...

Xk Yk

Y2

X1 Y1

Xi

...

Xk Yk

Yi

X1 Y1

...

Xk Yk

X1 Y1

Xi Yi

k-means
algorithm

Greedy
method

Generate three new populations

DE

k-means
algorithm

Greedy
method

k-means
algorithm

Greedy
method

k-means
algorithm

Greedy
method

P

C2

Gm

G2

C1 G1

Cm

C2

Gm

G2

C1 G1

Cm

C2

Gm

G2

C1 G1

Cm

C2

Gm

G2

C1 G1

Cm

Q

P1 P2 P3
......

... ...

Fig. 3 Overall framework of trajectory planning algorithm

distance of the UAVs can be reduced, thereby reduc-
ing energy consumption in the system.

Algorithm 3 presents the procedure for the k-
means clustering algorithm for the association be-
tween UAVs and SPs. First, we initialize m clusters
Cj = ∅ (∀j ∈ M), and then randomly select an SP
for each cluster (lines 1 and 2). Afterward, we calcu-
late the distance from each SP to the center of SPs in
each cluster and add the SP into the nearest cluster
(lines 4–10). The above procedure is repeated until
the center of SPs in each cluster is no longer changed.
Finally, all SPs in Cj (∀j ∈ M) are associated with
the jth UAV.

3.4 Construction of the order of SPs

In this subsection, we construct the order of
SPs for each UAV to minimize the flying distance of
UAVs. In fact, this problem is essentially a traveling
salesman problem. Although classical mathemati-
cal programming methods (such as the branch and
bound algorithm) and the population-based methods
(such as the ant colony algorithm and genetic algo-
rithm (GA)) have been successfully adopted to ad-
dress traveling salesman problems, they suffer from
high computational time complexity. To this end,
we propose a low-complexity greedy method for con-
structing the order of SPs.

As shown in Algorithm 4, for the first UAV, we
select a random SP from C1 as the current SP (line 2).

Subsequently, the current SP is moved from C1 into
G1 (line 4). The distances from the current SP to
all SPs in C1 are then calculated, and the closest SP
from the current SP is chosen as the new current SP
(lines 5 and 6). The above procedure is repeated until
C1 is empty. As a result, the trajectory of the first
UAV (i.e., G1) is generated. The remaining UAVs
experience the above process one by one.

Remark 1 In the existing studies on trajectory
planning problems in multi-UAV-assisted MEC sys-
tems (Li et al., 2020; Zhang J et al., 2020), it is
assumed that all UAVs have the same working time.
In addition, the working time is divided into a series
of time slots in a discretized manner, and then the
SP of each UAV is determined for each time slot. In
this case, all UAVs have the same number of SPs.
However, we do not assume that all UAVs have the
same working time and the same number of SPs.

4 Experimental study

The parameter settings of the studied multi-
UAV-assisted MEC system are summarized as fol-
lows: We assume that the IoT devices were dis-
tributed randomly in a 1000 m×1000 m square re-
gion; there were four UAVs flying at a height of 200 m
at a speed of 20 m/s; Di (i ∈ N) was distributed
randomly in [1, 103] MB; Si (i ∈ N) was set to
100 cycles/bit; cijl (i ∈ N , j ∈ M, l ∈ Kj) was set

1720 Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725

to 10 GHz; M was set to five; pti was set to 0.1 W;
ph and pf were set to 1000 W. In addition, σ2 was
set to −174 dBm; h0 was set to −30 dB; B was
set to 1 MHz; α was set to 10 000. In this study,
we adopted eight instances with different numbers
of IoT devices to evaluate the performance of TPA:
n = 60, 80, 100, 120, 140, 160, 180, 200. The parame-
ters of TPA were set as follows: F = 0.6, CR=0.5,
andMaxFEs = 50 000. Each algorithm was executed
independently 20 runs for each instance. Moreover,
to test the statistical significance between TPA and
each competitor, the Wilcoxon rank-sum test at a
0.05 significance level was conducted. In the ex-
perimental results, “↑,” “≈,” and “↓” represent that
TPA performed significantly better than, equivalent
to, and worse than its competitor, respectively. We
implemented all the experiments in MATLAB and
tested them on a personal computer running with
an Intel Core i5-7500 CPU @3.40 GHz and 8 GB of
RAM.

4.1 Effectiveness of the deployment of SPs

TPA adopts DE with a variable population to
update the deployment of SPs. To verify the ef-
fectiveness of the deployment of SPs, we replace
DE used in TPA with three algorithms separately,
VLGA (Ting et al., 2009), JGGA (Chan et al.,
2007), and DEEM (Wang Y et al., 2018), resulting
in three new algorithms: TPA-VLGA, TPA-JGGA,
and TPA-DEEM. In VLGA, the uniform and cut-
and-splice crossover operators are used to produce
variable-length individuals. JGGA employs continu-
ous auxiliary variables ranging from 0 to 1 to control
the expression of the locations of SPs. If the auxil-
iary variable is larger than 0.5, the corresponding SP

is used; otherwise, it is not used. DEEM develops
an encoding mechanism similar to that used in this
study, but it needs to set the number of SPs in ad-
vance. In this study, we preset the number of SPs in
DEEM to a random value in [kmin, kmax].

Table 1 presents the experimental results of
TPA and three comparators regarding the average
and standard deviation of energy consumption (EC)
over 20 runs. The statistical test results between
TPA and each of the three competitors are summa-
rized at the bottom of Table 1. Note that, if not
all the IoT devices are served in one run, the run
was considered to be infeasible. In this case, we give
only the feasibility rate in Table 1. It is clear that
TPA-VLGA, TPA-JGGA, and TPA can achieve a
100% feasibility rate on each instance. However,
TPA shows better performance than TPA-VLGA
and TPA-JGGA on each instance in terms of the
average EC. As for DEEM, it cannot achieve a 100%

feasibility rate on any instance. In addition, TPA is
significantly better than each of the three competi-
tors on all instances. Fig. 4 shows the evolution of the
average EC of TPA-VLGA, TPA-JGGA, and TPA
when n = 160, 180, and 200. Since TPA-DEEM can-
not achieve a 100% feasibility rate on these instances,
the evolution of the average EC of TPA-DEEM is
not presented. It can be seen that TPA provides
the best performance in all algorithms. Moreover,
we present the average running time of TPA-VLGA,
TPA-JGGA, and TPA on each instance in Fig. 5.
Although the difference among the average running
time of TPA-VLGA, TPA-JGGA, and TPA is small,
it can still be found that TPA-VLGA on three in-
stances, TPA-JGGA on one instance, and TPA on
four instances require less running time.

Table 1 Experimental results of TPA-VLGA, TPA-JGGA, TPA-DEEM, and TPA in terms of average energy
consumption (EC) (J) over 20 runs

n
Mean (standard deviation) Feasibility rate

TPA-VLGA TPA-JGGA TPA TPA-DEEM

60 1.57e + 6 (2.33e + 4) ↑ 1.53e + 6 (2.47e + 4) ↑ 1.40e + 6 (2.03e + 4) 90% ↑
80 2.36e + 6 (4.20e + 4) ↑ 2.22e + 6 (2.33e + 4) ↑ 2.06e + 6 (2.68e + 4) 95% ↑
100 3.07e + 6 (3.41e + 4) ↑ 2.94e + 6 (2.79e + 4) ↑ 2.68e + 6 (3.73e + 4) 90% ↑
120 3.28e + 6 (3.54e + 4) ↑ 3.12e + 6 (2.74e + 4) ↑ 2.82e + 6 (6.29e + 4) 80% ↑
140 4.31e + 6 (4.39e + 4) ↑ 4.09e + 6 (3.59e + 4) ↑ 3.71e + 6 (3.03e + 4) 70% ↑
160 5.03e + 6 (6.89e + 4) ↑ 4.77e + 6 (2.59e + 4) ↑ 4.21e + 6 (5.21e + 4) 75% ↑
180 5.63e + 6 (6.06e + 4) ↑ 5.39e + 6 (3.87e + 4) ↑ 4.83e + 6 (4.17e + 4) 85% ↑
200 6.27e + 6 (1.00e + 5) ↑ 6.07e + 6 (3.86e + 4) ↑ 5.35e + 6 (4.20e + 4) 80% ↑

↑ / ↓ / ≈ 7/0/0 7/0/0 7/0/0

Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725 1721
Av

er
ag

e
EC

 (×
10

6
J)

FEs (×104)
0 1 2 3 4 5

6.0

5.5

5.0

4.5

4.0

TPA
TPA-JGGA
TPA-VLGA(a)

Av
er

ag
e

EC
 (×

10
6
J)

FEs (×104)
0 1 2 3 4 5

6.5

6.0

5.5

5.0

4.5

TPA
TPA-JGGA
TPA-VLGA(b)

Av
er

ag
e

EC
 (×

10
6
J)

FEs (×104)
0 1 2 3 4 5

7.5

7.0

6.5

6.0

5.0

TPA
TPA-JGGA
TPA-VLGA

5.5

(c)

Fig. 4 Evolution of the average energy consumption
(EC) obtained by TPA-VLGA, TPA-JGGA, and TPA
on three instances: (a) n = 160; (b) n = 180; (c)
n = 200

References to color refer to the online version of this figure

Av
er

ag
e

ru
nn

in
g

tim
e

(s
)

n
60 80 100 120 160 180

90

60

30

0

TPA
TPA-JGGA
TPA-VLGA

200140

Fig. 5 Average running time of TPA-VLGA, TPA-
JGGA, and TPA on each instance

References to color refer to the online version of this figure

The above-mentioned phenomenon is attributed
mainly to the following reason: Due to the different
lengths of individuals, TPA-VLGA searches for the
optimal deployment of SPs in a variable-dimensional
space, which may cause a confused search. Although
individuals in TPA-JGGA are of the same length,
the introduction of auxiliary variables leads to an
increase in the length of the individuals, thus en-
countering the curse of dimensionality, especially in
large-scale instances. Since the number of SPs needs
to be set in advance, TPA-DEEM cannot update
the number of SPs during evolution. Note that an
inappropriate number of SPs may result in not all
IoT devices being served. Since TPA can simultane-
ously update the number and locations of SPs and
the lengths of individuals are the same and are low,
it can achieve a better performance.

4.2 Effectiveness of the association between
UAVs and SPs

To verify the effectiveness of the association be-
tween UAVs and SPs, we develop a variant of TPA
without the k-means clustering algorithm, called
TPA-WoK, in which the UAVs are randomly asso-
ciated with SPs. Table 2 presents the average and
standard deviation of EC over 20 runs, as well as the
statistical results between TPA and TPA-WoK. It
is clear that TPA outperforms TPA-WoK on all in-
stances in terms of the average EC. In addition, TPA
presents significantly better statistical test results on
all instances. The reason is given as follows: From
Figs. 6a and 6b, we can observe that TPA can asso-
ciate the closely spaced SPs with the same UAV, but
TPA-WoK cannot. Therefore, TPA can reduce the
flight distance of UAVs to lower the energy consump-
tion of the system, which verifies the effectiveness of
the association between UAVs and SPs.

4.3 Effectiveness of the order of SPs

In this subsection, we investigate the effective-
ness of the order of SPs by comparing TPA with two
variants, called TPA-RAN and TPA-GA. TPA-RAN
randomly generates the order of SPs, while TPA-GA
employs GA to optimize the order of SPs. Note that
in TPA-GA, a population of 10 individuals is used to
search for the optimal trajectory for each UAV and
the maximum number of iterations is set to 50. Ta-
ble 2 presents the experimental results of TPA-RAN,

1722 Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725

TPA-GA, and TPA. It is clear that TPA performs
better than TPA-RAN and TPA-GA. To further val-
idate the effectiveness of the order of SPs, we present
the trajectories of UAVs obtained by TPA-RAN and
TPA-GA in Figs. 6c and 6d. Compared with TPA,
TPA-RAN and TPA-GA obtain longer flight trajec-

tories, resulting in higher energy consumption. The
above experimental results verify the effectiveness of
the order of SPs. The poor performance of TPA-
GA could appear confusing. It is explained as fol-
lows: As shown in Fig. 7, the average running time
of TPA-GA is longer than that of TPA due to the

Table 2 Experimental results of TPA-WoK, TPA-RAN, TPA-GA, and TPA in terms of average energy
consumption (EC) (J) over 20 runs

n
Mean (standard deviation)

TPA-WoK TPA-RAN TPA-GA TPA

60 1.60e + 6 (5.74e + 4) ↑ 1.56e + 6 (1.97e + 5) ↑ 1.43e + 6 (5.87e + 4) ↑ 1.40e + 6 (2.03e + 4)

80 2.29e + 6 (6.89e + 4) ↑ 2.48e + 6 (3.14e + 5) ↑ 2.27e + 6 (3.14e + 4) ↑ 2.06e + 6 (2.68e + 4)

100 2.99e + 6 (4.88e + 4) ↑ 3.63e + 6 (4.02e + 5) ↑ 3.18e + 6 (1.72e + 5) ↑ 2.68e + 6 (3.73e + 4)

120 3.15e + 6 (5.29e + 4) ↑ 4.33e + 6 (1.71e + 5) ↑ 3.71e + 6 (1.96e + 5) ↑ 2.82e + 6 (6.29e + 4)

140 4.06e + 6 (4.88e + 4) ↑ 5.51e + 6 (2.29e + 5) ↑ 4.90e + 6 (1.24e + 5) ↑ 3.71e + 6 (3.03e + 4)

160 4.66e + 6 (6.71e + 4) ↑ 6.61e + 6 (1.83e + 5) ↑ 5.94e + 6 (1.05e + 5) ↑ 4.21e + 6 (5.21e + 4)

180 5.22e + 6 (6.71e + 4) ↑ 7.60e + 6 (1.45e + 5) ↑ 6.69e + 6 (1.07e + 5) ↑ 4.83e + 6 (4.17e + 4)

200 5.85e + 6 (8.88e + 4) ↑ 8.51e + 6 (2.38e + 5) ↑ 7.72e + 6 (2.62e + 5) ↑ 5.35e + 6 (4.20e + 4)

↑ / ↓ / ≈ 7/0/0 7/0/0 7/0/0

0 500 1000
X (m)

0

500

1000

Y
 (m

)

0 500 1000
X (m)

0

500

1000

Y
 (m

)

0 500 1000
X (m)

0

500

1000

Y
 (m

)

0 500 1000
X (m)

0

500

1000

Y
 (m

)

(a)

(c)

(b)

(d)

Fig. 6 Trajectories of UAVs obtained by TPA (a), TPA-WoK (b), TPA-RAN (c), and TPA-GA (d) when
n = 200

Red, green, blue, and black lines indicate trajectories G1, G2, G3, and G4, respectively. References to color refer to the online
version of this figure

Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725 1723

fact that GA usually requires more fitness evalua-
tions than the greedy method. As a result, under
the given time budget, TPA-GA is likely to perform
worse than TPA.

Av
er

ag
e

ru
nn

in
g

tim
e

(s
)

1500

1000

500

0

TPA
TPA-GA

n
60 80 100 120 160 180 200140

Fig. 7 Average running time of TPA-GA and TPA on
each instance

References to color refer to the online version of this figure

4.4 Discussions

4.4.1 Effect of the initial population size

In this study, we set the initial population size of
TPA to kmax. One might be interested in the effect
of the initial population size on the performance of
TPA. Therefore, in this subsection, the initial popu-
lation size is set to a random number in [kmin, kmax].
The resulting variant is named TPA-RPS. As shown
in Table 3, there is no significant performance
difference between TPA and TPA-RPS, which means
that the performance of TPA is not sensitive to the
initial population size. The reason is that TPA can
update the population size adaptively.

Table 3 Experimental results of TPA-RPS and TPA
in terms of average EC (J) over 20 runs

n
Mean (standard deviation)

TPA-RPS TPA

60 1.41e + 6 (1.73e + 4) ≈ 1.40e + 6 (2.03e + 4)

80 2.06e + 6 (3.19e + 4) ≈ 2.06e + 6 (2.68e + 4)

100 2.68e + 6 (5.29e + 4) ≈ 2.68e + 6 (3.73e + 4)

120 2.81e + 6 (3.17e + 4) ≈ 2.82e + 6 (6.29e + 4)

140 3.70e + 6 (4.06e + 4) ≈ 3.71e + 6 (3.03e + 4)

160 4.24e + 6 (5.27e + 4) ≈ 4.21e + 6 (5.21e + 4)

180 4.84e + 6 (5.37e + 4) ≈ 4.83e + 6 (4.17e + 4)

200 5.36e + 6 (5.59e + 4) ≈ 5.35e + 6 (4.20e + 4)

↑ / ↓ / ≈ 0/0/7

4.4.2 Effect of the updating strategy

To investigate the effect of the updating strat-
egy, we test TPA with three different strategies.
Specifically, in each updating, at most one, three,
and five individuals in the three new populations are
different from P . As shown in Table 4, the strat-
egy that can update at most one individual in each
updating can provide the best performance among
the three compared strategies. The above compari-
son shows that a dramatic change in population size
may lead to a poor performance. Therefore, TPA
updates at most one individual in each update.

5 Conclusions

In this study, a multi-UAV-assisted mobile edge
computing system was studied. To reduce the energy
consumption of the system, a trajectory planning
problem was formulated, containing three coupled
sub-problems: the deployment of stop points (SPs),
the association between UAVs and SPs, and the or-
der of SPs. To solve the trajectory planning prob-
lem, we proposed a three-phase trajectory planning
algorithm, called TPA. First, differential evolution
with a variable population was used for the deploy-
ment of SPs, which can simultaneously update the
number and locations of SPs. Subsequently, the k-
means clustering algorithm was employed to cluster
SPs into a set of subsets with the aim of associating
the closely spaced SPs with the same UAV. More-
over, to reduce the flight distances of UAVs, we de-
signed a greedy method that can quickly construct
the order of SPs visited by UAVs. The experimen-
tal results showed that on a set of instances at dif-
ferent scales, TPA can save much energy compared
with other algorithms. Therefore, TPA can achieve
energy-efficient trajectory planning. However, we
need to preset the number of clusters (i.e., the num-
ber of UAVs) in the k-means clustering algorithm.
As a result, TPA cannot solve the trajectory plan-
ning problem for a mobile edge computing system
assisted by a variable number of UAVs. In the fu-
ture, we will try to use the clustering algorithm that
does not require a preset number of clusters to solve
such a trajectory planning problem.

Contributors
Pei-qiu HUANG and Ke-zhi WANG conceived the idea

1724 Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725

Table 4 Experimental results of TPA with three different updating strategies

n
Mean (standard deviation)

Five individuals Three individuals One individual

60 1.52e + 6 (4.74e + 4) ↑ 1.50e + 6 (3.63e + 4) ↑ 1.40e + 6 (2.03e + 4)

80 2.22e + 6 (3.74e + 4) ↑ 2.15e + 6 (4.62e + 4) ↑ 2.06e + 6 (2.68e + 4)

100 2.84e + 6 (7.20e + 4) ↑ 2.78e + 6 (5.87e + 4) ↑ 2.68e + 6 (3.73e + 4)

120 3.01e + 6 (6.73e + 4) ↑ 2.92e + 6 (7.72e + 4) ↑ 2.82e + 6 (6.29e + 4)

140 3.95e + 6 (9.34e + 4) ↑ 3.81e + 6 (7.16e + 4) ↑ 3.71e + 6 (3.03e + 4)

160 4.44e + 6 (1.03e + 5) ↑ 4.42e + 6 (8.35e + 4) ↑ 4.21e + 6 (5.21e + 4)

180 5.08e + 6 (1.10e + 5) ↑ 4.95e + 6 (1.05e + 5) ↑ 4.83e + 6 (4.17e + 4)

200 5.75e + 6 (1.52e + 5) ↑ 5.53e + 6 (1.36e + 5) ↑ 5.35e + 6 (4.20e + 4)

↑ / ↓ / ≈ 7/0/0 7/0/0

of this study. Yong WANG guided the research and refined

the idea. Pei-qiu HUANG performed the research and drafted

the manuscript. Ke-zhi WANG discussed the results. Pei-qiu

HUANG and Yong WANG revised and finalized the paper.

Compliance with ethics guidelines
Pei-qiu HUANG, Yong WANG, and Ke-zhi WANG de-

clare that they have no conflict of interest.

References
Chan TM, Man KF, Tang KS, et al., 2007. A jumping-genes

paradigm for optimizing factory WLAN network. IEEE
Trans Ind Inform, 3(1):33-43.
https://doi.org/10.1109/TII.2006.890528

Chen J, Zhang X, Xin B, et al., 2016. Coordination be-
tween unmanned aerial and ground vehicles: a taxon-
omy and optimization perspective. IEEE Trans Cybern,
46(4):959-972.
https://doi.org/10.1109/TCYB.2015.2418337

Chen WH, Liu BC, Huang HW, et al., 2019. When UAV
swarm meets edge-cloud computing: the QoS perspec-
tive. IEEE Netw, 33(2):36-43.
https://doi.org/10.1109/MNET.2019.1800222

Diao XH, Zheng JC, Cai YM, et al., 2019. Fair data alloca-
tion and trajectory optimization for UAV-assisted mo-
bile edge computing. IEEE Commun Lett, 23(12):2357-
2361. https://doi.org/10.1109/LCOMM.2019.2943461

Du Y, Yang K, Wang KZ, et al., 2019. Joint resources and
workflow scheduling in UAV-enabled wirelessly-powered
MEC for IoT systems. IEEE Trans Veh Technol,
68(10):10187-10200.
https://doi.org/10.1109/TVT.2019.2935877

Garg S, Singh A, Batra S, et al., 2018. UAV-empowered
edge computing environment for cyber-threat detection
in smart vehicles. IEEE Netw, 32(3):42-51.
https://doi.org/10.1109/MNET.2018.1700286

Hu XY, Wong KK, Yang K, et al., 2019. UAV-assisted relay-
ing and edge computing: scheduling and trajectory op-
timization. IEEE Trans Wirel Commun, 18(10):4738-
4752. https://doi.org/10.1109/TWC.2019.2928539

Huang L, Wang GC, Bai T, et al., 2017. An improved
fruit fly optimization algorithm for solving traveling
salesman problem. Front Inform Technol Electron Eng,

18(10):1525-1533.
https://doi.org/10.1631/FITEE.1601364

Huang PQ, Wang Y, Wang KZ, et al., 2020a. A bilevel
optimization approach for joint offloading decision and
resource allocation in cooperative mobile edge comput-
ing. IEEE Trans Cybern, 50(10):4228-4241.
https://doi.org/10.1109/TCYB.2019.2916728

Huang PQ, Wang Y, Wang KZ, et al., 2020b. Differential
evolution with a variable population size for deployment
optimization in a UAV-assisted IoT data collection sys-
tem. IEEE Trans Emerg Top Comput Intell, 4(3):324-
335. https://doi.org/10.1109/TETCI.2019.2939373

Jain AK, 2010. Data clustering: 50 years beyond K-means.
Patt Recogn Lett, 31(8):651-666.
https://doi.org/10.1016/j.patrec.2009.09.011

Jeong S, Simeone O, Kang J, 2018. Mobile edge computing
via a UAV-mounted cloudlet: optimization of bit allo-
cation and path planning. IEEE Trans Veh Technol,
67(3):2049-2063.
https://doi.org/10.1109/TVT.2017.2706308

Jin MS, Gao S, Luo HB, et al., 2019. Cost-effective resource
segmentation in hierarchical mobile edge clouds. Front
Inform Technol Electron Eng, 20(9):1209-1220.
https://doi.org/10.1631/FITEE.1800203

Li MS, Cheng N, Gao J, et al., 2020. Energy-efficient UAV-
assisted mobile edge computing: resource allocation and
trajectory optimization. IEEE Trans Veh Technol,
69(3):3424-3438.
https://doi.org/10.1109/TVT.2020.2968343

Low JE, Sufiyan D, Win LST, et al., 2019. Design of a hybrid
aerial robot with multi-mode structural efficiency and
optimized mid-air transition. Unmann Syst, 7(4):195-
213. https://doi.org/10.1142/S2301385019500067

Mozaffari M, Saad W, Bennis M, et al., 2019. A tuto-
rial on UAVs for wireless networks: applications, chal-
lenges, and open problems. IEEE Commun Surv Tutor,
21(3):2334-2360.
https://doi.org/10.1109/COMST.2019.2902862

Ryerkerk M, Averill R, Deb K, et al., 2019. A survey of evo-
lutionary algorithms using metameric representations.
Genet Program Evol Mach, 20(4):441-478.
https://doi.org/10.1007/s10710-019-09356-2

Storn R, Price K, 1997. Differential evolution—a simple and
efficient heuristic for global optimization over continu-
ous spaces. J Glob Optim, 11(4):341-359.
https://doi.org/10.1023/A:1008202821328

Huang et al. / Front Inform Technol Electron Eng 2020 21(12):1713-1725 1725

Ting CK, Lee CN, Chang HC, et al., 2009. Wireless het-
erogeneous transmitter placement using multiobjective
variable-length genetic algorithm. IEEE Trans Syst
Man Cybern Part B (Cybern), 39(4):945-958.
https://doi.org/10.1109/TSMCB.2008.2010951

Wang BC, Li HX, Zhang QF, et al., 2018. Decomposition-
based multiobjective optimization for constrained evo-
lutionary optimization. IEEE Trans Syst Man Cybern
Syst, in press.
https://doi.org/10.1109/TSMC.2018.2876335

Wang JH, Zhou Y, Wang Y, et al., 2016. Multiobjective
vehicle routing problems with simultaneous delivery and
pickup and time windows: formulation, instances, and
algorithms. IEEE Trans Cybern, 46(3):582-594.
https://doi.org/10.1109/TCYB.2015.2409837

Wang KZ, Huang PQ, Yang K, et al., 2019. Unified offloading
decision making and resource allocation in ME-RAN.
IEEE Trans Veh Technol, 68(8):8159-8172.
https://doi.org/10.1109/TVT.2019.2926513

Wang L, Huang PQ, Wang KZ, et al., 2019. RL-based
user association and resource allocation for multi-UAV
enabled MEC. Proc 15th Int Wireless Communications
& Mobile Computing Conf, p.741-746.
https://doi.org/10.1109/IWCMC.2019.8766458

Wang Y, Cai ZX, Zhang QF, 2011. Differential evolution with
composite trial vector generation strategies and control
parameters. IEEE Trans Evol Comput, 15(1):55-66.
https://doi.org/10.1109/TEVC.2010.2087271

Wang Y, Liu H, Long H, et al., 2018. Differential evolution
with a new encoding mechanism for optimizing wind
farm layout. IEEE Trans Ind Inform, 14(3):1040-1054.
https://doi.org/10.1109/TII.2017.2743761

Wang Y, Ru ZY, Wang KZ, et al., 2020. Joint deploy-
ment and task scheduling optimization for large-scale
mobile users in multi-UAV-enabled mobile edge com-
puting. IEEE Trans Cybern, 50(9):3984-3997.
https://doi.org/10.1109/TCYB.2019.2935466

Xin B, Chen J, Zhang J, et al., 2012. Hybridizing differential
evolution and particle swarm optimization to design
powerful optimizers: a review and taxonomy. IEEE
Trans Syst Man Cybern Part C (Appl Rev), 42(5):744-
767. https://doi.org/10.1109/TSMCC.2011.2160941

Xu JW, Ota K, Dong MX, et al., 2018. SIoTFog: Byzantine-
resilient IoT fog networking. Front Inform Technol
Electron Eng, 19(12):1546-1557.
https://doi.org/10.1631/FITEE.1800519

Yang ZH, Pan CH, Wang KZ, et al., 2019. Energy effi-
cient resource allocation in UAV-enabled mobile edge
computing networks. IEEE Trans Wirel Commun,
18(9):4576-4589.
https://doi.org/10.1109/TWC.2019.2927313

Zaini AH, Xie LH, 2020. Distributed drone traffic coordi-
nation using triggered communication. Unmann Syst,
8(1):1-20. https://doi.org/10.1142/S2301385020500016

Zhang J, Huang T, Wang S, et al., 2019. Future Internet:
trends and challenges. Front Inform Technol Electron
Eng, 20(9):1185-1194.
https://doi.org/10.1631/FITEE.1800445

Zhang J, Zhou L, Zhou FH, et al., 2020. Computation-
efficient offloading and trajectory scheduling for multi-
UAV assisted mobile edge computing. IEEE Trans Veh
Technol, 69(2):2114-2125.
https://doi.org/10.1109/TVT.2019.2960103

Zhang L, Zhao Z, Wu QW, et al., 2018. Energy-aware
dynamic resource allocation in UAV assisted mobile
edge computing over social Internet of vehicles. IEEE
Access, 6:56700-56715.
https://doi.org/10.1109/ACCESS.2018.2872753

Zollars MD, Cobb RG, Grymin DJ, 2019. Optimal SUAS
path planning in three-dimensional constrained environ-
ments. Unmann Syst, 7(2):105-118.
https://doi.org/10.1142/S2301385019500031

	Introduction
	System model and problem formulation
	The proposed approach
	Framework of the proposed approach
	Update of the deployment of SPs
	Generation of the association between UAVs and SPs
	Construction of the order of SPs

	Experimental study
	Effectiveness of the deployment of SPs
	Effectiveness of the association between UAVs and SPs
	Effectiveness of the order of SPs
	Discussions
	Effect of the initial population size
	Effect of the updating strategy

	Conclusions

