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Abstract: Predicting visual attention facilitates an adaptive virtual museum environment and provides a context-
aware and interactive user experience. Explorations toward development of a visual attention mechanism using
eye-tracking data have so far been limited to 2D cases, and researchers are yet to approach this topic in a 3D
virtual environment and from a spatiotemporal perspective. We present the first 3D Eye-tracking Dataset for Visual
Attention modeling in a virtual Museum, known as the EDVAM. In addition, a deep learning model is devised and
tested with the EDVAM to predict a user’s subsequent visual attention from previous eye movements. This work
provides a reference for visual attention modeling and context-aware interaction in the context of virtual museums.
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1 Introduction

Supported by head-mounted displays (HMDs),
virtual museums can represent real-world cultural
and historical exhibits through virtual reality (VR)
techniques, and offer an immersive and satisfactory
user experience. Researchers have proposed various
interaction methods to enhance user experience with
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an improved sense of presence using haptic feedback
(Azmandian et al., 2016; Hirota and Tagawa, 2016;
de Jesus Oliveira et al., 2016; Lopes et al., 2017),
hand tracking (LaViola, 2015; Davis et al., 2016; Hi-
rota and Tagawa, 2016), or motion tracking (Suma
et al., 2015; Nielsen et al., 2016). In comparison,
context-aware interaction enables more significant
improvement on user experience in virtual museums,
but it requires acquisition of user behaviors and the
corresponding adaptations.

Visual attention is a useful type of user be-
haviors in VR. Therefore, research on its mecha-
nism and prediction becomes meaningful in the area
of context-aware interaction. Current research on
the visual attention mechanism focuses on visual
saliency detection in images (Cerf et al., 2008; Judd
et al., 2009; Jian et al., 2011; Lang et al., 2012; Mathe
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and Sminchisescu, 2012; Zhao and Koch, 2012; Xu
et al., 2015; Zhu et al., 2015; Kruthiventi et al., 2017)
and videos (Engelke et al., 2010; Riche et al., 2013;
Fang et al., 2016; Fu et al., 2017), but is limited to 2D
cases. In addition, prediction of “when” and “what”
users will notice in a 3D virtual environment, such
as a virtual museum, remains unclear. We have also
observed that the related datasets were not labeled
regarding timestamps, and could hardly represent
sequential behaviors or support context-aware inter-
action in a 3D virtual environment.

In this study, we present a 3D Eye-tracking
Dataset for Visual Attention modeling in a virtual
Museum, named EDVAM. The EDVAM includes
9 604 480 visual attention records from users dur-
ing their navigation. We divide these records into
two subsets: the raw subset holds the captured eye
movement sequences and the practical subset com-
prises the processed samples. To build the EDVAM,
we use a novel approach to achieve gaze-based 3D
interaction, which enables user interaction with vir-
tual objects and acquires visual attention records
from real-time eye movements. To our knowledge,
the EDVAM is the first 3D eye-tracking dataset in a
virtual environment. To illustrate its potential con-
tribution to research on visual attention, we devise
a deep learning model to predict a user’s visual at-
tention in the next moment from previous records.
Trained on our dataset, this model provides a bench-
mark and an approach to context-aware interaction
(e.g., displaying interfaces on the next region of space
that a user would view).

We summarize the contributions of this study
as follows:

1. Construct the first 3D eye-tracking dataset in
a virtual museum, with a focus on visual attention
modeling;

2. Design a deep learning model to predict user
visual attention in the next moment.

This paper is an extension of the work originally
presented in Zhou et al. (2019).

2 Related work

Our study relates to topics concerning virtual
museums, user experiences in VR, visual attention,
and eye-tracking datasets. Selected studies are dis-
cussed and compared to ours.

2.1 Virtual museums

Museums present artwork and exhibits to the
public and are learning hubs that provide rich in-
teraction experiences, which are now usually inte-
grated with information technologies. For exam-
ple, a virtual museum, augmented by personal digi-
tal assistants (PDAs), provides an intuitive artwork
information guide, with which participants retrieve
knowledge related to geographic locations (Hou HT
et al., 2014). Augmented reality (AR) enables a
conventional museum to support direct interactions
with exhibits and their augmented images, promot-
ing engagement with content about cultural heritage
(Ciolfi et al., 2015). A projector-based virtual mu-
seum builds a large-scale museum with a 120◦ field of
view (FoV) for an extraordinary immersive environ-
ment (Carrozzino and Bergamasco, 2010; Kosken-
ranta et al., 2013). Recent advances in HMDs rep-
resent the entire real world in VR with finely repro-
duced artworks and an enhanced sense of immersion
(Beer, 2015; Barbieri et al., 2018).

2.2 User experiences in VR

A sense of presence can improve the user expe-
rience in VR and enable users to feel like they are
in the real world. This requires the mechanism of
human perception and its implementation in VR.

Recent studies have employed haptics to solve
the problem as mentioned above. Azmandian et al.
(2016) proposed a method to warp a virtual envi-
ronment to match a physical device’s location in the
user’s surrounding for haptic feedbacks. Lopes et al.
(2017) used electrical muscle stimulation to provide
haptic feedbacks. Hand tracking and motion track-
ing have also received attention in the field. Hirota
and Tagawa (2016) implemented a hand-tracking
method using manipulation with a deformable hand,
and Davis et al. (2016) accomplished a similar task
using 3D gesture recognition. Motion-tracking meth-
ods focus on user movements with improved ease and
accuracy (Suma et al., 2015; Nielsen et al., 2016).

These studies enhanced the sense of presence
in VR for a better user experience. However, they
paid less attention to user needs, on which this study
focuses for a user-adapted interactive experience in
a virtual museum.
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2.3 Visual attention

Mechanisms of visual attention can be catego-
rized into two types: bottom-up and top-down (Con-
nor et al., 2004). The bottom-up mechanism de-
pends on raw sensory input and rapid and invol-
untary attention shifts to salient visual features of
potential importance. For instance, salient stimuli
popping up in the surroundings could attract users
(Itti, 2000). Previous bottom-up models focused on
saliency detection (Itti et al., 1998; Shokoufandeh
et al., 1999; Kadir and Brady, 2001; Hou XD and
Zhang, 2007). Itti et al. (1998) proposed a classi-
cal model whose architecture mimics the properties
of primate early vision, combining multi-scale image
features into a single topographical saliency map.
The following models detect salient regions from the
perspective of multiple scales (Shokoufandeh et al.,
1999; Kadir and Brady, 2001). Recently, Hou XD
and Zhang (2007) proposed a fast method of con-
structing saliency maps based on the image’s spectral
residual, outperforming Itti et al. (1998)’s method.

In contrast, the top-down mechanism concen-
trates on long-term human cognitive strategies and
bias attention toward particular objects in a specific
situation (e.g., colored spots when hungry, sudden
movements when afraid of predators) (Connor et al.,
2004). Cerf et al. (2008) presented a significant com-
bined model of face detection and low-level saliency.
Some later models detect salient regions using clas-
sifiers on an eye-tracking dataset (Judd et al., 2009;
Zhao and Koch, 2012).

These 2D-oriented methods do not perfectly
suit 3D tasks, in which saliency detection relates
to the temporal aspect of the visual image and be-
comes more complicated. Understanding temporal
visual attention requires collection of sequential eye-
tracking data. Specifically, context-aware interac-
tion would be possible if the user’s visual attention
in the next moment could be predicted based on the
analysis of collected eye-tracking data.

2.4 Eye-tracking datasets

An eye-tracking dataset maps collected data
(i.e., features) to targets (i.e., labels), that are
feature-label pairs for research on saliency models.
Its related research has become active in recent years.

The existing eye-tracking datasets can be sum-
marized into image datasets and video datasets. The

majority include lightly compressed data, whereas
only a few are made up of uncompressed data (Win-
kler and Subramanian, 2013). No existing image
dataset comprises more than 40 participants (Bruce
and Tsotsos, 2006; Ehinger et al., 2009; Liu and
Heynderickx, 2009; Ramanathan et al., 2010; Koot-
stra et al., 2011) and no video dataset includes more
than 55 participants (Itti, 2004; Carmi and Itti, 2006;
Alers et al., 2012; Hadizadeh et al., 2012). In com-
parison, the EDVAM involves the largest group of
63 participants.

Existing datasets, including the recent ones with
a 360◦ feature (Lo et al., 2017; Rai et al., 2017; David
et al., 2018; Sitzmann et al., 2018), are still limited
to 2D cases. Regardless of the number of 3D ob-
jects being viewed, the recorded eye-tracking data
would be mapped onto a 2D plane, remaining at the
image level and regarded as a 2D projection of 3D
objects. In addition, participants are not allowed to
freely move, observe, or gaze at objects from differ-
ent angles and positions during the creation of these
2D datasets. To fill these gaps, we propose the first
3D eye-tracking dataset, including real-time visual
attention records in a virtual museum.

3 EDVAM

To build the EDVAM, we collected the data in
the context of a virtual museum supported by HMDs
(Fig. 1). We assumed that the virtual museum was
holding an exhibition focusing on an antique ceramic
bowl placed at the center, together with other re-
lated exhibits near the surrounding walls. We de-
signed several user interfaces (UIs) involving texts,
images, and video clips to describe the ceramic bowl.
A user wearing a VR headset navigated inside the
virtual museum and freely viewed exhibits during a
visit. At the same time, we recorded the real-time
eye movements of the user and the exhibits viewed.
For details about the virtual museum, we suggest
that interested readers refer to Sun et al. (2018).

We divided the collected data into two sub-
sets. The raw subset included the captured se-
quences of eye movements with 44 attributes as
their features. The practical subset comprised
145 370 items sampled from the raw subset. Each
item was derived from a fixed-length eye move-
ment sequence and was given an extra label com-
pared to the one in the raw subset. We formatted
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both in CSV files to ensure data accessibility and
compatibility. The dataset is publicly available
(https://github.com/YunzhanZHOU/EDVAM).

3.1 Participants and devices

Sixty-three participants studying at a university
in East China were recruited for data collection, in-
cluding 26 female and 37 male (age: mean=23.44,
standard deviation=1.81). We paid each participant
$8 and required them to list any eye-related disabili-
ties before the task. We also informed them that the
task would not involve either violent or sexual con-
tent, and they would be able to exit whenever they
felt nauseated.

The devices for data collection included an Ocu-
lus Rift DK2 VR headset for the participant’s access
to the virtual museum, a joystick for the participant’s
navigation, and a monitor displaying the real-time
video streaming from the participant’s view. To en-
able eye tracking on the VR headset, we attached
a gadget (i.e., a Pupil Labs monocular add-on cup
with an infrared (IR) mirror, IR LEDs, and an HD
camera) to its left-hand display. In particular, the
HD camera tracked the participant’s point-of-gaze
(PoG) with a tracking accuracy of less than 1◦.

During the task, the VR headset and the eye-
tracking gadget recorded the participant’s eye move-
ments and activities in the virtual museum. The
navigation stage lasted for 3–5 min without any time
constraint. The entire task finished within 10 min,
including the preparation stage.

Fig. 1 Virtual museum used in this study (from top
to bottom: overview, local-view, and top-view)

3.2 Gaze-based 3D interaction in VR

To enable gaze-based 3D interaction with vir-
tual objects, we introduced a novel approach that
maps 2D PoG positions to the corresponding 3D po-
sitions in VR, which contributed to obtaining real-
time eye movements for recording visual attention.
Fig. 2 illustrates the approach.

Our approach took as input an image that de-
scribes the user’s eye movement captured by the eye-
tracking gadget at a sampling rate of 30 Hz. The
image included a set of eye-movement parameters
[t, C, P ], where t denotes the elapsed time since the
system’s last restart, C denotes the confidence in
[0, 1] (i.e., 1 equals 100% confidence) of a compre-
hensive analysis at the level of image processing, and
P denotes the PoG data at time t. These parame-
ters were calibrated and matched to the VR plane
α to recognize the corresponding 2D PoG position
[t, C, (xα, yα)t,C ] on α with C confidence at time t.
However, this was insufficient for our goal of gaze-
based 3D interaction in VR, so we conducted spa-
tial mapping to obtain the exact 3D PoG position
[t, C, (xs, ys, zs)t,C ] being observed in the VR space
s with C confidence at time t.

In our approach, the spatial mapping step was
based on the ray-object intersection of the ray cast-
ing algorithm (Roth, 1982), which was the method-
ological basis for 3D modeling and 2D image ren-
dering, as shown in Fig. 3. Given the cam-
era’s position O, we first obtained the 3D coor-
dinates of the 2D PoG position A(xα, yα) in the
VR world space s, denoted by A′(xs, ys, zs), us-
ing Unity’s method Camera.ViewportToWorldPoint
(Unity Technologies, 2019). This step was necessary

Eye movement parameters VR pLane α

Calibration

Mapping

VR space s

Spatial mapping

[t, C, P]

2D PoG position [t, C, (xα, yα)t, C]

3D PoG position [t, C, (xs, ys, zs)t, C]

Gaze input [t0, It ]0

Fig. 2 Pipeline of gaze-based 3D interaction
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because the viewport space and the VR world space
shared different coordinate systems, and the clip-
ping volume captured by the camera changed in a
real-time manner. A ray was then cast from O and
through A′ to find its first intersection with an ob-
ject in the VR world space, which was regarded as
the 3D PoG position B(xs, ys, zs).

The approach’s last step triggered a gaze input
[t0, It0 ] from a series of 3D PoG positions:

[ti, Ci, (xs, ys, zs)i], ti ∈ (0, d] , Ci > C0, (1)

where ti denotes the timestamp, Ci represents the
confidence, (xs, ys, zs)i denotes the 3D coordinates
in the VR world space s (the subscript i denotes
the number of each position in the series of 3D PoG
positions), d denotes a duration upper-bound of 2 s,
and C0 denotes a confidence threshold of 0.3, subject
to

(xs, ys, zs)i ∈ U, (2)

and an operation It at time t in an interaction areaU .
Fig. 4 illustrates this step from the user’s perspective.
In our virtual museum, the user can interact with

Camera O

Near clip plane

Far clip plane

2D PoG position A(xα, yα)

A'(xs, ys, zs)

3D PoG position B(xs, ys, zs)

Fig. 3 Mapping a 2D PoG position to the correspond-
ing 3D PoG position in the VR space

Fig. 4 Gaze cursor presented as a circle at the center

objects via the gaze cursor by keeping the eyes on an
interaction area for 2 s.

3.3 Task procedure

At the preparation stage, we asked the partici-
pants to watch a 3-min introductory video clip about
the virtual museum’s activities. Thereafter, they
proceeded to a demo scene and familiarized them-
selves with the VR headset and the joystick for 3 min.
Each of them put on and fixed the VR headset, and
looked at nine white dots sequentially displayed on
the VR screen, fixing the relative positions of the
participant’s head and the VR headset to ensure the
mapping accuracy.

At the navigation stage, a participant could in-
teract with virtual objects in several ways. For ex-
ample, she/he might walk through each corner in the
virtual museum using the joystick while controlling
the speed. She/He was able to use gazes and head
movements to support the joystick-based navigation,
as if in a real museum. It was also possible to use
the gaze cursor to interact with the UIs, as shown in
Fig. 4. When the participant gazed at a UI, a cir-
cle appeared with a progress bar, triggering an input
operation after viewing the interaction area for 2 s.

We allowed participants to choose their own
navigation paths, freely interacting with the exhibits,
and encouraged them to create unique choices for di-
versity in the collected data. During the task, we
recorded the eye-tracking movement at a frequency
of 30 Hz. In addition, we interviewed participants
about their experience and recorded their feedback.

3.4 Data collection

As shown in Table 1, we collected two types of
data in the task: (1) the VR gaze data, via both the
VR device and the eye-tracking gadget, referring to
the 3D eye movement sequences with 11 features; (2)
the pupil data, containing the 2D gaze information
with 33 features.

The VR gaze data recorded participants’ spa-
tiotemporal activities in the 3D VR space. As

Table 1 Types of collected data

Type
Number of

Frequency Device
features

VR gaze 11 > 30 Hz VR headset,
eye-tracking gadget

Pupil 33 30 Hz Eye-tracking gadget
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shown in Table 2, the timestamp feature represents
the temporal dimension with a precision of 0.001 s.
Three-dimensional PoG position features indicate
the place that the participant is observing in the vir-
tual museum. The camera’s position features show
the participant’s position, and its orientation fea-
tures describe a participant’s head orientation.

The pupil data were recorded in a normalized
coordinate system that is irrelevant to the virtual en-
vironment. As shown in Table 3, we employed 30 fea-
ture channels concerning gaze and the pupil from the
eye-tracking gadget (Pupil Labs, 2020). The pupil
detector’s measurement confidence was also used as
a feature.

3.5 Raw subset

Due to the different timestamps, we merged the
data items with similar timestamps and combined
both types of data into the raw subset, including the
eye-tracking data of 63 participants. Because of the
sampling frequency used in data collection, 30 data
items were produced per second. Each data item had
44 features with no labels, and each corresponded to
a unique timestamp.

3.6 Practical subset

The aim of context-aware interaction requires
learning from user behaviors and predicting visual

Table 2 Gaze data details

Feature Range Precision Unit

Index [1,∞) 1 –
Timestamp (−∞,∞) 0.001 s
3D PoG position, xs [−23.4,−9] 0.1 m
3D PoG position, ys [0, 3.7] 0.1 m
3D PoG position, zs [−9.7, 0.4] 0.1 m
Camera’s position, xO [−23.4,−9] 0.1 m
Camera’s position, yO [0, 3.7] 0.1 m
Camera’s position, zO [−9.7, 0.4] 0.1 m
Camera’s orientation, xf [−1, 1] 0.1 m
Camera’s orientation, yf [−1, 1] 0.1 m
Camera’s orientation, zf [−1, 1] 0.1 m

Table 3 Pupil data details

Feature Number of channels

Timestamp 1

Index 1

Confidence 1

Gaze parameters 2

Pupil parameters 28

attention in the next moment, which enables the sys-
tem to adapt to users accordingly and synchronously.
For example, a UI is displayed in real time near the
next objects in which the user may be interested. To
achieve context-aware interaction, we need not only
eye movements but also subsequent visual attention.
Therefore, the raw subset was further processed into
the practical subset, which included the above two
pieces of information.

For the previous eye movements, we sampled
the raw subset data using a time window of 10 s.
Each adjacent time window was 1 frame apart from
the next window at the frequency of 30 Hz. We
regarded each time window as an input instance and
constructed the instance matrix s ∈ R

n×f as
⎡
⎢⎢⎢⎣

· · · I1 · · ·
· · · I2 · · ·
...

...
...

· · · In · · ·

⎤
⎥⎥⎥⎦ , (3)

where Ii (i = 1, 2, . . . , n) denotes eye movements, n
represents the number of eye movements in 10 s (i.e.,
n = 300), and f refers to the number of features (i.e.,
f = 40). An instance matrix indicates the previous
eye movements in a fixed duration.

As for subsequent visual attention, we divided
the VR space into 12 areas: upper interface, central
interface, lower interface, south open space, north
pillar, east pillar, southwest exhibit, northwest ex-
hibit, southeast exhibit, piano area, central floor,
and central ceiling. The following analysis was con-
ducted to map user fixations in these areas to obtain
the position of visual attention.

There are two reasons behind the division of the
VR space: (1) Because the EDVAM is the first 3D
eye-tracking dataset in a virtual museum, no previ-
ous study contributed to the visual attention pre-
diction in a 3D VR space. Hence, we resorted to
the most related work on 360◦ videos (Fan et al.,
2017) and proposed that a fixation prediction net-
work could predict the future viewing probability of
each video tile. We extended the concept of tile and
divided the VR space into various 3D tiles. (2) Each
area demonstrates a candidate region and stands for
the spatial scope of the adaptation in a context-aware
environment.

The next question is about determining the area
that locates the fixation, especially when the fixation
is at the junction of two areas. We devised a solution
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to this challenge. Because the fixation included PoGs
that depend on its start time and duration, it was
possible to calculate the number of PoGs in each
area and determine the one to which the fixation
most likely belongs as

max
n=12

(N1, N2, . . . , Nn) , (4)

where Ni (i = 1, 2, . . . , n) denotes the number of
PoGs in the ith area. The area with the maximum
number of PoGs was regarded as the one containing
the fixation.

We observed that the number of PoGs was 0

in an area that was not estimated as one to which
the fixation belonged in most cases. This observa-
tion supports the reliability of the fixation-based ap-
proach to visual attention in the next moment.

We built the practical subset by matching each
time window to a visual attention area according to
the timestamp, and subdivided it into a training set
and a test set, ensuring that the samples were drawn
from different participants.

4 Predictive deep learning model

To predict the visual attention and validate the
collected dataset, we devised a three-layer long short-
term memory (LSTM) network deep learning model,
because LSTM has shown satisfactory performance
in classification, processing, and prediction of tem-
poral data (Gers et al., 2000; Eck and Schmidhuber,
2002; Chen et al., 2015).

4.1 Feature extraction

Each input instance from the practical subset
was a time window with 40 features. To reduce the
workload and increase the accuracy, we adopted the
most relevant 10 features via pre-experimental analy-
sis: 3D PoG positions (3 feature channels), camera’s
position (3 feature channels), camera’s orientation
(3 feature channels) from the VR gaze data, and
confidence (1 feature channel) from the pupil data.

The influence of previous eye movements on sub-
sequent visual attention was enabled by appending
the last 10-s time window with increasing weights.
We assigned the highest weight to the latest sub-
window based on the assumption that the more re-
cent the experience is, the more influential it may
be on the current trial for selecting the target vir-
tual object again in the UI task, as the mechanism

of human memory works (Li et al., 2018). Table 4
demonstrates that one frame was sampled per six
frames during the first 5 s, and that the sampling
was terminated during the latest 0.33 s.

4.2 Model design

Previous research in deep learning proposed
that adding more layers to a neural network (NN)
would improve its capacity to yield complex behav-
iors (LeCun et al., 2015). Accordingly, we added two
hidden layers to an LSTM network to model high-
dimensional eye movements. At each step, the net-
work took as input an eye movement item In with
10 features, as shown in Fig. 5. We used 3 × 78

LSTM cells in the recurrent layer. A hidden state of
the current cell propagated to the next cells and its
output propagated to deeper cells, because past eye
movements might be captured in the user’s current
behavior input and the hidden state of the previ-
ous steps. We set the hidden dimension to 20. The
model predicted the area to be viewed, given the
linear transformation L of the output from the last
LSTM cell.

4.3 Experiments

We experimented with our model on the practi-
cal subset of the EDVAM, and performed training

Table 4 Temporal dimension sampling

Timestamp
Number of frames

Before sampling After sampling

[−10.00,−5.00] 150 25

[−5.00,−2.00] 90 18

[−2.00,−0.33] 50 25

[−0.33, 0.00] 10 10

Present – –

I1

In

...

L

I1 I2 I3 In...

La
be
ls

Fig. 5 Architecture of the three-layer LSTM network
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and test tasks on a workstation with a 3.7-GHz
CPU, 64-GB RAM, and an Nvidia Geforce GTX
1080 graphics card with 8-GB RAM. The model was
trained using back-propagation on the training set
and optimized via mini-batch gradient descent with
a batch size of 128 for 40 epochs.

We computed a cross-entropy loss to measure
the performance of the trained model on prediction
as

loss = − 1

N

N∑
i=1

log2
efyi∑
j e

fyj
, (5)

where fyj denotes the jth element of the label score
vector, fyi refers to the scores of the correct labels,
and N represents the batch size. The training was
accomplished by minimizing the loss.

We validated the trained model on the test set.
Each test instance comprised 10-s eye movements
and the corresponding ground truth on visual atten-
tion. Fig. 6 illustrates the cross-entropy loss over
40 epochs in a declining trend. The loss converged
rapidly in both training and validation. In partic-
ular, it underwent fluctuations from the 6th to the
15th epoch after the first five epochs. At this stage,
the optimizer hovered around local minimums, look-
ing for the global one. After 15 epochs, both training
loss and validation loss converged to the global opti-
mum. The prediction accuracy reached 78.94%, and
predicting each sample required less than 0.02 ms,
satisfying the real-time requirement.

In the example shown in Fig. 7, our model
took as input the 3D PoG position sequences with
confidences, camera position sequences, and camera
orientation sequences, and then predicted that the
next visual attention would be the southeast exhibit,

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30 35 40

Training loss Validation loss

Epoch index

Lo
ss

Fig. 6 Per-epoch loss when training and validating
the LSTM network

based on the user’s past behaviors around the piano
area.

4.4 Analysis of gender effects

Although a previous study indicated that men
and women devoted approximately the same amount
of attention to a virtual environment (Felnhofer
et al., 2012), we further explored whether the gender
of a user would affect the prediction accuracy of our
model. In particular, we trained it with data from
either male users or female users in addition to the
instance discussed in Section 4.3. Table 5 shows the
performance of our model in the three cases. We ob-
served no significant difference in the prediction ac-
curacy regarding the user’s gender in any instance.
This can be interpreted as both female and male
users having a similar visual attention pattern while
navigating in a less gender-sensitive virtual environ-
ment like a museum.

5 Applications

This study, including the eye-tracking dataset
and the predictive model, is expected to support
a context-aware virtual museum environment with
the eye-tracking dataset and the predictive model.
Such an interaction system adapts itself based on
the results of learning user behaviors. In particular,
the adaptation mentioned in this study refers to the
real-time and intelligent UI display near the objects
that may interest users. Therefore, a potential re-
search direction is to define the rules of the adaptive
UIs and improve the model’s prediction accuracy for
context-aware interaction.

Saliency-aware rendering can also benefit from
this study. An improved sense of immersion in VR
demands higher HMD screen resolutions, whereas
low-delay images can hardly support it. Previous
studies implemented foveated rendering techniques
for image synthesis with progressively fewer details
outside the eye fixation region. With our predictive

Table 5 Prediction accuracy of the model regarding
the user’s gender

Model case
Accuracy (%)

Female Male

As in Section 4.3 79.80 79.87

Trained on data from female users 77.99 77.15

Trained on data from male users 77.88 77.02
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(a) (b) (c) (d)

Fig. 7 An example of predicting the next visual area: (a) 3D PoG position sequences (white trajectories)
and the camera’s position sequences (black trajectory) visualized inside the virtual museum; (b) the camera’s
orientation sequences represented by the user’s head motions; (c) the next visual area predicted by the model;
(d) the corresponding ground truth

model for visual attention, it becomes possible to
render the potential salient area and blur others in
advance, reducing the workload of HMDs notably.

Researchers may exploit our dataset to explore
the mechanism of 3D visual attention (e.g., identifi-
cation and classification of eye movements in a vir-
tual environment, the effects of eye movement fea-
tures on prediction). Based on the learned knowl-
edge about eye movements, we have confidence in
making progress in context modeling, personalized
interaction, and virtual museum design.

6 Conclusions and discussion

Previous visual attention studies and datasets
have concerned us due to their 2D case limitations,
inadequate freedom for users, and lack of consid-
eration of temporal aspects, which are significantly
different from the real world. We disagree that these
studies are completely capable of enabling context-
aware modeling in a 3D virtual environment.

In this paper, we introduced the EDVAM, the
first 3D eye-tracking dataset in a virtual museum,
to fill the gap, and proposed a predictive model for
visual attention based on previous eye movements.
Our model, based on the LSTM network, supports
fundamental context-aware interactions in a 3D vir-
tual museum. Overall, this study contributes to en-
abling a virtual museum’s adaptiveness for a context-
aware user experience. It helps users interact with
virtual objects and adaptive UIs through a person-
alized virtual museum tour.

A significant limitation of this study lies in the
devices used in the task. According to the partic-
ipants’ feedback, the Oculus Rift DK2 HMD has

room for improvement in terms of precision and res-
olution. For example, some users complained about
the coarse detail in the virtual museum caused by the
HMD’s low resolution. Although the participants in-
teracted with virtual objects using a joystick and 3D
PoGs in the task, the sense of presence still required
other interactions (e.g., haptics and hand tracking).
The use of VR HMDs with improved hardware and
the introduction of multiple interaction methods can
improve the 3D virtual environment and the quality
of the collected data.

Currently, our model predicts only a limited
number of visual areas. Alternatively, each visual
area can be divided into more fine-grained subar-
eas for training and improvement of our model’s
capability.

Despite the analysis showing no significant gen-
der effect in the trained model instances, it is still
worth investigating the generality of our approach
(i.e., collecting eye-tracking data in different virtual
museums) and the capability of our model to capture
the potential individual differences in visual atten-
tion (i.e., conducting extended analysis with other
user information including age, education, and cul-
tural background).

We expect this study to serve as a reference for
visual attention modeling and context-aware interac-
tion in 3D virtual environments other than museums.
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