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Abstract: Identifying factors that exert more influence on system output from data is one of the most challenging
tasks in science and engineering. In this work, a sensitivity analysis of the generalized Gaussian process regression
(SA-GGPR) model is proposed to identify important factors of the nonlinear counting system. In SA-GGPR, the
GGPR model with Poisson likelihood is adopted to describe the nonlinear counting system. The GGPR model
with Poisson likelihood inherits the merits of nonparametric kernel learning and Poisson distribution, and can
handle complex nonlinear counting systems. Nevertheless, understanding the relationships between model inputs
and output in the GGPR model with Poisson likelihood is not readily accessible due to its nonparametric and kernel
structure. SA-GGPR addresses this issue by providing a quantitative assessment of how different inputs affect the
system output. The application results on a simulated nonlinear counting system and a real steel casting-rolling
process have demonstrated that the proposed SA-GGPR method outperforms several state-of-the-art methods in
identification accuracy.
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1 Introduction

Evaluating factors that have an impact on sys-
tem output is critical for decision-makers to iden-
tify critical control points (CCPs). For example, the
steel industry is committed to reducing defects in
steel products based on the defect analysis critical
control point (DACCP) system. One step in the
DACCP system is to determine CCPs where defect
management efforts can be focused.

The study of important factor identification
from observational data is usually based on the
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supervised learning model. Supervised learning is
a class of systems that determine a predictive model
using labeled data (Mohri et al., 2018). Linear re-
gression is a supervised learning technique typically
used in predicting and finding relationships among
quantitative data (Talabis et al., 2014; Sugiyama,
2015). The popular linear regression model is par-
tial least squares (PLS) regression, which has been
widely used in various fields (Wold et al., 2001; Abdi,
2010; Kano and Ogawa, 2010; Shao and Tian, 2015;
Ge et al., 2017; Zhang et al., 2017, 2019, 2020a; Ge,
2018). In PLS regression, PLS-Beta and PLS-VIP
have been widely used to identify important factors
(Wang et al., 2015). In PLS-Beta, the identification
of important factors is based on the regression coef-
ficients of the PLS model. PLS-VIP is based on the
variable importance in the projection (VIP) score.
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Nevertheless, simple parametric models lack expres-
sive power for complex nonlinear processes. Com-
pared with simple parametric models, nonparamet-
ric regression models, such as random forest (RF)
(Cutler et al., 2012) and Gaussian process regression
(GPR) (Rasmussen and Williams, 2006), are more
powerful in handling complex nonlinear processes.
RF is a nonlinear ensemble learning method that
constructs a number of decision trees on various sub-
samples of the dataset and uses averaging to improve
the prediction accuracy. The identification of impor-
tant factors in RF can be realized by the permutation
importance criterion and out-of-bag (OOB) error es-
timates (referred to as RF-PI) (Biau, 2012). GPR is
a kernel-based nonlinear regression method. Because
the implicit feature mapping is used in GPR through
the kernel function, the evaluation of important fac-
tors in GPR is not easily accessible. To solve this
issue, Blix et al. (2017) proposed the Gaussian pro-
cess sensitivity analysis and applied it to solve the
oceanic chlorophyll problem. Zhang et al. (2020b)
proposed a GPR and Hilbert-Schmidt independence
criterion based identification method. However, the
GPR model is designed for continuous real-valued
outputs with a Gaussian assumption, which does not
hold in some engineering application studies. For ex-
ample, causal analysis of defects in steel products is
to discover the factors that affect the number of de-
fects, which is the count data output; the Gaussian
assumption is invalid and the GPR model cannot be
directly applied.

In this work, a novel method, called the sensitiv-
ity analysis of the generalized Gaussian process re-
gression (SA-GGPR) model, is proposed to identify
important factors of the nonlinear counting system.
In SA-GGPR, the GGPR model with Poisson likeli-
hood is adopted to describe the nonlinear counting
system. The GGPR model with Poisson likelihood
inherits the merits of nonparametric kernel learning
and Poisson distribution, and can deal with complex
nonlinear counting systems. Nevertheless, for the
GGPR model with Poisson likelihood, the identifi-
cation of model inputs that have a significant effect
on the system output is not easily accessible due to
its nonparametric and kernel structure. SA-GGPR
deals with this issue by providing a quantitative as-
sessment of how different inputs affect the system
output in terms of sensitivity measure. The pro-
posed method is first validated on a simulated nonlin-

ear counting system and then applied to a real steel
casting-rolling process. The results demonstrate the
feasibility and reliability of the proposed SA-GGPR
method.

2 Conventional methods

In this section, brief descriptions of PLS-Beta,
PLS-VIP, and RF-PI are presented. PLS-Beta and
PLS-VIP are widely used to identify important fac-
tors of linear systems, while RF-PI is widely used for
nonlinear systems.

2.1 PLS-Beta

PLS regression is a popular supervised learn-
ing method that predicts the system output from a
set of inputs by constructing a latent variable model
(Abdi, 2010). Consider a training dataset with in-
put X ∈ R

N×M and output y ∈ R
N , where N and

M represent the number of samples and the number
of input variables, respectively. In PLS regression,
X ∈ R

N×M and y ∈ R
N are decomposed as

⎧
⎪⎨

⎪⎩

X =TPT +E,

y =Tq+ f,

T =XW(PTW)−1,

(1)

where P ∈ R
M×R and T ∈ R

N×R represent the
loading and score matrices of X, respectively. q ∈
R

R represents the loading vector of y, W ∈ R
M×R

represents the weighting matrix, and E ∈ R
N×M

and f ∈ R
N are residuals. R represents the number

of retained latent variables. The standard algorithm
for constructing a PLS regression model is nonlinear
iterative partial least squares (NIPALS) (Wold et al.,
2001).

In PLS regression, the output estimate ŷ can be
expressed as

{
ŷ = Xβpls,

βpls = W(PTW)−1q,
(2)

where βpls ∈ R
M is a regression coefficient vector,

indicating the importance of each input in describing
the output. The absolute value of βpls is employed
in PLS-Beta to identify important factors.

2.2 PLS-VIP

PLS-VIP identifies important factors in terms
of VIP score, which measures the importance of each
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input in the projection used in a PLS model (Wang
et al., 2015). The VIP score of the mth variable is
expressed as

VIPm =

√
√
√
√M

∑R
r=1

[
q2rt

T
r tr(wm,r/ ‖ wr ‖)2]

∑R
r=1 q

2
rt

T
r tr

, (3)

where tr and wr denote the rth column vectors of T
and W, respectively, qr represents the rth element of
q, and wm,r represents the mth element of wr.

2.3 RF-PI

RF (Cutler et al., 2012) is a nonlinear ensemble
learning method describing the input-output rela-
tionship by constructing a set of decision trees. Each
tree is built on the bootstrap subset of the dataset.
During the tree-growing process, the best split of
each node is calculated from the randomly selected
subset of the total input variables.

RF uses the permutation importance criterion
(referred to as RF-PI) to identify important factors
of nonlinear systems (Cutler et al., 2012). The idea
of RF-PI is that if one input variable is not impor-
tant, the model accuracy will not deteriorate when
the value of that input variable is permuted. Mathe-
matically, the importance score VIm for the mth in-
put variable is calculated by averaging the difference
in OOB errors before and after the permutation over
all trees (Bühlmann, 2012). Let f̂ b(·) denote the tree
grown on the bth bootstrap subset (b = 1, 2, . . . , B)

and let OOBb denote the OOB observation corre-
sponding to the bth bootstrap subset. A step-by-step
procedure for calculating VIm is presented as follows:

1. For b = 1, search for OOBb.
2. Calculate OOB error errOOB

b by f̂ b(·) over
OOBb:

errOOB
b =

1

nOOBb

N∑

i=1
(i∈OOBb)

(
yi − f̂ b(xi)

)2
, (4)

where nOOBb
is the number of observations in OOBb,

yi is the measured value, and f̂ b(xi) is the output
estimate.

3. For the mth variable, m = 1, 2, . . . ,M :
(1) Permutate the value of the mth input vari-

able in OOBb, and the permuted OOBb is denoted
as OOBb,m.

(2) Predict OOBb,m using f̂ b(·), and then calcu-
late errOOB

b,m .

4. Repeat steps 1–3 for b = 2, 3, . . . , B.
5. Calculate VIm as

VIm =
1

B

B∑

b=1

(errOOB
b,m − errOOB

b )2. (5)

3 Sensitivity analysis of generalized
Gaussian process regression

In this section, a new method called SA-GGPR
is presented to identify important factors of the non-
linear counting system. In SA-GGPR, the GGPR
model with Poisson likelihood is adopted to describe
the nonlinear counting system. The GGPR model
with Poisson likelihood inherits the merits of non-
parametric kernel learning and Poisson distribution,
and can deal with complex nonlinear counting sys-
tems. However, it is not intuitive to understand
the relationship between model inputs and output in
GGPR with Poisson likelihood due to its nonpara-
metric kernel structure. To solve this problem, SA-
GGPR is proposed in this work. SA-GGPR deter-
mines the factors that have a significant effect on the
system output in terms of the sensitivity measure.

3.1 Generalized Gaussian process regression

GGPR constructs flexible nonparametric
Bayesian models in which the observation likelihood
is parameterized by an exponential family distribu-
tion (EFD) and the latent function is related to the
output distribution via a link function (Chan and
Dong, 2011). Specifically, GGPR consists of the
following three components:

1. Random component
The output variable y follows an EFD, with

a probability density function (or probability mass
function) taking the form of

p(y| θ, φ) = h(y, φ) exp
{ 1

a(φ)
[yθ − b(θ)]

}
, (6)

where θ is the natural parameter of EFD and φ is the
dispersion parameter. h(y, φ) and a(φ) are known
functions, and b(θ) is a log-partition function nor-
malizing the distribution. The mean and variance of
y are functions of b(θ) and a(φ):

μ = E[y] = b′(θ), var(y) = b′′(θ)a(φ), (7)

where b′(θ) and b′′(θ) are the first and second deriva-
tives of b with respect to θ, respectively. EFD pro-
vides a general framework for selecting a specific
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parametric distribution in terms of output domain
(e.g., continuous, discrete, and count-type).

2. Latent function
A zero-mean Gaussian process is placed on

the latent function, η(x) ∼ GP
(
0, k(x, x′)

)
, where

k(x, x′) is the covariance function (e.g., squared
exponential).

3. Link function
A monotonic and differentiable function called

the link function, g(·), is introduced to relate the
mean of the output distribution with the latent func-
tion, η(x) = g(μ).

Formally, the GGPR model is specified by

η(x) ∼ GP
(
0, k(x, x′)

)
, y ∼ p(y| θ, φ),

g(E[y| θ]) = η(x).
(8)

Based on the monotonic property of g(·), the
functional relationship between the mean of the
output distribution and the latent function can be
rewritten as

μ = g−1(η(x)), (9)

where g−1(·) is called the inverse-link function.
By integrating Eq. (7) into Eq. (8), we can

obtain
η(x) = g(E[y| θ]) = g(b′(θ)). (10)

Furthermore, we can obtain the functional re-
lationship between the parameter θ and the latent
function η(x):

θ(η(x)) = [b′]−1
(
g−1(η(x))

)
. (11)

Using Eq. (11), another form of GGPR is
obtained:

η(x) ∼ GP
(
0, k(x, x′)

)
, y ∼ p

(
y| θ(η(x)), φ),

θ(η(x)) = [b′]−1
(
g−1(η(x))

)
.

(12)

For the GGPR inference, given a set of train-
ing samples (X, y), the distribution of the latent
values η =

[
η(x1), η(x2), . . . , η(xN )

]
correspond-

ing to X is jointly Gaussian η|X ∼ N(0,K), where
K ∈ R

N×N is the kernel or covariance matrix with
entries [K]ij = k(xi, xj). The posterior probability
distribution of η given the observed output y can be
calculated with Bayes’ theorem:

p(η|y,X) =
p(y|θ(η))p(η|X)

p(y|X)
, (13)

where p
(
y|X) denotes the marginal likelihood given

by

p(y|X) =

∫

p(y|θ(η))p(η|X)dη. (14)

Given a novel input xq, the posterior distribu-
tion of the novel latent value ηq = η(xq) is obtained
by marginalization over the posterior distribution
in Eq. (13) (i.e., averaging over all possible latent
functions):

p
(
ηq|X, xq, y

)
=

∫

p
(
ηq|η,X, xq

)
p
(
η|X, y

)
dη,

(15)
where p(ηq|η,X, xq) = N(ηq| kqK−1η, kqq −
kqK−1kTq ) with kq = [k(xq, xi)] and kqq = k(xq, xq).
According to the Gaussian approximation inference
(Nickisch and Rasmussen, 2008), the approximate
posterior for ηq is given by

p(ηq|X, xq, y) = N(ηq|μ̂η, σ̂
2
θ), (16)

where the mean and variance are

μ̂η = kq(K+ W̃)−1t̃, (17)

σ̂2
η = kqq − kq(K+ W̃)−1kTq . (18)

Here, W̃ = diag(w̃1, w̃2, . . . , w̃n) is a positive definite
diagonal matrix, and t̃ is a target vector. W̃ and t̃ are
determined by the Taylor approximation algorithm
(Chan and Dong, 2011).

3.2 SA-GGPR

Although GGPR is a flexible nonparametric
Bayesian regression model, the evaluation of impor-
tant factors in GGPR is not easily accessible due to
the implementation of implicit feature mapping. SA-
GGPR is proposed to solve this problem. SA-GGPR
determines how different values of an input variable
affect the output. Mathematically, the measure of
the sensitivity of variable m is given as

sm =

∫ (
∂φ(x)
∂xj

)2

p(x)dx, (19)

where φ(x) denotes the objective function and p(x)
is the probability density function. The calculation
of sensitivity involves taking the partial derivative of
φ(x) with respect to the input factor xxxm. In this
work, the predictive mean function μf of GGPR is
specified as the objective function φ(x). To simplify
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the calculation, the objective function is rewritten as

φη(x) = μ̂η

= kq(K+ W̃)−1t̃

= kqαη

=

N∑

p=1

αη,pk(xp, xq), (20)

where αη represents a weight vector. Then, an em-
pirical estimate of sm can be calculated by

ŝm =
1

N

N∑

q=1

(
∂φη(xq)

∂xq,m

)2

=
1

N

N∑

q=1

(
∂
∑N

p=1 αη,pk(xp, xq)

∂xq,m

)2

=
1

N

N∑

q=1

(
N∑

p=1

αη,p(xp,m − xq,m)

λ2
k(xp, xq)

)2

.

(21)

It is worth noting that the values of the posi-
tive definite diagonal matrix W̃ and the target vec-
tor t̃ in Eq. (20) depend on the choice of the type
of the observation likelihood. Because the focus of
this work is on the identification of important fac-
tors of the counting system, the Poisson likelihood is
selected. As a discrete probability distribution, the
Poisson likelihood is suitable for applications that in-
volve counting the number of occurrences of random
events (Hutchinson and Holtman, 2005; Coxe et al.,
2009). The probability mass function of Poisson like-
lihood is defined as

p(y|λ) = 1

y!
λye−λ, (22)

where λ denotes the mean number of events (also
known as the shape parameter or rate parameter).

As mentioned in Eq. (6), the exponential family
generalizes a wide variety of distributions by chang-
ing the likelihood parameters. For GGPR with Pois-
son likelihood, the parameter θ = lnλ, the dispersion
φ = 1, and the parameter functions in the exponen-
tial family form are

a(φ) = 1, b(θ) = eθ, h(y, φ) = 1/y!. (23)

The canonical link function for GGPR with
Poisson likelihood can be expressed as

E[y] = g−1(η) = eη = λ, g(μ) = lnμ. (24)

According to the Taylor approximation infer-
ence of GGPR with Poisson likelihood (Nickisch and
Rasmussen, 2008), the target elements ti and diago-
nal elements wi can be calculated as

t̃i = ln(yi + c)− c

yi + c
, (25)

w̃i =
1

yi + c
, (26)

where c ≥ 0 (e.g., c = 0.001) is a constant to prevent
from taking the logarithm of zero.

A step-by-step procedure for implementing the
proposed SA-GGPR algorithm is summarized in
Algorithm 1. The model hyperparameters (ker-
nel parameters) in Algorithm 1 are optimized
by maximizing the marginal likelihood using the
GPML toolbox (Rasmussen and Nickisch, 2010).
The SA-GGPR codes can be downloaded from
https://github.com/IBD-CSE/SAGGPR.

Algorithm 1 SA-GGPR
Input: input data matrix X ∈ R

N×M and output data
vector y ∈ R

N . The kernel (covariance) function
is squared exponential kernel and the observation
likelihood function is Poisson likelihood

Output: the importance score VIm (m = 1, 2, . . . ,M)

1: Construct the GGPR model and obtain the objec-
tive function φη(x) = kq(K + W̃)−1t̃ = kqαη =
∑N

p=1 αη,pk(xp, xq)

2: for m = 1, 2, . . . ,M do
3: Calculate the measure of sensitivity of variable m:

ŝm = 1
N

∑N
q=1

(∑N
p=1

αη,p(xp,m−xq,m)

λ2 k(xp,xq)
)2

4: end for
5: Calculate the importance score of variable m: VIm =

ŝm/
∑M

j=1 ŝj

4 Case study

In this section, we apply the proposed SA-
GGPR method to a simulated nonlinear counting
system and a real steel casting-rolling process. The
application results are compared with those of the
PLS-Beta, PLS-VIP, RF-PI, and SA-GPR methods
in terms of identification accuracy. In SA-GPR, the
standard GPR using Gaussian likelihood is adopted.
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4.1 Numerical example

4.1.1 Data generation

Data is generated from the following nonlinear
counting system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = t2 − t+ 1 + ε,

x2 = sin t+ ε,

x3 = t3 + t+ ε,

x4 = 2 cos (0.08t) sin (0.06t) + ε,

x5 = sin (0.4t) + 1.5 cos (0.2t) + ε,

μ = exp(0.7x1 + 0.4x4 + 0.5x5),

y ∼ Poisson(μ),

(27)

where x1–x5 are input variables, μ denotes the mean
of the output variable distribution, y is the output
variable, t is uniformly distributed within [−2, 2],
and ε is a Gaussian measurement noise with zero
mean and a standard deviation of 0.1.

Note that the output variable y is discrete count
data, and that the important factors or variables
affecting the output variable are x1, x4, and x5.

4.1.2 Performance measure

To evaluate the prediction performance of each
method, the root mean squared error (RMSE) and
correlation coefficient R are used. RMSE and R are
calculated as

RMSE =

√
√
√
√ 1

Nt

Nt∑

i=1

(yi − ŷi)2, (28)

R =

∑Nt

i=1(yi − ȳ)(ŷi − ¯̂y)
√
∑Nt

i=1(yi − ȳ)2
√
∑Nt

i=1(ŷi − ¯̂y)2
, (29)

where yi and ŷi represent the actual observed value
and the predicted value respectively, ȳ and ¯̂y repre-
sent the mean values of yi and ŷi respectively, and
Nt represents the size of testing samples.

To evaluate the identification performance of
each method for the important variables, a confu-
sion matrix (also known as an error matrix) is em-
ployed. The confusion matrix reports information
about the predicted and actual classes. Each column
of the matrix represents the instance in a predicted
class, while each row represents the instance in an
actual class. The first three variables in the order
of variable importance predicted by each method are

classified as important variables. The remaining two
variables at the bottom are classified as unimportant
variables. Table 1 shows a confusion matrix, in which
c1–c4 denote the numbers of variables identified by
each method in each group. Three metrics that are
calculated from the confusion matrix are commonly
employed to evaluate the identification performance
of each method quantitatively. They are defined as

Accuracy = (c1 + c4)/(c1 + c2 + c3 + c4), (30)

Recall = c1/(c1 + c2), (31)

Selectivity = c4/(c3 + c4). (32)

Table 1 Confusion matrix

Predicted class

Important Unimportant

Actual class
Important c1 c2

Unimportant c3 c4

4.1.3 Results and discussion

Using the above data generation process (sim-
ulation system), 2000 samples are generated. The
whole dataset is divided into the training dataset and
the testing dataset according to the 10-fold cross-
validation criterion. That is, the dataset is randomly
divided into ten parts, nine of which are used for
training and the remaining one for testing. This pro-
cess can be repeated 10 times, and the testing data
used is different each time. Table 2 shows the mean
prediction accuracy of each method in terms of RM-
SEP (RMSE of prediction) and R criteria. In PLS,
the number of latent variables used is set at 3, which
is determined by cross-validation. In RF, the num-
ber of trees is set at 500, which is determined by
the OOB error criterion. In GPR and GGPR, the
model hyperparameters are optimized by maximiz-
ing the marginal likelihood using the GPML toolbox
(Rasmussen and Nickisch, 2010). From Table 2, it
can be seen that GGPR is the most accurate model

Table 2 Prediction results of different methods in the
numerical example

Method RMSEP R

PLS 10.8894 0.9379
RF 5.4181 0.9846
GPR 7.5924 0.9693
GGPR 5.0024 0.9867
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among all the methods. Thus, the implementation
of SA-GGPR is feasible.

Table 3 shows the results of SA-GGPR in iden-
tifying the important factors for the above nonlinear
counting system in terms of confusion matrix crite-
rion. For comparison, the identification results of

Table 3 Identification results of important factors by
different methods in the numerical example

Method Accuracy Recall Selectivity

PLS-Beta 0.60 0.67 0.50
PLS-VIP 0.20 0.33 0
RF-PI 0.47 0.56 0.34
SA-GPR 0.61 0.67 0.51
SA-GGPR 0.98 0.98 0.97

PLS-Beta, PLS-VIP, RF-PI, and SA-GPR are also
provided. In Table 3, the identification result is the
average of 50 repeated experiments. From Table 3,
it can be seen that PLS-Beta, PLS-VIP, RF-PI, and
SA-GPR yield poor identification performance with
low accuracy, recall, and selectivity. In comparison,
the proposed SA-GGPR achieves the best identifica-
tion performance with the highest accuracy, recall,
and selectivity. The detailed identification results
are given in Fig. 1, where the results are shown visu-
ally in boxplots. In Fig. 1, the green boxes represent
important variable IDs and the white boxes represent
unimportant variable IDs. The importance of vari-
ables is normalized so that the sum is one. As shown
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Fig. 1 Identification results of important factors by different methods in the numerical example: (a) PLS-Beta;
(b) PLS-VIP; (c) RF-PI; (d) SA-GPR; (e) SA-GGPR. References to color refer to the online version of this
figure
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in Fig. 1, PLS-Beta, PLS-VIP, RF-PI, and SA-GPR
cannot fully identify all important variables (x1, x4,
and x5). In contrast, the proposed SA-GGPR suc-
cessfully identified that x1, x4, and x5 are important
variables, which is consistent with the experimental
design.

4.2 Steelmaking process

In this subsection, we apply the proposed SA-
GGPR method to solve a practical engineering prob-
lem and identify the most influential operating pro-
cess variables that affect the number of defects in the
steel plate.

The defect data contains 5000 samples and 71
process variables, and is collected from an indus-
trial casting-rolling process. The input variables in-
clude the casting speed, rolling temperature, cooling
temperature, and so on. The output variable is the
number of surface defects in the steel plate, which
is a count-type output. According to the knowledge
and experience of experts, the important and unim-
portant variables are listed in Table 4. Similar to
the numerical example, the confusion matrix crite-
rion is employed to evaluate the identification per-
formance of each method quantitatively. From Ta-
ble 4, it can be seen that the actual classes include 28
important variables and 43 unimportant variables.
For the predicted classes, the first 28 variables in
the order of variable importance predicted by each
method are classified as important variables, and the
remaining 43 variables at the bottom are classified
as unimportant variables. Based on Eqs. (30)–(32),
three metrics (accuracy, recall, and selectivity) can
be calculated.

Before implementing SA-GGPR, the accuracy
of the GGPR model first needs to be evaluated. We
randomly split the whole dataset into two parts. The
first is the training dataset with 4500 samples and
the second is the testing dataset with 500 samples.
The training dataset was used to train the model,
and the built model was then evaluated using the
testing dataset. The above procedure was repeated

Table 4 Importance based on the knowledge and ex-
perience of experts

Importance Variable ID Amount

Important 1, 3, 4, 5, 22, 24, 25, 28
41, 42, 48, 54–71

Unimportant The others 43

20 times. Table 5 summarizes the average prediction
error of each model. In PLS, the number of latent
variables used was set at 35. In RF, the number of
trees was set at 500. In GPR and GGPR, the model
hyperparameters were optimized by maximizing the
marginal likelihood using the GPML toolbox (Ras-
mussen and Nickisch, 2010). As shown in Table 5,
GGPR is the most accurate model with the smallest
RMSEP and the largest R among all the methods.
Thus, the implementation of SA-GGPR is feasible.

Table 6 shows the identification results of im-
portant factors by different methods in terms of the
confusion matrix criterion. PLS-Beta, PLS-VIP, RF-
PI, and SA-GPR exhibited low accuracy, recall, and
selectivity. As a consequence, the proposed SA-
GGPR had the best performance with the highest
accuracy, recall, and selectivity. More detailed iden-
tification results of each method are shown in Fig. 2.
The green boxes represent important variable IDs
and the white boxes represent unimportant variable
IDs. It can be seen that the proposed SA-GGPR
distinguished the important variables from the other
variables more accurately and clearly than the other
methods.

To investigate the computational cost of each
method, Table 7 presents the comparison results in

Table 5 Prediction results by different methods in
the casting-rolling process

Method RMSEP R

PLS 6.2552 0.5215
RF 3.7334 0.8764
GPR 5.1568 0.7128
GGPR 0.8396 0.9966

Table 6 Important factors identified by different
methods in the casting-rolling process

Method Accuracy Recall Selectivity

PLS-Beta 0.47 0.37 0.52
PLS-VIP 0.54 0.43 0.61
RF-PI 0.51 0.43 0.55
SA-GPR 0.70 0.69 0.70
SA-GGPR 0.80 0.75 0.84

Table 7 Computational time comparison of different
methods

Method Time (s)

PLS-Beta 0.11
PLS-VIP 0.18
RF-PI 32.85
SA-GPR 583.68
SA-GGPR 273.20
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Fig. 2 Identification results of important factors by different methods in the casting-rolling process: (a) PLS-
Beta; (b) PLS-VIP; (c) RF-PI; (d) SA-GPR; (e) SA-GGPR. References to color refer to the online version of
this figure

the same computing environment, which is a desk-
top computer with Windows 10 (64 bit), Intel (R)
Core (TM) i7-9700 CPU, 16 GB RAM, and MAT-
LAB R2019b. From Table 7, it can be seen that
PLS-Beta and PLS-VIP require shorter computing
time than the other methods. The computing time
used in RF-PI is longer than those in PLS-Beta and
PLS-VIP, but it is shorter than those in SA-GPR

and SA-GGPR. The computing time used in SA-
GGPR is shorter than that in SA-GPR. As a result,
the proposed SA-GGPR obtains the highest identifi-
cation accuracy without incurring the highest com-
putational cost. It should be emphasized that in
many cases, accuracy is more important than speed.
Therefore, the proposed SA-GGPR can be widely
used in many important factor identification cases.
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5 Conclusions

In this research, the sensitivity analysis of the
generalized Gaussian process regression (SA-GGPR)
model is proposed to identify important factors of
the nonlinear counting system. On one hand, the
GGPR model with Poisson likelihood is adopted to
describe the nonlinear counting system. The GGPR
model with Poisson likelihood inherits the merits of
nonparametric kernel learning and Poisson distribu-
tion, and can handle complex nonlinear counting sys-
tems. On the other hand, the identification of im-
portant factors for the nonlinear counting system is
introduced using SA-GGPR. SA-GGPR implements
a quantitative assessment of how different inputs af-
fect the system output based on the sensitivity mea-
sure. The usefulness and advantages of SA-GGPR
are verified by its application to a simulated nonlin-
ear counting system and a real steel casting-rolling
process. The application results show that the pro-
posed SA-GGPR method is feasible and more accu-
rate in identifying important factors of the nonlinear
counting system compared with several state-of-the-
art methods.
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