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Abstract: The Shack-Hartmann wavefront sensor (SHWS) is an essential tool for wavefront sensing in adaptive optical micro-
scopes. However, the distorted spots induced by the complex wavefront challenge its detection performance. Here, we propose a 
deep learning based wavefront detection method which combines point spread function image based Zernike coefficient estima-
tion and wavefront stitching. Rather than using the centroid displacements of each micro-lens, this method first estimates the 
Zernike coefficients of local wavefront distribution over each micro-lens and then stitches the local wavefronts for reconstruction. 
The proposed method can offer low root mean square wavefront errors and high accuracy for complex wavefront detection, and 
has potential to be applied in adaptive optical microscopes. 
 
Key words: Adaptive optics; Wavefront detection; Deep learning; Zernike coefficients; Microscopy 
https://doi.org/10.1631/FITEE.2000422 CLC number: O439 
 
 
1  Introduction 
 

Fluorescence microscopes enable the observa-
tion of specimen structure and function in biomedical 
research (Cornea and Conn, 2014). Over the past few 
decades, several super resolution optical microscopes 
have been developed to overcome the imaging reso-

lution limitation (Zeng et al., 2017; Wang BK et al., 
2019). To better investigate and analyze the biological 
phenomena, deep imaging penetration becomes sig-
nificant. However, the spatially varying refractive 
index in biological specimens limits the penetration 
depth and imaging quality of optical microscopes. 

As an effective way to detect and compensate for 
optical aberration, adaptive optics (AO) has been 
applied to improve the imaging performance of flu-
orescence microscopes (Ji, 2017). The main idea of 
AO is to measure the wavefront aberrations precisely 
and then compensate for them accordingly. There are 
two commonly used strategies, direct and indirect 
wavefront sensing, to implement AO in fluorescence 
microscopes. The former detects the aberrations 
through a wavefront sensor, such as the Shack- 
Hartmann wavefront sensor (SHWS) (Rodríguez and 
Ji, 2018). The latter offers a sensorless strategy, such 
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as image-based wavefront sensing (Booth, 2014). 
However, these two strategies have limitations. The 
SHWS-based strategy has the capability of fast 
wavefront detection, which is suitable for real-time 
biological imaging but only in transparent or weakly 
scattering samples (Wang K et al., 2014). For deep 
imaging penetration, the heterogeneous biological 
specimens could lead to complex speckle patterns on 
the SHWS, and these yield inaccurate wavefront 
slope measurements and thus incomplete compensa-
tion (Wang K et al., 2014). The indirect wavefront 
sensing strategy has been successfully applied in 
biological imaging (Booth et al., 2002; Park et al., 
2017), optical focusing (Cui, 2011; Hu LJ et al., 2020), 
image processing (Li et al., 2020), and optogenetics 
(Yoon et al., 2015), but the time it takes to reach the 
optimal corrective wavefront cannot be neglected. 
Using a segmented deformable mirror (DM) can im-
prove the wavefront detection speed, but increase the 
cost of the system (Tang et al., 2012). 

In recent years, the convolutional neural network 
(CNN) has been adopted in wavefront sensing. Sev-
eral studies use CNN to analyze the distorted point 
spread function (PSF) of the optical system to esti-
mate the corresponding Zernike mode coefficients or 
to predict the wavefront distribution (Jin et al., 2018; 
Paine and Fienup, 2018; Cheng et al., 2019; Nishizaki 
et al., 2019; Vanberg et al., 2019; Cumming and Gu, 
2020). However, these methods still require one or 
more cameras as the detectors, and it is difficult to 
obtain PSFs in some biological applications, such as 
in vivo deep tissue imaging. As for SHWS, by scan-
ning the guide star inside a small region, the measured 
average wavefront can offer effective compensation 
(Wang K et al., 2014, 2015; Liu TL et al., 2018; Liu R 
et al., 2019). 

Recently, CNN has been applied in SHWS to 
improve wavefront sensing performance. Gómez et al. 
(2018) applied a CNN to predict the centroids for 
wavefront reconstruction from an SHWS pattern. 
Swanson et al. (2018) used x and y wavefront slopes 
from SHWS to reconstruct the wavefront with a 
modified U-net. Dubose et al. (2020) proposed a CNN 
named ISNet to reconstruct the wavefront with 
wavefront slopes and the intensity summations from 
each sub-aperture in SHWS. However, these studies 
still use centroid positioning or wavefront slope 
measurements to reconstruct the wavefront. For bio-

logical imaging, the guide star in deep tissue would 
lead to complex speckle patterns on SHWS. This 
makes it challenging to measure the wavefront slopes. 
In our previous work, CNNs were used to predict 
Zernike mode coefficients from an SHWS pattern 
directly, and the wavefront detection performance 
when focusing through the mouse brain slice was 
demonstrated (Hu LJ et al., 2019; Hu SW et al., 2020). 

However, some aberrations induced by the thick 
tissue have complex distributions, which cannot be 
characterized by limited Zernike polynomial modes. 
As an alternative, the combination of local wavefront 
detection and wavefront stitching can reduce the dif-
ficulty of complex wavefront detection using an 
SHWS. 

Here, we propose a deep learning based wave-
front detection method, two-step wavefront detection 
(TSWD), to reconstruct the complex wavefront from 
an SHWS pattern. The main idea of our strategy is to 
combine the PSF image based Zernike coefficient 
prediction with wavefront stitching. A CNN is de-
signed to estimate the first 28 coefficients of Zernike 
square polynomials to reconstruct the local wavefront 
over each sub-aperture, and another CNN is imple-
mented for global wavefront retrieval. In this way, 
SHWS can be used to detect wavefront with complex 
distribution. The proposed method is compatible with 
a commonly used SHWS, and does not require any 
change to the system. The wavefront detection per-
formances of this method, such as the root mean 
square (RMS) wavefront error, peak-to-valley (PV) 
value, peak-to-background ratio (PBR), and detection 
speed, are evaluated by comparison with those of 
conventional wavefront reconstruction methods and 
an indirect wavefront sensing method. Wavefronts 
beyond the training range are used to examine the 
generalization ability of this method. 

 
 

2  Methods 

2.1 Data generation and wavefront detection  
processes 

The commonly used conventional wavefront 
reconstruction methods for SHWS are modal and 
zonal approaches, which require wavefront slope 
measurements from the spot array (Dai, 2008). Pre-
vious work has demonstrated that CNNs can predict 
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the Zernike mode coefficients from the SHWS pattern 
(Hu LJ et al., 2019; Hu SW et al., 2020). However, 
when using SHWS for complex wavefront detection, 
such as biological samples, the spot patterns become 
distorted or even have no effective centroids for po-
sitioning, and this limits the application of SHWS. To 
improve the detection capability of SHWS, we gen-
erated a series of complex wavefronts for network 
training and evaluation. In practical applications, a 
point light source, such as a fluorophore, serves as a 
guide star behind the sample, and the aberration in-
duced by the sample is conjugated to the rear pupil of 
the objective lens for further detection. Here, we used 
the multiplication of a two-dimensional Gaussian 
function and the Fourier spectrum of a random matrix 
to simulate the aberration over the objective lens 
(Schott et al., 2015). 

The wavelength of the guide star was set to 
532 nm, which is close to the emission wavelength of 
the widely used fluorophores. The wavefront range 
was set to [−2π, 2π] (with a PV value of 2λ, where 
λ=532 nm), and the complexity of the wavefront dis-
tribution could be changed by adjusting the width of 
the Gaussian function. The generated wavefront was 
conjugated to the pupil plane of the micro-lens array 
(MLA) for SHWS pattern generation or wavefront 
detection (Fig. 1). In this work, 12×12 micro-lenses 
(about 124 effective regions) were used in the SHWS 
(384×384 pixels). The corresponding SHWS patterns 
were generated by numerical simulations with 
MATLAB. To improve the robustness and generali-
zation of TSWD, Gaussian noise (variance of 10−5) 
and Poisson noise were added after normalizing the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

SHWS patterns. Then each sub-region of the SHWS 
patterns and their corresponding wavefronts were 
segmented according to the coordinates of the ideal 
SHWS spot array. Sub-regions with illumination 
coverage less than 10% were ignored during training 
and detection. The segmented local wavefronts were 
one-to-one decomposed with the first 28 Zernike 
square polynomials, which can be expressed as 
(Mahajan and Dai, 2007) 
 
ψphase(x, y)=c1S1(x, y)+c2S2(x, y)+…+c28S28(x, y)+…, 
 
where ψphase(x, y) is the square wavefront from the 
sub-aperture, Sn(x, y) the nth square Zernike mode, and 
cn the nth square Zernike mode coefficient. The coef-
ficient of the Piston term was set to zero because it 
does not affect the local wavefront distribution. For 
those sub-regions with incomplete illumination cov-
erage, the missing wavefront value was filled with the 
average value inside the corresponding sub-aperture. 
Each sub-region of the SHWS patterns and their 
corresponding square Zernike mode coefficients were 
used for Net1 training. Then the trained Net1 could be 
used to estimate the coefficients of sub-regions from a 
series of new SHWS patterns. The square wavefronts 
for each sub-aperture were formed by the predicted 
coefficients and then stitched according to the original 
coordinates. Although the local wavefront for each 
sub-aperture could be detected by Net1, their local 
Piston terms still require compensation. In this case, 
Net2 was trained with the stitched wavefronts and the 
original ones for wavefront retrieval.  The main pro-
cess of wavefront detection is given in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Illustration of the two-step wavefront detection 
S: sample; GS: guide star; L1 and L2: lenses; BSP: beam splitter plate; OBJ: objective lens. The dotted line indicates the pupil 
plane of the micro-lens array. Prediction 1 indicates the preliminary detected wavefront, and prediction 2 indicates the final 
wavefront with continuous distribution 

S                        OBJ                                  L1         BSP                       L2                        SHWS

Aberration Camera 

Prediction 1Prediction 2

Net2 Net1Zernike coefficients for 
each sub-aperture

GS

...
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Here, 2478 datasets (with 307 200 sub-regions) 
were generated for Net1 training and 32 760 datasets 
for Net2 training. Ten percent of the datasets were 
used for validation. The network training was per-
formed under Keras with TensorFlow backend (Py-
thon 3.6.9) on a desktop workstation (Intel Core 
i9-7920X CPU, NVIDIA RTX 2080 Ti). 

2.2 Architectures of convolutional neural  
networks 

To use the intensity distributions of the SHWS 
spots for wavefront detection and reconstruction, we 
designed a CNN (Net1) to estimate the first 28 coef-
ficients of Zernike square polynomials. The number 
of Zernike modes used here was determined through 
wavefront decomposition and statistical analysis. The 
architecture of Net1 is illustrated in Fig. 2a. Unlike 
the CNN used in our previous work, the correspond-
ing sub-region of each sub-aperture had a small image 
size (32×32). Here, the first two levels of Net1 were  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

used for up-sampling, each level consisting of an 
up-sampling layer with a 2×2 kernel size (with a 
stride of 2) to adjust the size and channels of the in-
puts, followed by a convolutional layer with a 3×3 
kernel size, batch normalization (BN), and a rectified 
linear unit (ReLU). To ensure the robustness and 
accuracy of the network, the next five convolutional 
stages and three fully-connected layers were designed 
for feature extraction and regression. In detail, some 
stages contained two branches with different kernel 
sizes (3×3 and 5×5) to make multi-scale feature fu-
sion (concatenate), which enlarges the receptive field 
of the network. BN and ReLU were followed by every 
convolutional layer to accelerate convergence. The 
results from the former stages were flattened and sent 
to the three fully-connected layers, which were sep-
arately activated by ReLU, ReLU, and a linear func-
tion. Finally, the fully-connected layers outputted 27 
parameters, which correspond to the predicted coef-
ficients of Zernike square polynomials. During the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Illustration of convolutional neural network architectures 
(a) Architecture of Net1 (Numbers on the left side indicate the channel numbers for each level; convolutional kernel sizes are 
given in the corresponding levels); (b) Architecture of Net2 (Numbers over each level indicate the channel numbers set to the 
corresponding blocks; numbers inside the circular arrows indicate the numbers of repeated operations; “down” and “up” indicate 
the down-sampling and up-sampling operations, respectively); (c) Details of the blocks used in Net2 (Channel numbers and 
kernel sizes are given in the corresponding layers). References to color refer to the online version of this figure 
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Net1 training, Adam was used as the optimizer with 
an initial learning rate of 10−4, and the learning rate 
decayed with iterations. The log–cosh function was 
used as the loss function to increase the robustness of 
Net1. 

The predicted Zernike coefficients from Net1 
were used to reconstruct the local wavefronts for 
every sub-aperture, and then the preliminary  
predicted wavefront was obtained. However, Piston 
errors exist between sub-apertures. Therefore, we 
proposed another CNN (Net2) to retrieve the final 
continuous wavefront at the pixel level from the pre-
liminary predicted one. The architecture of Net2 was 
derived from previous work, which combines ResNet 
with a fully convolutional network (Drozdzal et al., 
2016), as shown in Fig. 2b. Net2 contains five kinds 
of residual blocks, as illustrated in Fig. 2c. All the 
blocks apply pre-activation (BN followed by ReLU 
and a convolutional layer) for the input feature maps. 
The number of initial channels for each block is given, 
and each bottleneck block has a certain repetition 
number. The blocks in the decoder path were con-
catenated with feature maps outputted by the corre-
sponding levels in the encoder path, to speed up the 
convergence of the network. Different from the 
original architecture, the weights of each convolu-
tional layer were initiated by “he_normal” and the 
initial channel numbers of each block were adjusted 
to better retrieve the wavefront distribution. Each 
max-pooling layer was replaced by a convolutional 
layer with a 3×3 kernel size (with a stride of 2) to 
reduce the loss of information during propagation. 
The SoftMax classifier was removed to produce a 
continuous wavefront regression. During the Net2 
training, Adam was used as the optimizer with an 
initial learning rate of 5×10−5 and the learning rate 
decayed with iterations. The RMS wavefront error 
between the prediction and ground truth was used as 
the loss function to strongly penalize the slight  
difference. 

 
 
3  Results 
 

The proposed TSWD aims to detect the wave-
front with a complex distribution. It first performs 
local wavefront reconstruction for each sub-aperture 
over SHWS and then stitches the partition wavefronts 

to reconstruct the overall distribution. In this way, the 
intensity distributions of the distorted spots or speckle 
patterns on the SHWS are efficiently used. This can 
provide more accurate sensing than the centroid po-
sitioning and slope measurements. To demonstrate the 
wavefront detection capability of TSWD and com-
pare it with those of existing methods, we generated 
another 50 datasets (wavefronts and their corre-
sponding SHWS patterns) for evaluation. These are 
different from the training datasets. 

A set of comparison results in wavefront detec-
tion and compensation is given in Fig. 3. As shown in 
Fig. 3a, most SHWS spots are so strongly distorted 
that it is difficult to position the centroids and calcu-
late the local wavefront slopes. Since Zernike coeffi-
cients are insufficient to characterize the complex 
wavefront, these kinds of SHWS patterns limit the 
methods that rely on Zernike coefficient detection, 
and it becomes difficult to predict the accurate Zer-
nike coefficients through our previous work (Hu LJ 
et al., 2019; Hu SW et al., 2020). ISNet is a recently 
proposed method that uses both wavefront slopes and 
the intensity summation of each sub-aperture to  
reconstruct the wavefront through deep learning 
(Dubose et al., 2020). Here, to compare the wavefront 
detection performances of TSWD and a recently 
proposed learning based method, we reproduced 
ISNet which does not rely on Zernike coefficients but 
predicts wavefront directly. The same training da-
tasets as in TSWD were used to train ISNet. To obtain 
the inputs of ISNet, we extracted x and y slopes in 
every sub-region by morphological image processing 
and centroid positioning. Intensity in sub-regions was 
calculated by integration. To visually present the de-
tection results of TSWD, we presented the residuals 
of the detected wavefronts from Net1 and Net2. It is 
clear that after compensation with the wavefront re-
constructed by Net1, the residual in each sub-aperture 
becomes flat and the intensity distribution of the PSF 
is concentrated toward the center, but the Piston errors 
among these sub-apertures cannot be ignored. After 
wavefront retrieval with Net2, the complex wavefront 
can be efficiently compensated for and a bright fo-
cusing spot can be obtained. As for the conventional 
methods, the wavefronts reconstructed by the modal 
(with the first 66 Zernike modes) and zonal ap-
proaches are very different from the original one 
because of the missing details, as shown in Fig. 3b.  
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After compensation using ISNet, the intensity distri-
bution of the PSF tends to the center, but the peak 
intensity is much lower than that of TSWD. The 
focusing results of the other three methods present 
insufficient detection of the complex wavefront, and 
the central intensity profiles in Fig. 3c give an intui-
tive comparison of peak intensity after compensation. 
Fig. 3d displays the statistical results of the RMS 
wavefront errors of these methods. The RMS wave-
front error of TSWD (0.0338λ) is 92.17% lower than 
that of the modal approach (0.4314λ), 90.30% lower 
than that of the zonal approach (0.3483λ), and 87.05% 
lower than that of ISNet (0.2611λ). This means that 
TSWD is suitable for detecting the wavefront with a 
complex distribution. The detection speed is im-
portant for the wavefront reconstruction method. 
Here, the averaged time taken by TSWD to detect a 
complex wavefront (384×384) from an input SHWS 
pattern is 0.1385 s, which is about 1.42% faster than 
the modal approach (0.1405 s). However, because of 
the different detection mechanisms, the zonal approach 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(0.1181 ms) and ISNet (38.57 ms) have faster detec-
tion speed. Considering that these two approaches are 
far less accurate than TSWD, this gap in detection 
speed is acceptable. 

To further evaluate the wavefront detection ca-
pability of TSWD, we generated a series of wavefront 
groups with different PV values. PV values of these 
wavefronts vary from 1λ to 3λ, each group containing 
nine datasets. Fig. 4 presents two sets of comparison 
with four methods. The first set of comparisons 
shown in Fig. 4a has a PV value of 1λ, and the spots 
on the SHWS are still tight enough for centroid posi-
tioning. However, the conventional methods and 
ISNet failed to detect the complex distribution of the 
local wavefronts, resulting in an incomplete com-
pensation. As a comparison, the predicted wavefront 
of TSWD could well compensate for the original one. 
From this comparison, we can see that the complex 
wavefront with a small PV value would not seriously 
distort the PSF, but the focal intensity of the PSF 
would clearly decrease, which reveals the importance  

Fig. 3  Comparison results of wavefront detection 
(a) Compensation results of Net1 and Net2 (The SHWS pattern is given on the left side with a scale bar of 500 μm; the original 
wavefront and the wavefront residual after compensation with the predicted wavefront from Net1 and Net2 are given; below the 
wavefronts are their corresponding focusing results with a scale bar of 3 μm); (b) Detection results of conventional methods and 
ISNet (Below the wavefronts are the focusing results after compensation with the corresponding methods); (c) Central intensity 
profiles of different methods; (d) Statistical results of the RMS wavefront errors of different methods. References to color refer to 
the online version of this figure 
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of wavefront distribution detection on every 
sub-aperture. Another set of comparisons with a PV 
value of 3λ is given in Fig. 4b. In this comparison, 
the PV value is beyond the training range of our 
networks, and most spots on the SHWS become 
speckle patterns. However, our method could offer an 
acceptable compensation result, while the conven-
tional methods and ISNet failed to detect the wave-
front. Furthermore, in these comparisons, the wave-
front residuals of the modal approach are significantly 
larger than those of the zonal approach. This means 
that the modal approach is more sensitive to the 
complex wavefronts. Since the modal approach has 
been widely adopted in adaptive optical microscopes, 
this limitation would degrade its performance in deep 
tissue imaging. 

To better compare the performances of these 
methods, we calculated the RMS wavefront errors 
and the residual wavefront PV values of four methods 
with different input wavefront PV values. The trends 
of the compensation results are given in Fig. 5. From  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the line charts, we found that the wavefront residuals 
of four methods increase as the input wavefront PV 
value increases, but the residuals of TSWD are much 
lower than those of other methods. When detecting 
the complex wavefronts beyond the training range, 
TSWD could offer an acceptable result, while the 
other mentioned methods performed poorly. The in-
tensity distortions of spots in SHWS are related to PV 
values. Since the complex wavefront decreases the 
completeness of the SHWS pattern, the accuracy of 
centroid positioning and the performance of deep 
learning based wavefront sensing are both degraded. 

It is seen that direct wavefront sensing failed in 
complex wavefront detection and reconstruction. 
However, indirect wavefront sensing always has a 
better performance in overcoming severe optical 
scattering. Examples of such sensing are the coherent 
optical adaptive technique (COAT) and digital optical 
phase conjugation (DOPC) (Cui, 2011; Yu et al., 2019; 
Hu LJ et al., 2020). Therefore, we compared TSWD 
with COAT which has been applied in optical  

Fig. 4  Comparison results of wavefront detection with different PV values 
(a) Compensation results with a PV value of 1λ (The SHWS pattern is given on the left side with a scale bar of 500 μm; the 
wavefront residual after compensation and the original wavefront are given accordingly; below the wavefronts are the corre-
sponding focusing results with a scale bar of 3 μm; the central intensity profiles of the compensated foci are given on the left 
side); (b) Compensation results with a PV value of 3λ. References to color refer to the online version of this figure 

(a) SHWS Original rad
π

0

−π
0.3

0
(b)

Modal Zonal ISNet TSWD

−2           0           2
x (μm) 

1.0

0.5

0

Distorted 
Modal 
Zonal
ISNet
TSWD

In
te

ns
ity

 (a
.u

.)

Residual

rad
3π

0

−3πrad

RMSE=0.1725λRMSE=0.0254λRMSE=0.1605λRMSE=0.1635λRMSE=0.1877λ 0.3

0

RMSE=0.6418λ RMSE=0.5239λ RMSE=0.4002λ RMSE=0.1361λ RMSE=0.5054λ

1

0

0.01

0

1

0

0.01

0

Distorted 
Modal 
Zonal
ISNet
TSWD

−2           0           2
x (μm) 

1.0

0.5

0

In
te

ns
ity

 (a
.u

.)

1

0

±3π

±π



Hu et al. / Front Inform Technol Electron Eng   2021 22(10):1277-1288 1284 

focusing. We divided the incident wavefront into 
12×12 (132 effective), 24×24 (484 effective), and 
32×32 (856 effective) segments. It should be men-
tioned that each segment in COAT represents an op-
tical mode for wavefront modulation and correction. 
Because the image or wavefront size (384×384) 
cannot be divided by 36, 32×32 wavefront segmen-
tation was chosen here as the maximum, and the 
minimum is equal to the number of micro-lenses. In 
addition, the detection speed of COAT relies on the 
number of modulated optical modes and the modula-
tion speed of the wavefront modulation device (spa-
tial light modulator or deformable mirror). With the 
same device configuration, COAT requires much  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

more time than the direct wavefront sensing approach, 
so its detection speed is not compared here. Fig. 6 
shows the comparison results with a PV value of 2λ. 
The original distorted wavefront and the corre-
sponding wavefront residuals after compensation are 
given in Fig. 6a. It can be clearly seen that the wave-
front residuals of COAT become smoother as the 
number of segments increases. When the number of 
modulated optical modes in COAT increases to 
around 1000, the wavefront residual is almost flat but 
still inferior to that of TSWD. The corresponding 
distribution of PSFs and their central profiles are 
given in Figs. 6c and 6b, respectively. The light con-
centrates to the center, and the peak intensity is  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Comparison results of the wavefront detection with a PV value of 2λ using COAT with 12×12, 24×24, and 32×32 
segments and TSWD 
(a) Original wavefront and wavefront residuals after compensation with COAT and TSWD; (b) Central intensity profiles of the 
compensated foci and the distorted focus; (c) Corresponding compensated focusing results with a scale bar of 3 μm 

Fig. 5  Detection results with different wavefront PV values 
(a) RMS wavefront error vs. input wavefront PV value; (b) Residual wavefront PV value vs. input wavefront PV value. Each 
group contains nine datasets. Bars indicate the standard deviations 
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improved after compensation with COAT. However, 
TSWD performs better, and its peak intensity is more 
than twice that compensated for using COAT with 
32×32 segments. 

The Strehl ratio (SR) is an important metric for 
validating wavefront compensation performance. 
However, because of the seriously distorted PSF, it is 
difficult to determine the SR for the corrected PSF. 
Here, we calculated the PBR of the PSFs to compare 
wavefront compensation performance. The PBR is 
defined as the ratio of the peak intensity to the average 
background intensity outside the focal volume (one 
Airy disk). 

Comparison results of the PBRs are given in 
Fig. 7. After compensation using TSWD, the PBRs of 
corrected PSFs are around two orders of magnitude 
higher than those with conventional direct wavefront 
sensing approaches and also much higher than that 
with the indirect wavefront sensing approach, 
whether within or beyond the training range. A simi-
lar result is observed using ISNet. As illustrated in 
Fig. 7, TSWD can offer PBRs closer to the ideal sit-
uation for a complex wavefront with a PV value var-
ying from 1λ to 2λ. Although the PBRs of corrected 
PSFs decay as the PV value increases, TSWD is still 
much better than other approaches. Its performance 
could be further improved by additional training with 
new datasets or by performing iterative detection for 
better compensation. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
To prove the effectiveness of our strategy, we 

compared the performance of TSWD with that of the 
modified U-net which can predict the whole wave-
front directly (Vanberg et al., 2019). Fig. 8 shows the 
corresponding results and analysis. Comparison re-

sults on the testing datasets are shown in Fig. 8a. The 
intensity distribution of the PSFs becomes better after 
compensation with both methods, but the peak inten-
sity compensated for using TSWD is a little higher 
than that of the modified U-net. Considering different 
kinds of wavefronts beyond the range of the training 
dataset, comparisons are illustrated in Figs. 8b and 8c. 
During the generation of wavefronts, the standard 
deviation of the Gaussian function controls the 
smoothness of wavefronts and the PV value controls 
the amplitude of wavefronts. Thus, we generated 
additional testing datasets with different parameters 
for further comparison. As for the flatter wavefront, 
which has a standard deviation of 4, TSWD shows 
obvious advantages. The residual of the wavefront is 
rougher and the peak intensity of the PSF is half that 
of TSWD. At the same time, TSWD maintains its 
advantages when the PV value becomes smaller. We 
have repeated experiments on a series of wavefront 
groups with nine different PV values and six different 
standard deviations of the Gaussian function. The PV 
value varies from 1λ to 3λ, each group containing nine 
datasets. The standard deviation of the Gaussian 
function varies from 4 to 24, each group also con-
taining nine datasets. The comparison results of the 
RMS wavefront errors are given in Figs. 8d and 8e. 
We found that the wavefront residuals of the two 
methods increase as the input wavefront PV value 
increases, but the wavefront residuals of the modified 
U-net decrease first and then increase as the standard 
deviation increases. This means that TSWD has better 
generalization ability and shows advantages with 
various types of wavefronts, especially with a low 
standard deviation. 

 
 

4  Discussion and conclusions 
 

SHWS is a powerful tool for fast wavefront de-
tection in several fields. However, SHWS is sensitive 
to the intensity distribution of the spot array. In 
adaptive optical microscopes, the commonly used 
wavefront reconstruction approach for SHWS, such 
as the modal approach, relies on centroid positioning. 
When detecting a wavefront with a complex distri-
bution, centroid positioning and slope measurements 
would become inaccurate, and this leads to failed 
wavefront reconstruction. In addition, Zernike  

Fig. 7  Comparison of peak-to-background ratios with 
different methods (81 datasets) 
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coefficients are insufficient for characterizing a 
complex wavefront, and this limits the prediction 
accuracy of some methods that rely on Zernike coef-
ficients. To improve the wavefront detection accuracy 
of SHWS, it is necessary to use the intensity distri-
bution in each sub-region for wavefront reconstruc-
tion. If the spot intensity information is used, the 
detection accuracy of SHWS can be effectively  
improved. 

In this work, we combined the PSF image based 
Zernike coefficient estimation for local wavefronts 
and the wavefront stitching method for accurate 
wavefront reconstruction. With the help of CNNs, the 
intensity distribution of every spot on SHWS can be 
efficiently used for local wavefront reconstruction, 
and Piston errors between each local wavefront can be 
compensated for by a neural network. Numerical 
simulation results show that, compared to the con-
ventional SHWS wavefront reconstruction approaches, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i.e., the recently proposed ISNet, the indirect wave-
front detection method COAT, and the modified U-net, 
TSWD can offer higher wavefront detection accuracy 
and better generalization ability. The detection speed 
of TSWD is faster than that of the modal approach 
that is widely used in adaptive optical microscopes. 
Compared to the zonal approach and ISNet, our 
method can make up for the delay in the detection by 
its high detection accuracy. Although the networks 
are trained with complex wavefronts of a limited PV 
value range, the generalization of the models enables 
them effectively to detect a complex wavefront out-
side the training range. By additional training and 
optimizing the network architectures, the perfor-
mance of TSWD could be further improved. For 
example, the effective range of accurate prediction 
can be enlarged by adding more kinds of wavefronts 
into the training dataset and the speed can be in-
creased by compressing our model. 

Fig. 8  Comparison of different types of wavefronts between TSWD and modified U-net 
(a) Compensation results with a standard deviation of 16 and a PV value of 2λ (The original wavefront and the corresponding 
wavefront residual after compensation are given on the upper side; below the wavefronts are the focusing results with two 
methods; the central intensity profiles of the compensated foci are given on the left side with a scale bar of 3 μm); (b) Com-
pensation results with a standard deviation of 4 and a PV value of 2λ; (c) Compensation results with a standard deviation of 16 
and a PV value of 1λ; (d) RMS wavefront error vs. input wavefront PV value; (e) RMS wavefront error vs. standard deviation 
(Each group contains nine datasets, and bars indicate the standard deviations). References to color refer to the online version of 
this figure 
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In conclusion, we have proposed a deep learning 
based method for SHWS to effectively detect a 
wavefront with a complex distribution. The proposed 
method makes up for the deficiencies of conventional 
methods and ISNet in complex wavefront detection. 
This allows SHWS to be applied to some areas which 
require high-precision detection of complex wave-
fronts. At the same time, the proposed method 
shortens the time of wavefront detection compared 
with COAT. The detection accuracy in a variety of 
situations and acceptable speed give our method the 
potential to be further applied in optical stimulation 
and imaging in biological science. 
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