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Abstract: The H∞ control method is an effective approach for attenuating the effect of disturbances on practical
systems, but it is difficult to obtain the H∞ controller due to the nonlinear Hamilton–Jacobi–Isaacs equation, even
for linear systems. This study deals with the design of an H∞ controller for linear discrete-time systems. To solve the
related game algebraic Riccati equation (GARE), a novel model-free minimax Q-learning method is developed, on
the basis of an offline policy iteration algorithm, which is shown to be Newton’s method for solving the GARE. The
proposed minimax Q-learning method, which employs off-policy reinforcement learning, learns the optimal control
policies for the controller and the disturbance online, using only the state samples generated by the implemented
behavior policies. Different from existing Q-learning methods, a novel gradient-based policy improvement scheme is
proposed. We prove that the minimax Q-learning method converges to the saddle solution under initially admissible
control policies and an appropriate positive learning rate, provided that certain persistence of excitation (PE)
conditions are satisfied. In addition, the PE conditions can be easily met by choosing appropriate behavior policies
containing certain excitation noises, without causing any excitation noise bias. In the simulation study, we apply
the proposed minimax Q-learning method to design an H∞ load-frequency controller for an electrical power system
generator that suffers from load disturbance, and the simulation results indicate that the obtained H∞ load-frequency
controller has good disturbance rejection performance.

Key words: H∞ control; Zero-sum dynamic game; Reinforcement learning; Adaptive dynamic programming;
Minimax Q-learning; Policy iteration
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1 Introduction

Reinforcement learning (RL) is an efficient ma-
chine learning technique for dealing with sequen-
tial decision-making problems when an agent inter-
acts with an external environment, such as Markov
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decision processes (Sutton and Barto, 1998). The
core mechanism of RL is that an agent unceasingly
modifies its action, based on the observed stim-
uli or reward received from the environment, via
trial-and-error. Compared with the traditional dy-
namic programming (DP) technique for handling
sequential decision-making problems, RL runs for-
ward in time (i.e., online) and overcomes the curse-
of-dimensionality problem, and can find the opti-
mal policy even in a dynamic environment, e.g.,
dynamic games. It has been shown that RL com-
bines the advantages of optimal and adaptive control
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(Kiumarsi et al., 2018), which makes it a promising
technique for solving optimal control problems and
dynamic games. In the control field, RL is also re-
ferred to as adaptive dynamic programming (ADP).
ADP approaches can be classified into several main
schemes: heuristic dynamic programming (HDP),
action-dependent HDP (ADHDP), dual heuristic
dynamic programming (DHP), ADDHP, globalized
DHP (GDHP), and ADGDHP (Prokhorov and Wun-
sch, 1997). During the last few years, many elegant
ADP approaches have been proposed to solve opti-
mal control problems (He and Zhong, 2018; Li HR et
al., 2020) and dynamic games (Vamvoudakis et al.,
2017; Zhu et al., 2017; Li XX et al., 2019; Valadbeigi
et al., 2020).

Due to the uncertainty caused by the environ-
ment, most practical systems always suffer from ex-
ternal disturbances. To attenuate the effect of distur-
bances on the system performance, controllers that
can offer robust performance and guarantee stabi-
lization are needed. One of the most effective ap-
proaches is the H∞ control theory, which concen-
trates on designing controllers to achieve disturbance
attenuation in the L2-gain setting (Doyle et al., 1989;
Başar and Bernhard, 1995). It is well known that ob-
taining an H∞ controller requires solving the nonlin-
ear Hamilton–Jacobi–Isaacs (HJI) equation. How-
ever, obtaining the analytic solution of the HJI equa-
tion is impossible. Thus, an approximate solution
is always obtained instead (Sakamoto and van der
Schaft, 2008). Over the past few years, many ADP
methods have been developed to solve continuous-
time HJI equations. Luo et al. (2015) proposed a
model-free policy iteration (PI) algorithm with one
iteration loop for designing anH∞ controller for non-
linear continuous-time systems, by employing off-
policy RL. Modares et al. (2015) developed an online
off-policy ADP algorithm for the H∞ tracking con-
trol of continuous-time systems, to name a few.

Compared with H∞ control of continuous-time
systems, H∞ control of discrete-time systems is more
challenging, because the discrete-time HJI equations
do not have a closed-loop form (Başar and Bern-
hard, 1995). To solve discrete-time HJI equations,
Mehraeen et al. (2013) proposed an offline PI algo-
rithm with two iteration loops by using Taylor se-
ries. To obviate the need for knowledge of the sys-
tem, Zhang et al. (2014) proposed an online PI algo-
rithm by introducing a neural network (NN) identi-

fication scheme. Further, a completely model-free
GDHP approach was presented without the need
for the NN identifier (Zhong et al., 2018). By em-
ploying off-policy RL, Kiumarsi et al. (2017) pro-
posed a model-free ADP method that can learn the
H∞ controller for linear discrete-time systems on-
line. Q-learning serves as another powerful tool for
handling discrete-time H∞ control problems. The
first Q-learning method with guaranteed conver-
gence was proposed by Watkins and Dayan (1992)
to solve Markov decision processes by employing the
temporal-difference (TD) learning technique. Then,
minimax Q-learning and Nash-Q learning were de-
veloped for zero-sum and nonzero-sum stochastic
games with finite state and action spaces, respec-
tively (Littman, 2001). Over the past few years,
many efficient Q-learning approaches have been de-
veloped for optimal control (Wei QL et al., 2017; Luo
et al., 2018; Wei YF et al., 2019; Yan et al., 2019)
and H∞ control (Al-Tamimi et al., 2007; Rizvi and
Lin, 2018; Valadbeigi et al., 2020). In Al-Tamimi
et al. (2007), a value-iteration-based Q-learning al-
gorithm with convergence guarantee was presented
to solve the discrete-time zero-sum game problem,
but this algorithm suffers from the excitation noise
bias problem, because the injected probing noises
in the policy evaluation step will cause excitation
noise bias (Kiumarsi et al., 2017). On the basis
of this state feedback Q-learning, output feedback
Q-learning methods that overcome the excitation
noise bias problem have been proposed (Rizvi and
Lin, 2018; Valadbeigi et al., 2020). Generally speak-
ing, most of the existing Q-learning methods for H∞
control of linear discrete-time systems are based on
value iteration. Meanwhile, theoretical foundations
for policy-iteration-based Q-learning are relatively
lacking in the literature. Although the convergence
analyses of minimax Q-learning and policy iteration
for stochastic games were given in Littman (2001)
and Hansen et al. (2003), respectively, these results
do not hold for H∞ control of discrete-time systems
with continuous state and action spaces.

Inspired by off-policy RL and adaptive control,
we develop a novel policy-iteration-based minimax
Q-learning method for H∞ control of linear discrete-
time systems, with guaranteed convergence. The
main contributions of this study are summarized as
follows:

1. The proposed policy-iteration-based minimax



440 Li et al. / Front Inform Technol Electron Eng 2022 23(3):438-451

Q-learning method, which employs an off-policy RL
technique, learns the H∞ controller online using only
the state samples generated by the behavior polices,
without querying the system model or causing any
excitation noise bias.

2. Different from existing Q-learning methods
(Al-Tamimi et al., 2007; Rizvi and Lin, 2018; Valad-
beigi et al., 2020; Luo et al., 2021), we develop a novel
policy improvement scheme by borrowing the idea of
a stochastic gradient algorithm. The newly improved
control policies can be obtained via online learn-
ing without the need for calculating the inverse of
the value matrix after performing policy evaluation.
Moreover, this policy improvement scheme applies
to H∞ control of nonlinear discrete-time systems.

3. Unlike TD-based minimax Q-learning for
stochastic games (Littman, 2001), our minimax Q-
learning method is based on policy iteration. In addi-
tion, we give a rigorous convergence analysis of offline
policy iteration for H∞ control of linear discrete-
time systems by proving its equivalence to Newton’s
method for solving the game algebraic Riccati equa-
tion (GARE), and on this basis, we prove that the
proposed policy-iteration-based minimax Q-learning
method converges to the exact saddle solution under
an appropriate learning rate and certain persistence
of excitation (PE) conditions.

Notations: R
n denotes the n-dimensional Eu-

clidean space. R
n×m is the set of real n × m ma-

trices. ⊗ stands for the Kronecker product. vec(·)
is the vectorization operator that stacks each col-
umn of a matrix into a one-column vector. For
vector x ∈ R

n, the Kronecker product quadratic
polynomial basis vector of x is defined as σ(x) =

[x2
1, . . . , x1xn, x

2
2, . . . , x2xn, . . . , xn−1xn, x

2
n]

T. The
Frobenius norm for matrix A ∈ R

n×m is defined
as ‖A‖ = (tr(ATA))1/2, where tr(·) represents the
trace of a matrix. For a real symmetric matrix
E ∈ R

n×n, λmin(E), λmax(E), and ρ(E) denote
the minimum eigenvalue, maximum eigenvalue, and
spectral radius of E, respectively.

2 Problem statement

In this section, we give the formulation of the
worst-case controller design problem, that is, the H∞
optimal control of linear discrete-time systems. Con-
sider the following linear discrete-time system with

two types of inputs:

xk+1 = Axk +Buk +Dwk, (1)

where xk ∈ R
n is the system state vector, uk ∈ R

m1

is the control input vector, andwk ∈ R
m2 is an exter-

nal disturbance input vector belonging to the square-
summable space L2(0,∞), i.e.,

∑∞
k=0 w

T
k wk < ∞

(thus, wk has finite energy). The plant matrix
A ∈ R

n×n and the input matrices B ∈ R
n×m1 and

D ∈ R
n×m2 are assumed to be unknown.

The aim of H∞ control is to find the optimal
control policy u∗ such that system (1) is asymptot-
ically stable with wk = 0 and the following distur-
bance attenuation condition

∞∑

k=0

(
xT
kSxk + uT

kRuk

)
≤ γ2

∞∑

k=0

wT
k wk

is satisfied, where S and R are user-defined positive
definite matrices, and γ > 0 is a prescribed constant
disturbance attenuation level. To make sure that
the problem is solvable, we make controllability and
observability assumptions on (A,B) and (A,

√
S),

respectively.
According to Başar and Bernhard (1995),

the H∞ optimal control problem can be equiva-
lently translated into a two-player zero-sum linear
quadratic dynamic game, i.e., the following minimax
optimization problem:

(u∗
k,w

∗
k)

=min
uk

max
wk

∞∑

i=k

(xT
i Sxi + uT

i Rui − γ2wT
i wi)

=max
wk

min
uk

∞∑

i=k

(xT
i Sxi + uT

i Rui − γ2wT
i wi) (2)

subject to

xk+1 = Axk +Bu∗
k +Dw∗

k. (3)

V (xk) =
∑∞

i=k (x
T
i Sxi + uT

i Rui − γ2wT
i wi) is the

value function corresponding to admissible control
policies u and w. The goal of the zero-sum dynamic
game is to find the feedback saddle solution (u∗,w∗)
such that the following inequality

V (xk,u
∗
k,wk)≤V ∗(xk,u

∗
k,w

∗
k)≤V (xk,uk,w

∗
k), ∀k

(4)
is satisfied for arbitrary admissible control policies
u and w. From inequality (4), we know that no
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player will deviate from (u∗,w∗), because a unilat-
eral change of strategy will cause a loss of revenue
for both players.

According to Bellman’s principle of optimality,
the feedback saddle solution (u∗,w∗) should satisfy
the following Bellman optimality equation:

V ∗(xk)=xT
kSxk+(u

∗
k)

TRu∗
k−γ2(w∗

k)
Tw∗

k+V
∗(xk+1),

(5)
where xk+1 = Axk + Bu∗

k + Dw∗
k. From Başar

and Bernhard (1995), we can represent the value
function V ∗(xk) as a quadratic form of the state,
i.e., V ∗(xk) = xT

kPxk, where P is the positive
semi-definite value matrix. Substituting V ∗(xk) =

xT
kPxk into Eq. (5) gives the feedback gains corre-

sponding to the saddle solution:

K∗
1 =

(
BTPD(γ2I−DTPD)−1DT+PBR+BTPB

)−1

×
(
BTPA+BTPD(γ2I −DTPD)

−1
DTPA

)
,

(6)
K∗

2 =
(
−DTPB(R+BTPB)−1BTPD+DTPD−γ2I

)−1

×
(
DTPA−DTPB(R+BTPB)

−1
BTPA

)
;

(7)
hence, u∗

k = −K∗
1xk and w∗

k = −K∗
2xk. Substitut-

ing u∗
k and w∗

k into Eq. (5) then yields the compact
form of the GARE

P = ATPA+ S −
[
ATPB ATPD

]

×
[

R+BTPB BTPD

DTPB DTPD−γ2I

]−1 [
BTPA

DTPA

]

.

(8)
To guarantee a unique feedback saddle solution,

the following inequalities

I − γ−2DTPD > 0, (9)

I +BTPB > 0 (10)

should be satisfied (Başar and Bernhard, 1995). Fur-
thermore, the disturbance attenuation level γ should
be selected such that γ ≥ γ∗ > 0 is satisfied, where
γ∗ > 0 is the infimum of γ.

From Eqs. (6)–(8), we know that obtaining K∗
1

and K∗
2 requires solving the GARE, which is a non-

linear matrix equation. Moreover, Eqs. (6)–(8) are
dependent on full knowledge of A, B, and D, which
are assumed to be unknown in this study. In the

following sections, we will develop a minimax Q-
learning algorithm to learn online K∗

1 and K∗
2 with-

out querying the system models A, B, and D.

3 Offline policy iteration for zero-sum
linear quadratic dynamic games

Before deriving the online minimax Q-learning
algorithm, we first introduce the model-based offline
PI algorithm deduced from Algorithm 1 in Kiumarsi
et al. (2017). The offline PI algorithm lays the foun-
dation for the following minimax Q-learning algo-
rithm. The offline PI algorithm, employing a succes-
sive approximation technique, indirectly solves the
nonlinear GARE (8) by constructing a sequence of
linear matrix equations. The detailed algorithm is
given in Algorithm 1.

Algorithm 1 Model-based offline policy iteration
algorithm
1: Start with a set of initially stabilizing feedback gains

(K1
1 ,K

1
2 ) // Initialization

2: For the given stabilizing feedback gains (Kl
1,K

l
2),

solve for the corresponding value matrix P l+1 via
the following matrix equation: // Policy evaluation

P l+1 =S+(Kl
1)

TRKl
1−γ2(Kl

2)
TKl

2+(A−BKl
1

−DKl
2)

TP l+1(A−BKl
1 −DKl

2)

(11)

3: Update the control policy and disturbance policy
using the following equation: // Policy improvement(

Kl+1
1

Kl+1
2

)
= ζ(P l+1)

[
BTP l+1A

DTP l+1A

]
, (12)

where ζ(P l+1) is defined as follows:

ζ(P l+1)=

[
R+BTP l+1B BTP l+1D

DTP l+1B DTP l+1D−γ2I

]−1

4: Stop if
∥∥Kl+1

i −Kl
i

∥∥ ≤ ε (i = 1, 2), where ε is a
threshold; otherwise, set l = l + 1 and go to step 2

The policy evaluation step (Eq. (11)) is used to
evaluate the performance of the given control policy
ul = −K l

1x and the disturbance policy wl = −K l
2x.

After policy evaluation, a new control policy and
the disturbance policy are obtained via the certainty
equivalence principle; that is, the obtained value ma-
trix P l+1 is regarded as the optimal value matrix P .
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In the following theorem (Theorem 1), we will prove
that (K l

1,K
l
2) will converge to (K∗

1 ,K
∗
2 ) under any

initially stabilizing feedback gains (K1
1 ,K

1
2 ).

Before giving the convergence proof, we define
two useful mappings. Consider the space R

n×n

composed of all n×n dimensional real matrices. We
can easily verify that Rn×n forms a Banach space un-
der the Frobenius norm. We now define a mapping
F : Rn×n → R

n×n:

F(P l)=ATP lA+S−P l−Θ(P l)ζ(P l)(Θ(P l))T,

(13)
where Θ(P l) = [ATP lB ATP lD] and

ζ(P l) =

[
R+BTP lB BTP lD

DTP lB DTP lD − γ2I

]−1

.

From the definition of F , we know that P is
the zero-point of mapping F . Now we define a new
mapping based on F . The new mapping T : Rn×n →
R

n×n is given as follows:

T (P l) = P l − (F ′
P l)

−1(P l), (14)

where F ′
P l is the Fréchet derivative of F taken with

respect to P l. Clearly, Eq. (14) is exactly Newton’s
method for obtaining the zero-point of F , or equiva-
lently the fixed-point of Eq. (8). Directly calculating
the Fréchet derivative is always impossible, so we
calculate the Gâteaux derivative instead.
Definition 1 (Gâteaux derivative) Let Ξ: U(V ) ∈
X → Y be a mapping from Banach spaceX to Banach
space Y, where U(V ) is a neighborhood of V . The
mapping Ξ is Gâteaux differentiable at V if and only
if there exists a bounded linear operator G : X → Y

such that Ξ(V +sW )−Ξ(V ) = sG(W )+o(s), s → 0

for all W with ‖W ‖ = 1 and all real numbers s in
some neighborhood of zero, where lims→0o(s)/s = 0.
The linear operator G is called the Gâteaux deriva-
tive of Ξ at V ; thus, G is calculated as

G(W ) = lim
s→0

Ξ(V + sW )− Ξ(V )

s
. (15)

Note that the Fréchet derivative at V equals the
Gâteaux derivative G, if the Gâteaux derivative G ex-
ists in some neighborhood of V and G is continuous
at V . Now we turn to calculating the Fréchet deriva-
tive of F at P l according to the following lemma:
Lemma 1 Let F be a mapping defined in Eq. (13).

Then the Fréchet derivative of F at P l is given by

F ′
P l(M)

= ATMA−M −Θ(M)ζ(P l)(Θ(P l))T −Θ(P l)

×ζ(P l)(Θ(M))T+Θ(P l)ζ(P l)ϑ(M)ζ(P l)(Θ(P l))T,

(16)

where Θ(M) = [ATMTB ATMTD] and

ϑ(M) =

[
BTMB BTMD

DTMB DTMD

]

.

Proof First, we calculate the Gâteaux derivative G
atP l. Note that (I +X)−1 = I−X+X2−X3+· · ·
holds for any X ∈ R

n×n if ρ(X) < 1 is satisfied.
Select s such that s < ρ−1(ζ(P l)ϑ(M)) is met. We
then obtain

FP l(P l+sM)

=ATP lA− P l − sATMA+ S − sM +Δ1(s)

−Θ(P l)ζ(P l)(Θ(P l))T − sΘ(M)ζ(P l)

× (Θ(P l))T − sΘ(P l)ζ(P l)(Θ(M))T + sΘ(P l)

× ζ(P l)ϑ(M)ζ(P l)(Θ(P l))T, (17)

where Δ1(s) is the higher-order term on s; in
other words, lims→0Δ1(s)/s = 0n×n. Combining
Eqs. (13) and (17) we know that the Gâteaux deriva-
tive G equals the right-hand side of Eq. (16) accord-
ing to the definition of the Gâteaux derivative (15).
Clearly, G is continuous with respect to M , because
G is a linear function of M , and the system matrices
are constant. Therefore, the Fréchet derivative of F
at P l equals the Gâteaux derivative G. The proof is
completed.

Employing the result from Lemma 1, we can
now prove that Algorithm 1 is equivalent to Newton’s
method for calculating the zero-point of Eq. (8) in
the Banach space R

n×n.
Theorem 1 Let T be the mapping defined in
Eq. (14). Then iteration between Eqs. (11) and (12)
is equivalent to the following Newton method:

P l+1 = T (P l) = P l − (F ′
P l)

−1(P l). (18)

Proof To prove Eq. (18), we just need to prove
the equivalent form which is given by F ′

P l(P
l+1) =

F ′
P l(P

l) − F(P l). From Eqs. (14) and (17), we
obtain

F ′
P l(P l) = F(P l)− S −Θ(P l)

×ζ(P l)(Θ(P l))T+Θ(P l)ζ(P l)ϑ(P l)ζ(P l)(Θ(P l))T,

(19)
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with ϑ(P l) defined as follows:

ϑ(P l) =

[
BTP lB BTP lD

DTP lB DTP lD

]

.

Substituting Eq. (12) into Eq. (11) gives

−S =ATP l+1A− P l+1 −Θ(P l+1)ζ(P l)

× (Θ(P l))T −Θ(P l)ζ(P l)(Θ(P l+1))T

+Θ(P l)ζ(P l)
(
ζ(P l+1)

)−1
ζ(P l)(Θ(P l))T,

(20)

where Θ(P l+1) = [ATP l+1B ATP l+1D]. Com-
bining Eqs. (19) and (20) then results in

F ′
P l(P l)−F(P l)−F ′

P l(P l+1)

=−Θ(P l)ζ(P l)(Θ(P l))T+Θ(P l)ζ(P l)ϑ(P l)ζ(P l)

× (Θ(P l))T +Θ(P l)ζ(P l)
((

ζ(P l)
)−1−ϑ(P l)

)

× ζ(P l)(Θ(P l))T = 0. (21)

The proof is completed.
According to Theorem 1, we come to a con-

clusion that P l and (K l
1,K

l
2) will converge to P

and (K∗
1 ,K

∗
2 ), respectively, as the iteration number

l tends to infinity.
Though Algorithm 1 provides a feasible scheme

for solving zero-sum linear quadratic dynamic games
by operating on the reduced-order linear matrix
equations, Eqs. (11) and (12) still depend on the
system model, which makes Algorithm 1 sensitive to
the drift in system dynamics and the inaccuracy in
system modeling.

4 Online minimax Q-learning method
based on off-policy reinforcement learn-
ing

To develop an intelligent algorithm that can
learn the saddle solution online without querying
the information of the system model, in this section,
we establish an online minimax Q-learning method
by borrowing an idea from off-policy RL and adap-
tive control. We construct the minimax Q-learning
method on the basis of Algorithm 1.

4.1 Derivation of the online minimax Q-
learning algorithm

Let ul = −K l
1x and wl = −K l

2x be the given
admissible policies at the lth iteration in Algorithm 1.

We define the following Q-function corresponding to
ul and wl:

Ql+1(xk,uk,wk)

=xT
kSxk + uT

kRuk − γ2wT
k wk + xT

k+1P
l+1xk+1,

(22)
where u and w are the behavior polices adopted at
time k. Thus, the state at time k + 1 is determined
by xk+1 = Axk + Buk + Dwk. From time k + 1

on, one follows the target polices ul and wl. Ac-
cording to the definition of the Q-function, we know
that Ql+1(xk,uk,wk) contains two types of policies,
namely, the behavior policies u and w applied to sys-
tem (1) and the target polices ul and wl which are
expected to converge to the saddle solution. In par-
ticular, Ql+1(xk+1,u

l
k+1,w

l
k+1) = xT

k+1P
l+1xk+1;

therefore, Eq. (22) can be rewritten as the following
Bellman equation:

Ql+1(xk,uk,wk) =xT
kSxk + uT

kRuk − γ2wT
k wk

+Ql+1(xk+1,u
l
k+1,w

l
k+1).

(23)

We can now use Eq. (23) to calculate Ql+1 in-
stead of solving Eq. (11) directly for P l+1; clearly,
Eq. (23) requires no information for A, B, and D.
From Eq. (22), we can represent Ql+1 as a quadratic
form of the state and inputs, or equivalently, Ql+1

can be expressed as Ql+1(xk,uk,wk) = WT
c,l+1σk,

where σk is the Kronecker product quadratic poly-
nomial basis vector corresponding to [xT

k , u
T
k , w

T
k ]

T,
i.e., σk = σ([xT

k ,u
T
k ,w

T
k ]

T). Hence, Eq. (23) can be
rewritten as follows:

WT
c,l+1σk

=xT
kSxk + uT

kRuk − γ2wT
k wk +WT

c,l+1σk+1,l,

(24)
where σk+1,l is the Kronecker product quadratic
polynomial basis vector of

[
xT
k+1, (u

l
k+1)

T,

(wl
k+1)

T
]T, that is, σk+1,l = σ

( [
xT
k+1, (u

l
k+1)

T ,

(wl
k+1)

T
]T
)
. Next, we aim to obtain the true

weight Wc,l+1 online in real time, using only the
data samples generated by the behavior polices.
This is essentially a prediction problem in RL and
can be solved by TD learning techniques; from the
perspective of adaptive control, it becomes an online
parameter identification problem. Let Ŵc,l+1(i)

be the estimate of Wc,l+1 at time k, with i ≤ k.
Replacing Wc,l+1 with Ŵc,l+1(i) in Eq. (24) gives
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the estimation error:

ek =xT
kSxk + uT

kRuk − γ2wT
k wk

+ ŴT
c,l+1(i)(σk+1,l − σk).

(25)

Recursive least squares (RLS) (Ioannou and Fi-
dan, 2006) can now be used to estimate Wc,l+1 online
in real time:

Ŵc,l+1(i+ 1) = Ŵc,l+1(i)−
Pl(i)σ̄kek

1 + σ̄T
k Pl(i)σ̄k

,

(26a)

Pl(i+ 1) = Pl(i)−
Pl(i)σ̄kσ̄

T
k Pl(i)

1 + σ̄T
k Pl(i)σ̄k

, (26b)

where σ̄k = σk+1,l −σk and Pl(1) = γI (γ is a large
positive constant). During the learning process, the
tuning index i is increased with the time index k;
in other words, Ŵc,l+1(i) is tuned online by using
the state data generated by the behavior policies.
According to Ioannou and Fidan (2006), Ŵc,l+1(i)

will converge to Wc,l+1, if σ̄k satisfies the following
PE condition:

ε0I ≤
l−1∑

i=1

σ̄k+iσ̄
T
k+i ≤ ε1I, ∀k ≥ 0,

where l is a positive integer. The PE condition re-
quires that the system state be persistently exciting
for a long enough period of time.

To meet the PE condition above, we can inject
some exploration noise into the behavior polices u

and w. Note that the injected exploration noise will
not cause any excitation noise bias, although the
excitation noise bias problem cannot be eliminated
in on-policy methods (Kiumarsi et al., 2017). For
the sake of explanation, we should confirm the fact
that the Q-function Ql+1 is essentially a mapping
from the state-input space to R; thus, we can use the
behavior policies and the state samples generated by
them to identify Ql+1 at each policy evaluation step.
The exploration noises can be selected as harmonic
signals containing sufficient frequencies or random
noises. Because there exist no systematic methods
for choosing exploration noises, one can choose them
by trial-and-error.

After obtaining the Q-function Ql+1, we carry
out the policy improvement step by solving the fol-

lowing minimax optimization problem:
(
ul+1
k ,wl+1

k

)
=min

ũk

max
w̃k

Ql+1(xk, ũk, w̃k)

=min
ũk

max
w̃k

(
xT
kSxk + ũT

kRũk

−γ2w̃T
k w̃k + xT

k+1P
l+1xk+1

)
,

(27)
where xk+1 = Axk + Bũk + Dw̃k. Denote
ul+1
k = −K l+1

1 xk and wl+1
k = −K l+1

2 xk. Obvi-
ously, Eq. (27) can be reformulated as
(
K̄ l+1

1 , K̄ l+1
2

)
= min

K1

max
K2

Ql+1
(
xk,K

T
1 xk,K

T
2 xk

)
,

(28)
where K̄ l+1

1 = −(K l+1
1 )T and K̄ l+1

2 = −(K l+1
2 )T

(K̄ l+1
1 ∈ R

n×m1 , K̄ l+1
2 ∈ R

n×m2). To obtain
(
K̄ l+1

1 , K̄ l+1
2

)
, one needs to select a set of points

xk for training. Considering that A, B, and D are
unknown, we cannot solve Eq. (27) or (28) directly.
To overcome this, we create a novel online gradient-
based policy improvement scheme. The main idea
is that we use two behavior polices to generate a se-
quence of state samples online. Once a new state
sample is generated, we update the estimated values
of K1 and K2 simultaneously using the newly gen-
erated state sample, which means that the updating
of the estimated values and the generation of state
samples are concurrent. Let (K̂1,l+1(j), K̂2,l+1(j))

be the estimate of (K̄ l+1
1 , K̄ l+1

2 ) at xk, where j ≤ k.
Then K̂1,l+1(j) and K̂2,l+1(j) are tuned via the fol-
lowing normalized gradient method:

K̂1,l+1(j + 1) = K̂1,l+1(j)−
β

(1 + xT
k xk)

2

× ∂

∂K̂1,l+1(j)
Ql+1

(
xk, K̂

T
1,l+1(j)xk, K̂

T
2,l+1(j)xk

)
,

(29a)

K̂2,l+1(j + 1) = K̂2,l+1(j) +
β

(1 + xT
k xk)

2

× ∂

∂K̂2,l+1(j)
Ql+1

(
xk, K̂

T
1,l+1(j)xk, K̂

T
2,l+1(j)xk

)
,

(29b)
where Φa(k) = (1 + xT

kxk)
2 is the normalized term,

and β is a small positive learning rate. During
the learning process, the state samples are gener-
ated by behavior policies u′ and w′ (that is, xk+1 =

Axk +Bu′
k +Dw′

k), and the tuning index j is also
increased with the time index k. From Eqs. (29a)
and (29b), we know that the controller and the
disturbance perform gradient descent and gradient
ascent, respectively. In the following theorem, we
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will prove that (K̂1,l+1(j), K̂2,l+1(j)) converges to
(K̄ l+1

1 , K̄ l+1
2 ) exponentially, if x̄k = xk/(1 + xT

kxk)

is persistently exciting and β is small enough.
We now give the complete online minimax Q-

learning algorithm.
Compared with Algorithm 1, Algorithm 2 is

completely model-free, and thus robust to the drift in
system dynamics and the inaccuracy in system mod-
eling. In addition, both policy evaluation and policy
improvement are carried out in an online adaptive
way by using the state samples generated by the be-
havior polices. Note that this novel online policy
improvement scheme provides a potential choice for
other problems, e.g., optimal control and a nonzero-
sum game of discrete-time systems.

Algorithm 2 Online minimax Q-learning algorithm
1: Start with a set of initially stabilizing feedback gains

(K1
1 ,K

1
2 ) // Initialization

2: For the given stabilizing feedback gains (K̄1
1 , K̄

1
2 ),

run Eqs. (26a) and (26b) until Ŵc,l+1(i+1) converges
to Wc,l+1 // Policy evaluation

3: Using the obtained Wc,l+1, run Eqs. (29a) and
(29b) simultaneously until (K̂1,l+1(j), K̂2,l+1(j))

converges to (K̄l+1
1 , K̄l+1

2 ) // Policy improvement
4: Stop if

∥∥Kl+1
i −Kl

i

∥∥ ≤ ε (i = 1, 2), where ε is a
threshold; otherwise, set l = l + 1 and go to step 2

4.2 Convergence analysis of the proposed on-
line minimax Q-learning algorithm

In the following theorem, we will give the
convergence analysis of the proposed minimax Q-
learning method. Before deriving the main theorem,
we first provide two lemmas that will be used in the
following convergence analysis. The first lemma is
taken from Ioannou and Fidan (2006), which is given
as follows:
Lemma 2 (Ioannou and Fidan, 2006) Consider
a time-varying linear discrete-time system yk+1 =

C(k)yk. Suppose that there exists a positive definite
symmetric constant matrix M such that

CT(k)MC(k)−M = −N(k)NT(k)

for some matrix sequence {N(k)} and all k. If
(A(k),N(k)) is also uniformly completely observ-
able (UCO), i.e., there exist constants α > 0, γ > 0,

and l > 0 such that for all k,

0 < αI ≤
l−1∑

i=0

ΦT(k + i, k)N(k + i)

×NT(k + i)Φ(k + i, k) ≤ γI < ∞,

where Φ(k+i, k) = C(k+i−1)C(k+i−2) . . .C(k+

1)C(k) is the transition matrix of the linear system,
then y(k) will converge to the origin exponentially.

Before stating the next lemma, we introduce
one useful property of the Kronecker product on
the matrix eigenvalue. Suppose that A and B

are square matrices of sizes n and m, respectively.
Let λ1, λ2, . . . , λn be the eigenvalues of A and
μ1, μ2, . . . , μm be those of B. Then the eigenvalues
of A⊗B are λiμj (i = 1, 2, . . . , n, j = 1, 2, . . . ,m).
Lemma 3 Consider a time-varying linear discrete-
time system given by zk+1 = (I − 2η(θkθ

T
k )⊗E)zk,

where {θk} is a sequence of bounded column vectors,
η is a positive constant, and E is a positive definite
matrix. Let θk be persistently exciting and η be
small enough. Then zk will converge to the origin
exponentially.
Proof Let W (k) = (I − 2η(θkθ

T
k )⊗E). Employ-

ing the Kronecker product, W (k) can be rewritten
as W (k) = (I − 2ηθ̄kθ̄

T
k ), with θ̄k = θk ⊗ E1/2.

We first prove that θ̄k is also persistently exciting.
As θk is persistently exciting, there exist α1 > 0,
α2 > 0, and l > 0 such that α1I ≤

∑l−1
i=0 θk+iθ

T
k+i ≤

α2I. Considering that θ̄k+iθ̄
T
k+i = (θk+iθ

T
k+i) ⊗E,

we have
∑l−1

i=0 θ̄k+iθ̄
T
k+i = (

∑l−1
i=0 θk+iθ

T
k+i) ⊗ E.

Using the property of the Kronecker product on
the matrix eigenvalue, we obtain λmin(E)α1I ≤
∑l−1

i=0 θ̄k+iθ̄
T
k+i ≤ λmax(E)α2I. Let M = 1

2ηI and
N(k) = θ̄k(2− 2ηθ̄T

k θ̄k)
1/2. Then we have

WT(k)MW (k)−M = −N(k)NT(k). (30)

Next, we prove that (W (k), N(k)) is UCO.
Consider the following system:

⎧
⎨

⎩

xk+1 = W (k)xk = (I − 2ηθ̄kθ̄
T
k )xk,

yk = NT(k)xk =
(
2− 2ηθ̄T

k θ̄k

)1/2
θ̄T
k xk.

(31)
Clearly, system (31) is equivalent to the follow-

ing system:
{

xk+1 = xk + uk,

yk =
(
2− 2ηθ̄T

k θ̄k

)1/2
θ̄T
k xk,

(32)
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with output feedback

uk =
−2ηθ̄kyk

(2− 2ηθ̄T
k θ̄k)

1/2
.

So, we can prove that system (32) is UCO instead.
Because θk is bounded, θ̄k is also bounded; thus,
there exists a > 0 such that θ̄T

k θ̄k ≤ a is satisfied for
all k. Let η ≤ 1/(2a). We have 1 ≤ 2− 2ηθ̄T

k θ̄k ≤ 2;
therefore,

ᾱ1I ≤
l−1∑

i=0

N(k + i)NT(k + i) ≤ ᾱ2I, (33)

where ᾱ1 = λmin(E)α1 and ᾱ2 = 2λmax(E)α2.
Clearly, the transition matrix of system (32) is I, and
Eq. (30) and inequality (33) imply that system (32)
is UCO, or equivalently, (W (k),N(k)) is UCO. Us-
ing the result from Lemma 2, we know that zk will
converge to the origin exponentially.

We are now ready to state and prove the follow-
ing theorem:
Theorem 2 Let σ̄k and x̄k be persistently exciting
and the learning rate β satisfy

0 < β < min
(

− λ

r(k0)θ
lnλ,

1

2a1
,

1

2a2

)

. (34)

Then, in Algorithm 2, (K̂1,l+1(j), K̂2,l+1(j)) will
converge to (K̄ l+1

1 , K̄ l+1
2 ) exponentially; further, as

l → ∞, ((K̄ l
1)

T, (K̄ l
2)

T) will converge to the saddle
feedback gains (−K∗

1 ,−K∗
2 ).

Proof First, we prove that (K̂1,l+1(j), K̂2,l+1(j))

will converge to (K̄ l+1
1 , K̄ l+1

2 ), if x̄k is persis-
tently exciting and the learning rate β satisfies
inequality (34). From Eq. (28), we know that
Ql+1(xk,K

T
1 xk,K

T
2 xk) reaches a saddle point at

(K̄ l+1
1 , K̄ l+1

2 ), observing that Ql+1 is convex in K1

and K2. The first-order necessary condition implies

∂

∂K1
Ql+1

(
xk,K

T
1 xk, (K̄

l+1
2 )Txk

) ∣∣
∣K1=K̄l+1

1
= 0,

(35a)
∂

∂K2
Ql+1

(
xk, (K̄

l+1
1 )Txk,K

T
2 xk

) ∣∣
∣K2=K̄l+1

2
= 0.

(35b)
From the definition of Ql+1(xk,K

T
1 xk,K

T
2 xk),

Eqs. (35a) and (35b) can be rewritten as follows:

βxk

(
2R(K l+1

1 )Txk + 2BTP l+1x̃k+1

)T
= 0,

(36a)
βxk

(
−2γ2(K l+1

2 )Txk + 2DTP l+1x̃k+1

)T
= 0,

(36b)

where x̃k+1 = Axk +B(K̄ l+1
1 )Txk +D(K̄ l+1

2 )Txk.
Similarly, Eqs. (29a) and (29b) can be given by

K̂1,l+1(j + 1) = K̂1,l+1(j)− β
xk

Φa(k)

×
(
2RK̂T

1,l+1(j)xk + 2BTP l+1x̂k+1

)T
,

(37a)

K̂2,l+1(j + 1) = K̂2,l+1(j) + β
xk

Φa(k)

×
(
−2γ2K̂T

2,l+1(j)xk + 2DTP l+1x̂k+1

)T
,

(37b)

where

x̂k+1 = Axk +BK̂T
1,l+1(j)xk +DK̂T

2,l+1(j)xk.

Define the following estimation errors: K̃1,l+1 =

K̂1,l+1 − K̄ l+1
1 and K̃2,l+1 = K̂2,l+1 − K̄ l+1

2 . Com-
bining Eqs. (36a) and (36b) with Eqs. (37a) and
(37b) gives the following error dynamics:

K̃1,l+1(j + 1) =K̃1,l+1(j)− 2βx̄kx̄
T
k K̃1,l+1(j)R

− 2βx̄kx̄
T
kK1,l+1(j)B

TP l+1B

− 2βx̄kx̄
T
k K̃2,l+1(j)D

TP l+1B,
(38a)

K̃2,l+1(j + 1) =K̃2,l+1(j)− 2βγ2x̄kx̄
T
k K̃2,l+1(j)

+ 2βx̄kx̄
T
kK2,l+1(j)D

TP l+1D

+ 2βx̄kx̄
T
k K̃1,l+1(j)B

TP l+1D,
(38b)

where x̄k = xk/(1 + xT
kxk). Using the fact that

vec(XY Z) = (ZT ⊗ X)vec(Y ) holds for any ma-
trices X, Y , and Z with appropriate dimensions,
we can rewrite Eqs. (38a) and (38b) in the following
compact form:

[
vec(K̃1,l+1(j + 1))

vec(K̃2,l+1(j + 1))

]

=

[
A1(k) A2(k)

A3(k) A4(k)

]

×
[

vec(K̃1,l+1(j))

vec(K̃2,l+1(j))

]

,

(39)
where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1(k) = I − 2βx̄k1x̄
T
k1,

A2(k) = −2β(BTP l+1D)⊗ (x̄kx̄
T
k ),

A3(k) = 2β(DTP l+1B)⊗ (x̄kx̄
T
k ),

A4(k) = I − 2βx̄k2x̄
T
k2,

x̄k1(k) = x̄k ⊗
√
R+BTP l+1B,

x̄k2 = x̄k ⊗
√
γ2I −DTP l+1D.

According to the Kronecker product, we know that
both x̄k1 and x̄k2 are also persistently exciting if
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x̄(k) is persistently exciting. Define the following
matrices:

Ā(k) =

[
A1(k) 0

0 A4(k)

]

,

Δ(k) =

[
0 A2(k)

A3(k) 0

]

.

Let the learning process start at k0, i.e., j =

k − k0 + 1. Let

Z(j) =
[
vec(K̃1,l+1(j))

T vec(K̃2,l+1(j))
T
]T

.

Using the result from Lemma 3, we know that the
following time-varying system

Z(j + 1) = Ā(j + k0 − 1)Z(j) (40)

is exponentially stable if the learning rate β is se-
lected such that β ≤ min(1/(2a1), 1/(2a2)) is satis-
fied, where a1 = sup(x̄T

k1x̄k1) and a2 = sup(x̄T
k2x̄k2).

Therefore, there exist γ(k0) > 0 and λ ∈ (0, 1)

such that
∥
∥ΦĀ(j+k0−1)(j, 1)

∥
∥ ≤ γ(k0)λ

j−1, where
ΦĀ(j+k0−1)(j, 1) is the state transition matrix of
system (40). Clearly, x̄(k),B,D, and P l+1 are
bounded; thus, there exists a positive constant θ

such that ‖Δ(k)‖ ≤ βθ is satisfied for all k. We
now rewrite Eq. (39) as

Z(j+1) = (Ā(j+k0−1)+Δ(j+k0−1))Z(j). (41)

Then Z(j) can be determined as

Z(j) =ΦĀ(j+k0−1)(j, 1)Z(1)

+

j−1∑

i=1

ΦĀ(j+k0−1)(j, i+1)Δ(i+k0−1)Z(i).

(42)
Taking the Frobenius norm on both sides of

Eq. (42), we have

‖Z(j)‖ ≤
∥
∥ΦĀ(j+k0−1)(j, 1)

∥
∥ ‖Z(1)‖

+
j∑

i=1

∥
∥ΦĀ(j+k0−1)(j, i+ 1)

∥
∥ ‖Δ(i+ k0 − 1)‖ ‖Z(i)‖

≤ γ(k0)λ
j−1 ‖Z(1)‖+

j−1∑

i=1

γ(k0)

×λj−i−1 ‖Δ(i+ k0 − 1)‖ ‖Z(i)‖ .
(43)

Let T (j) = Z(j)λ−(j+1). Inequality (43) can be
rewritten as

‖T (j)‖ ≤γ(k0) ‖T (1)‖

+

j−1∑

i=1

γ(k0)

λ
‖Δ(i+ k0 − 1)‖ ‖T (i)‖ .

(44)

Employing the Gronwall inequality, inequal-
ity (44) gives

‖T (j)‖ ≤γ(k0) ‖T (1)‖

×
j−1∏

i=1

(

1 +
γ(k0)

λ
‖Δ(i+ k0 − 1)‖

)

.

(45)
Taking logarithms on both sides of inequal-

ity (45) yields

ln (‖T (j)‖) ≤ ln (γ(k0) ‖T (1)‖)

+

j−1∑

i=1

ln

(

1 +
γ(k0)

λ
‖Δ(i+ k0 − 1)‖

)

.

(46)
Note that ln (1 + x) ≤ x holds for any x ≥ 0,

and from inequality (46), we can further obtain

‖T (j)‖≤γ(k0) ‖T (1)‖ exp
(

j−1∑

i=1

γ(k0)

λ
‖Δ(i+k0−1)‖

)

.

(47)
Substituting T (j) = Z(j)λ−(j+1) into inequal-

ity (47) yields

‖Z(j)‖ ≤γλj−1 ‖Z(1)‖

× exp

(
j−1∑

i=1

γ(k0)

λ
‖Δ(i+ k0 − 1)‖

)

.

(48)
Let ΦĀ(j)+Δ(j)(j, 1) be the transition matrix of

Eq. (39). Clearly,
∥
∥ΦĀ(j)+Δ(j)(j, 1)

∥
∥

=
∥
∥ΦĀ(j)+Δ(j)(j, 1)In(m1+m2)

∥
∥

=
∥
∥
[
ΦĀ(j)+Δ(j)(j, 1)e1,ΦĀ(j)+Δ(j)(j, 1)e2, . . . ,

ΦĀ(j)+Δ(j)(j, 1)en(m1+m2)

]∥
∥ , (49)

where ek (k = 1, 2, . . . , n(m1 + m2)) is the kth col-
umn of In(m1+m2). According to inequality (48), we
obtain
∥
∥ΦĀ(j)+Δ(j)(j, 1)

∥
∥

≤
√
n(m1 +m2)γ(k0)λ

j−1

× exp

(
j−1∑

i=1

γ(k0)

λ
‖Δ(i+ k0 − 1)‖

)

≤
√
n(m1 +m2)γ(k0)λ

j−1 exp

(
γ(k0)

λ
βθ(j − 1)

)

=
√
n(m1 +m2)γ(k0)

(

exp

(
γ(k0)

λ
βθ + lnλ

))j−1

.

(50)
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Let the learning rate β be selected satisfying
inequality (34). Then we have γ(k0)

λ βθ + lnλ < 0,
which means that system (39) is also exponentially
stable. Therefore, (K̂1,l+1(j), K̂2,l+1(j)) will con-
verge to (K̄ l+1

1 , K̄ l+1
2 ) exponentially. If, further, σ̄k

is persistently exciting, Ŵc,l+1(i) will converge to
Wc,l+1. Using the result from Theorem 1, we know
that ((K̄ l+1

1 )T, (K̄ l+1
2 )T) will converge to the sad-

dle feedback gains (−K∗
1 ,−K∗

2 ), if σ̄k and x̄k are
persistently exciting and the learning rate β satisfies
inequality (34). The proof is completed.

5 Simulation study

In this section, we will use Algorithm 2 to de-
sign an H∞ load-frequency controller for an electri-
cal power system generator that suffers from load
disturbance.

Consider the following fourth-order discrete-
time electrical power system:

xk+1 = Axk +Buk +Dwk, (51)

where xk = [xk1, xk2, xk3, xk4]
T (xk1 denotes the

incremental frequency deviation, xk2 the incremen-
tal change in generator output, xk3 the incremen-
tal change in governor position, and xk4 the incre-
mental change in integral control), and wk is the
load disturbance. The initial state is set to be
x0 = [4, 3, −1.5, 2.5]T. The system matrices are
given as follows:

A =

⎡

⎢
⎢
⎣

0.9704 0.6629 0.0849 −0.0446

−0.0762 0.6724 0.1584 −0.1462

−0.3954 −0.1663 0.2367 −0.7403

0.0594 0.0212 0.0019 0.9993

⎤

⎥
⎥
⎦ ,

B =

⎡

⎢
⎢
⎣

0.0446

0.1462

0.7403

0.0007

⎤

⎥
⎥
⎦ , D =

⎡

⎢
⎢
⎣

−0.7924

0.0230

0.1893

−0.0239

⎤

⎥
⎥
⎦ .

The value function is given by

V (xk) =

∞∑

i=k

(xT
i xi + uT

i ui − 9wT
i wi);

that is, the disturbance attenuation level is set to be
γ = 3.

Employing Algorithm 1, we obtain the optimal
feedback gains for the controller and the disturbance:

K∗
1 = [2.1739, 3.7564, 0.8402, 1.4448],

K∗
2 = [1.2517, 1.6753, 0.2920, 1.1466].

Now we apply the minimax Q-learning method
developed in Section 4 to solve for the H∞ load-
frequency controller. Note that the system matrices
A, B, and D are not needed to design the con-
troller. They are used only to simulate the sys-
tem. The initial admissible feedback gains are se-
lected as K1

1 = K1
2 = [0, 0, 0, 0]. The learning

rate is selected as β = 0.1. The threshold to stop
the algorithm is set to be ε = 10−4. The state
samples used for RLS tuning at each policy eval-
uation step are generated by the behavior policies
u1
k = 0.5

∑50
i=1 sin(ωik) and u2

k = 0.6
∑50

i=1 sin(ωik).
The state samples used for gradient tuning at each
policy improvement step are generated by the be-
havior policies u3

k = 0.2
∑50

i=1 sin(ωik) and u4
k =

0.15
∑50

i=1 sin(ωik), where ωi is an integer randomly
generated from [−50, 50]. In fact, one can choose
from a variety of behavior policies as long as the
behavior policies are such that both σ̄k and x̄k are
persistently exciting. At each policy evaluation step,
we carry out 5000 tuning steps, while 3000 tuning
steps are carried out at each policy improvement
step. After eight iterations, convergence of Algo-
rithm 2 is attained, and the convergent values are
given as follows:

K̄8
1 = [−2.1729,−3.7555,−0.8398,−1.4445]T,

K̄8
2 = [−1.2507,−1.6746,−0.2916,−1.1451]T.

Clearly, ((K̄8
1 )

T, (K̄8
2)

T) is very close to the
saddle feedback gains (−K∗

1 ,−K∗
2 ). Figs. 1 and

2 show the evolution of K̄ l
1 and K̄ l

2, respectively.
Fig. 3 indicates that the obtainedH∞ load-frequency
controller uk = (K̄8

1 )
Txk stabilizes system (51)

under disturbance wk = 5exp(−0.16k). Fig. 4
indicates that the obtained H∞ load-frequency con-
troller uk = (K̄8

1 )
Txk still stabilizes system (51)

even under the worst-case disturbance wk =

(K̄8
2 )

Txk.
For comparison, we apply the value-iteration-

based Q-learning method (Al-Tamimi et al., 2007;
Rizvi and Lin, 2018; Valadbeigi et al., 2020) to
solve for the H∞ load-frequency controller. The
initial value matrix is chosen as H = I6×6, and
the initial feedback gains for the controller and the
disturbance are selected as K1

1 = [0, 0, 0, 0] and
K1

2 = [0, 0, 0, 0], respectively. After 50 iterations,
convergence of the value-iteration-based Q-learning
method is attained, with the convergent values given
as follows:
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K50
1 = [−2.1729,−3.7550,−0.8399,−1.4427],

K50
2 = [−1.2512,−1.6746,−0.2919,−1.1456].

Clearly, (K50
1 ,K50

2 ) is also close to the saddle
feedback gains (−K∗

1 ,−K∗
2 ). Figs. 5 and 6 show the

convergence of K l
1 and K l

2, respectively. It is ob-
served that both the policy-iteration-based minimax
Q-learning method and the value-iteration-based Q-
learning method converge to the saddle solution. Ob-
viously, compared with the value-iteration-based Q-
learning method, it takes far fewer steps of iteration
for the policy-iteration-based minimax Q-learning
method to converge.

6 Conclusions

The H∞ control problem for linear discrete-
time systems has been investigated in this paper. A
policy-iteration-based minimax Q-learning method
has been developed to learn the H∞ controller on-
line by using the state samples generated by the be-
havior policies, without querying the system model.
By employing a normalized gradient method, a novel
policy improvement scheme has been proposed. The
rigorous convergence analysis of the proposed mini-
max Q-learning method has been established under
some persistence of excitation conditions and learn-
ing rate constraints. In addition, the excitation noise
bias problem has been overcome. The simulation re-
sults demonstrated the good disturbance rejection
capacity of the obtained H∞ controller. In future
work, we will explore Q-learning approaches for H∞
control of nonlinear discrete-time systems.
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