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Abstract: In this perspective article, we first recall the historic background of human-cyber-physical systems
(HCPSs), and then introduce and clarify important concepts. We discuss the key challenges in establishing the
scientific foundation from a system engineering point of view, including (1) complex heterogeneity, (2) lack of
appropriate abstractions, (3) dynamic black-box integration of heterogeneous systems, (4) complex requirements for
functionalities, performance, and quality of services, and (5) design, implementation, and maintenance of HCPS to
meet requirements. Then we propose four research directions to tackle the challenges, including (1) abstractions
and computational theory of HCPS, (2) theories and methods of HCPS architecture modelling, (3) specification and
verification of model properties, and (4) software-defined HCPS. The article also serves as the editorial of this special
section on cyber-physical systems and summarises the four articles included in this special section.
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1 Introduction

Human-cyber-physical system (HCPS) is one of
the most hyped buzzwords in the computing sci-
ence and technology, control engineering, communi-
cation, and information communication technology
(ICT) application communities. In light of the in-
tension and extension of a concept, HCPS is not
entirely new, but it has emerged from the contin-
uous evolution and integration of the science and
technologies of computing, control, and communica-
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tion. Nevertheless, serious research has been active
in investigating the potential applications and chal-
lenges in its scientific foundation and engineering
techniques, especially those systems that are built
by integrating many heterogeneous systems built in
multi-disciplinary technologies.

We propose to study HCPS as

(1) the state of the art of ICT, which will con-
tinuously evolve in the future;

(2) the emerging architecture style of engineer-
ing systems that are formed with cyber-systems
(computing systems consisting of hardware and soft-
ware); physical systems including mechanical, elec-
trical, and chemical processes; human systems in
the forms of individuals, organisational and social
systems, which are constituent systems (subsystems
or components) connected through a network for
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interactions and cooperations; and

(3) the enabling technology for solving ma-
jor challenges in sustainable development, includ-
ing the inter-related areas of design and manage-
ment of urban development, energy needs, social and
economic development, and financial and industry
development.

HCPS applications are happening, although
they are developed mostly using ad-hoc processes, in
most areas of major infrastructure development, key
areas of development that are crucially important to
the national economy and wellbeing of people, in-
cluding smart grids, smart cities (smart buildings
and smart homes), smart transportation, smart edu-
cation, smart healthcare and medicine, and national
defence. Because of the potential enabling capacity
in digitising our living, social, and economic activi-
ties, all major industrial countries and regions have
made strategies and plans for their development be-
yond 2020, which include the USA Industry Internet,
German (European Union) Industry 4.0, and Made
in China 2025, which are all based on the devel-
opment of cyber-physical system (CPS) technology.
The notion of CPS was first proposed by Helen GILL
at the National Science Foundation of the United
States to refer to the integration of computation with
physical processes (NSF, 2006; Gill, 2010). HCPS is
a natural extension of CPS that adds the consider-
ation of human interactions and cooperations with
cyber systems and physical systems, supported by
ICT.

To promote research in the area of HCPS, we
have organised this special section on CPSs. As its
editorial, we have written this perspective article to
discuss the development of the HCPS concept, evolu-
tion of system architecture, and integration of related
technologies. The rest of the article is organised as
follows. In Section 2, we recall the historical back-
ground and introduce the basic concepts of HCPS.
We devote Section 3 to the discussion of the major
challenges to the development of the scientific foun-
dation, methods, and tools for building HCPS from
a system engineering perspective. Then in Section 4,
we propose four research directions towards solving
the challenges. Finally in Section 5, we give a sum-
mary of the articles that are included in this special
section.

2 Background and basic concepts

As mentioned in the previous section, HCPS ex-
tends CPS that originated at the first Cyber-Physical
Systems Workshop (NSF, 2006), led by Helen GILL.
The workshop continued with future events in the
following years, focusing on defining the area and dis-
cussing the challenges and visions (Lee EA, 2006). In
the same year, the European Union Research Council
organised a few horizontal working groups to discuss
major key areas of research that the council should
support. One of the working groups was the Soft-
ware Intensive Systems Working Group (The first
author of this article was a member of the working
group). The working group organised three meetings
during 2007–2010 and proposed a concept of “ensem-
ble engineering” (Wirsing et al., 2008), which had a
similar intention and extension to that of CPS. At
the workgroup meetings, societal computing and or-
ganic computing were proposed as different concepts,
which were later partly incorporated into the notion
of CPS (and ensemble) and partly formed the area of
societal computing. In this section, we first introduce
CPS concepts and problems, then the integration of
CPS with big data and cloud computing to form the
notion of big data and cloud based CPS (BDC-CPS),
and the evolution to the concept of HCPS.

2.1 CPS: intersection of computation, con-
trol, and communication

CPS emerged during the development of the
technology of embedded systems and control sys-
tems, and the rapid advances in communication tech-
nology in recent years. Although CPSs have been
studied intensively, there is no current standard for
CPS architectures. Some descriptive definitions have
been given by leading researchers. Here we quote a
few widely cited definitions:

(1) Rajkumar et al. (2010) described CPSs as
physical and engineered systems whose operations
are monitored, coordinated, controlled, and inte-
grated by a computing and communication core.

(2) Lee EA (2010) defined CPSs as integrations
of computation with physical processes. He also
explained that embedded computers and networks
monitor and control the physical processes, usually
with feedback loops where physical processes affect
computations, and vice versa.

(3) Baheti and Gill (2011) referred to CPSs as
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“a new generation of systems with integrated compu-
tational and physical capabilities that can interact
with humans through many new modalities”. The
ability to interact with and expand the capabilities
of the physical world through computation, commu-
nication, and control, is a key enabler for future tech-
nology developments.

Based on the above descriptions, we give the
following architectural definition for a CPS (Gunes
et al., 2014; Khaitan and McCalley, 2015):

A CPS is a system of systems (SoS) compris-
ing cyber systems, communication networks, physi-
cal processes, and interfaces, where:

(1) the physical processes include, for exam-
ple, mechanical, electrical, and chemical processes,
which are embedded with sensors and controlled by
microprocessors;

(2) the cyber systems are computing systems
that are responsible for data processing and control-
ling physical processes;

(3) the interfaces are middleware systems be-
tween the physical systems and the network, includ-
ing sensors and actuators, A/C and C/A convertors,
etc.;

(4) the sensors sense the physical processes and
collect data about the behaviours of the physical pro-
cesses, and the data are transmitted to the cyber
systems through the network;

(5) the cyber systems process the collected data
and compute decisions for the control and coordina-
tion of the behaviours of the physical processes, and
the control decisions are transmitted in the form of
control commands through the network to the corre-
sponding actuators to carry out the control actions.

Some people consider the network as part of the
cyber systems, whereas some others treat the net-
work as part of the interfaces. The physical systems
are typically independent embedded systems and are
called “unit systems” in a CPS. The unit systems
can be designed by different people, executed inde-
pendently and managed by their own organisations.
When they are used to construct a CPS, they are
then coordinated by the CPS control units to exe-
cute the CPS business processes for the CPS mission.
The architecture of such a CPS is shown in Fig. 1 in a
simplified view. The CPS control units perform con-
trol at a layer above that of the unit systems. The
CPS control decisions, i.e., those of the CPS con-
trol units, are computed based on the data from the

sensors and temporal and spatial events generated
during the operation of the CPS (Tan et al., 2009).
Therefore, there is usually a database server to which
the control units can make queries for making con-
trol decisions. The CPS control units also provide
services to the users who provide requirements for
reconfiguration of control policies and rules.

Fig. 1 Architecture of a cyber-physical system (CPS)

We note that the main concern of early CPSs
described by the above architecture is to control, co-
ordinate, and manage the physical processes for the
realisation of business tasks and processes in the CPS
mission. A CPS of this kind still has the character-
istic of a closed control loop of observe-decide-act
(ODA). However, it is no longer a single isolated
input-output system, but a network system of many
input-output systems. Such a CPS can thus be un-
derstood as a distributed network of embedded sys-
tems exhibiting the behaviours of direct interactions
among physical processes. The aim of the design of
such a CPS is increased autonomy and reduced hu-
man involvement in the control of physical systems
to automate the execution of the business processes.
The main challenge in CPS research concerns in-
teraction between cyber and physical systems and
coordination of the subsystems to meet the require-
ments of the CPS mission. Human knowledge, be-
haviours, and interactions with cyber systems and
physical systems are not the concern of the CPS.

CPS applications are mainly sensor network
based distributed control systems such as environ-
ment monitoring and control systems, smart power
grids, self-driving systems, smart transportation
systems, smart home and smart building systems,
and distributed robotic systems. A concrete
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example of a simple CPS is the MIT Robot Garden
(https://www.csail.mit.edu/research/distributed-
robot-garden).

Therefore, they can be potentially applied to the
development of systems to control largely distributed
systems, such as power grid control and manage-
ment, industry control systems, and self-driving (or
self-flying) systems. In the MIT Robot Garden sys-
tem, a group of robots cooperate with each other to
look after a tomato garden. The design of this sys-
tem is given with the integration of technologies of
a distributed sensor network, control system, auto-
matic navigation, and wireless network.

2.2 Big data and cloud based CPS

A CPS, such as a smart grid system, contains
various networks of different kinds, functionalities,
and scales, including wired and wireless networks,
wireless local area networks, and communication net-
works. It also uses sensors and actuators that are
made by different companies, with different function-
alities and of different qualities. During the opera-
tion of the system, many events are generated (Lee J
et al., 2013; Xu and Duan, 2019). The management
and control of these networks, sensors, and actua-
tors, and the coordination of the behaviours of phys-
ical systems and other hardware and software sys-
tems require processing and analysis to meet the sys-
tem mission requirements, both functional and per-
formance requirements including real-time require-
ments, fault-tolerance, stability, adaptivity, safety,
and security. More systematically, we summarise
the values of data in CPS as follows:

(1) The data collected by various sensors which
are of different qualities and the data of events gen-
erated during the operation of the system can be
used to develop data analytic and artificial intelli-
gence (AI) algorithms, artificial neural networks in
particular, for more accurate and effective control of
physical processes, especially when real-time restric-
tions are required (Xu and Duan, 2019).

(2) These data can also be used for detecting,
predicting, and handling abnormalities and accidents
for fault-tolerance and run-time monitoring, in order
to meet the safety, security, and reliability require-
ments (Liu and Joseph, 1996, 1999; Zhang et al.,
2009; Lee J et al., 2013; Xu and Duan, 2019).

(3) The data can be used to analyse, esti-
mate, and predict uncertain behaviours of the phys-

ical environment, network, and complex cyber sys-
tems, in order to develop middleware systems for
self-adaption and reconfiguration to improve the
predictability, sustainability, effectiveness, adaptive-
ness, and autonomy (Banerjee et al., 2012; Lee J
et al., 2013; Gunes et al., 2014; Khaitan and McCal-
ley, 2015; Zegzhda, 2016; Xu and Duan, 2019).

(4) Furthermore, value-added services can be
developed with the large amount of data that is col-
lected by and generated in the system. For example,
data from a city’s lightening system can be used by
the city government to develop services for the cit-
izens, police authorities to develop social order re-
lated functionalities and services in their systems,
and the electricity companies to develop analytic
software for their business (Liu et al., 2019).

Although the data of a CPS are of the above
values, their volume, variety, and velocity require
techniques and computer systems beyond those of
traditional database systems. Big data and cloud
computing technologies provide the techniques and
flexible platforms that store the big data of a CPS
and for developing, implementing, and running the
required analytic software and services. However,
big data technology in CPS is not only about offline
batch processing and fusion of data, but also, and
even more importantly, for real-time data process-
ing. This is a new challenge in CPS. Furthermore,
how data analytic models and models of system engi-
neering can be combined in CPS system integration
is another significant theoretical challenge.

In addition to the provision of a flexible platform
for big data storage, processing, analytics, and ser-
vices to different users, cloud computing allows data
analytic models and software to be provided to the
CPS control units. With a cloud computing platform
in a CPS, all devices and software products, includ-
ing sensors, actuators, computing resources, data,
application software, and services, can be rented on
demand in the execution of business tasks. Because a
cloud platform has a clear feature of service-oriented
architecture (SOA) style, a CPS can be combined
with SOA to support integration of cross-domain
CPS. Such an integrated system of CPS forms a
new generation of system-driven equipment and it is
called a big data and cloud based CPS (BDC-CPS).
For example, with the support of big data technol-
ogy, cloud computing, and SOA, a manufacturing
enterprise CPS can be formed based on its product
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design and production CPS, supply CPS, product
management, and sales CPS.

A CPS introduced in the previous subsection
has a three-tiered (or layered) architecture that in-
cludes a unit system layer, a CPS control layer, and a
service layer. A BDC-CPS has a multilayer version of
the three-tiered architecture. Each layer integrates
the BDC-CPS systems of the layer below it through
its control layer and provides services to users of this
layer (Liu et al., 2019). The three tiers of a layer in
a CPS are illustrated in Fig. 2. Therefore, big data
and cloud computing technologies can largely aug-
ment the functionality and performance of a CPS
and support vertically upward extension and hori-
zontal extension, to form ultra large systems of so-
cietal scale and societal impact. It is important to
note that big data and cloud computing provide so-
lutions to achieve the requirements of fault tolerance,
self-adaptation, safety, reliability, stability, real-time
constraints, etc., but they are a cause of problems of
violation of these requirements.

Fig. 2 The three tiers in a layer of a big data and
cloud based CPS (BDC-CPS)

2.3 Human-cyber-physical systems

The discussions in the previous two subsections
show that early research on CPS focusses on the inte-
gration of computation, communication, and control,
i.e., 3C-technology integration. With the support of
mobile communication and computation, big data
and cloud computing technologies, the early CPS
now has been evolving to a system of systems for inte-
gration and coordination of cross-domain CPS. The
architectures of these CPSs are increasingly hierar-
chical and open. Their functionalities are even more

powerful, and support more complex distributed and
collaborative workflows involving distributed stake-
holders and actors, including human actors, across
different domains.

While CPSs are evolving, features and require-
ments of their applications are growing and require
spatial-temporal dynamics, coordination, and in-
telligence, exposed to problems related to interac-
tions between human actors and cyber and phys-
ical systems, especially those in which control is
required to be switched between humans and ma-
chines. These problems are potential causes of acci-
dents like the two Boeing Max accidents that hap-
pened in October 2018 and March 2019. When it
became human knowledge and behaviours, human-
cyber and human-physical interactions and collab-
orations to be controlled and managed in a CPS,
it comes the notion of human-cyber-physical sys-
tems (HCPSs) (Romero et al., 2016), cyber-physical-
human systems (CPHSs) (Sowe et al., 2016), or
cyber-physical-social systems (CPSSs) (Sheth et al.,
2013).

2.3.1 Ubiquitous computing and CPS

To our best knowledge, there are no clear dis-
cussions about the architectural and technological
differences between HCPS and CPS. We try to un-
derstand HCPS from their ubiquitous computing fea-
tures (Weiser, 1991; Kindberg and Fox, 2002). We
recall that Weiser’s vision of ubiquitous comput-
ing (Weiser, 1991) was for information technology
to “weave themselves into the fabric of everyday life
until they are indistinguishable from it”, or for in-
formation technology to “become part of the envi-
ronment”. This would allow us, the humans, in our
daily life activities and work, to intentionally or un-
intentionally use informational technology, or to be
supported by, with or without our notice, informa-
tion technology. Weiser called this way of embedding
information technology into the environment “em-
bedded virtuality”, which is related to, but not the
same as, today’s popular virtual reality.

We all realise that our human abilities of ob-
serving, collecting, remembering (due to the limit of
our memory), processing, and analysing information
are very limited and there is little space for further
natural extension. The idea of ubiquitous computing
is very much revolutionary because ICT can provide
unlimited augmentation of the above human abilities
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of humans which are required in observation, deci-
sion making, and taking action during our daily life
and work. For example, we cannot see clearly be-
yond 50 metres when we drive in thick fog, but with
the support computer embedded in the environment,
we can “see” anything as far as 1000 metres; we are
not able to draw a conclusion with a huge amount
of information about a fast-changing environment,
but a computer can help us make the right decision
quickly with its data processing and analytic power.

The idea of “embedded virtuality” is to embed
the results of data processing, computing, and anal-
ysis through algorithms into the physical environ-
ment, and for computers to generate a smart envi-
ronment in which humans can live and work. Ubiq-
uitous computing is thus also widely called “ambient
intelligence”, which is also referred to as “smart envi-
ronment” (Kindberg and Fox, 2002). The ambition
of Weiser is far from being realised. The deep dy-
namic (in time and space) fusion of computation and
the physical world that Weiser envisioned has not
been achieved, and large-scale ubiquitous computing
systems that dynamically construct non-intrusive in-
telligent environments do not yet exist. However,
we can see, in principle at least, the possibility of
improving interactions between humans and cyber
systems and between humans and physical systems.

2.3.2 Internet of Things and ubiquitous computing

Applications of ubiquitous computing require
the development of many sensing devices. For exam-
ple, there are many sensors in a car. Some are used
for sensing and monitoring the running conditions of
the car and the changes in the outside environment
to ensure that the car is running smoothly and safely.
There are sensors that monitor the temperature and
humidity inside the car for passenger comfort. There
are also road sensors and sensors of transport equip-
ment. Sensing devices can dynamically change and
are mobile, and thus require dynamic and ubiqui-
tous connectivity. These issues used to be significant
challenges to the realisation of ubiquitous comput-
ing, but now it is easy to see that the Internet of
Things (IoT) provides natural technology support.
The essence of the IoT is to provide connectivity
among “things” and support virtualisation and iden-
tification of “things”. IoT systems nowadays have
evolved into the form of sensor networks in which
software is embedded in sensing devices, physical

systems, mobile phones, and electrical devices (Lu
and Cecil, 2015). Here, physical systems include hu-
man systems. Therefore, the modern IoT is actually
an Internet of human systems, cyber systems, and
physical systems that provides information technol-
ogy infrastructure for HCPS.

Although controlling the behaviours of physical
processes is not its main concern, a ubiquitous com-
puting system is required for the state of the intelli-
gent environment to dynamically change in real time
along with the change in the physical environment in
which humans live and work. For this, the IoT must
provide connectivity and communication among the
“things”—human, cyber, and physical systems—but
also big data technology, machine learning, cloud
computing, and fog and edge computing technolo-
gies, to provide computing devices and services any-
where and anytime. Because of rapid and lasting
advances in big data and cloud computing technolo-
gies, ubiquitous computing based on the Internet of
human, cyber, and physical systems is being trans-
formed from traditional environment awareness or
environment intelligence to include social awareness
or smart society.

We reiterate that the Internet of human, cy-
ber, and physical systems based on IoT, big data,
and cloud computing focusses on environment sens-
ing and virtualisation. Compared to the traditional
ICT, environment sensing and virtualisation largely
augment human cognition and decision-making abil-
ities. Thus, we are entering the era of the Inter-
net of everything, and human beings will live in an
intelligent environment. From this perspective, we
see HCPSs as a deep integration of CPSs and the
above as the Internet of human, cyber, and physical
systems.

2.3.3 Human-cyber-physical systems

The notion of HCPS was proposed only recently,
and there are three main trends for its interpretation
and understanding:

(1) One understanding in HCPS is that hu-
man elements are generally treated as physical en-
tities. Then these human elements are intercon-
nected with CPSs of different domains, and con-
trolled and coordinated (rather passively) by cyber
systems in the whole system. At the same time, in
this kind of HCPS, the importance of big data and
cloud computing based control and services has been
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emphasised in Broy et al. (2102).
(2) Another trend of understanding is the study

of models of human psychology and brain behaviour
and their interactions with CPS models. The in-
tegration and interaction between models of human
psychology and brain behaviour and CPS models will
augment human abilities and improve human perfor-
mance in observation, analysis, cognition, decision
making, and operations (Romero et al., 2016; Zhou
J et al., 2019).

(3) The third view of HCPS is the integration of
CPS and cyber-social systems (CSSs), which forms
the so-called cyber-physical-social systems (CPSSs);
here, CSSs include social networks and social com-
puting systems (Sheth et al., 2013; Dressler, 2018;
Zeng J et al., 2020).

With the understanding of the system charac-
teristics of CPS, ubiquitous computing, and the IoT,
and the nature of big data and cloud computing
technologies, we consider HCPS as an integration
of humans as individuals, social organisations, and
social networks in intelligent environments, physi-
cal processes, and cyber systems based on big data
and cloud computing technologies. Cyber systems
include the HCPS control of the coordination of the
behaviours and interactions among the human, phys-
ical, and cyber systems in the subsystems, and ser-
vices to the system users. Control software and
services rely on big data and cloud computing. In
addition, human systems behave in their intelligent
environments, and these intelligent environments are
generated by ubiquitous computing software.

Apart from involvement of human knowledge
and behaviours and dynamic control switching be-
tween humans and cyber systems in the operation
of the system, HCPSs are like BDC-CPS and they
are formed from cross-domain HCPSs in a multiple
layered architecture. Each layer has three tiers of
sub-HCPS, HCPS control, and services to users, as
shown in Fig. 3.

2.3.4 Conceptual summary and classification

There are several popular terms that are com-
monly used in relation to CPS and HCPS: IoT, ubiq-
uitous computing, ambient intelligence, smart envi-
ronment, human-machine and machine-machine in-
teractions, hybrid systems, big data, and cloud com-
puting. The discussions in the above subsections
clarify how CPS and HCPS are different from those

Fig. 3 The three tiers in a layer of a human-cyber-
physical system (HCPS)

concepts and the roles that their technologies play
in CPS and HCPS engineering systems. Here, we
summarise with clarifications as follows:

(1) Hybrid systems are isolated input-output
embedded or control systems, and CPSs are net-
worked systems of these hybrid systems as unit
systems.

(2) Big data technology supports development
of better and intelligent control algorithms, algo-
rithms for monitoring, predicting, and handling ab-
normalities and uncertainty, and development of
value-added services.

(3) Cloud computing provides platform solu-
tions for big data technology and enables cross-
domain HCPS interactions and collaborations. Big
data and cloud computing technologies are used for
the requirements of trustworthiness (e.g., safety, se-
curity, reliability, and stability) and performance
(e.g., fault tolerance, realtime, and self-adaption).

(4) IoT is mainly for connecting and virtualising
“physical things” as data so that the “things” can be
identified, tracked, and shared.

(5) Ubiquitous computing is about using and
processing data of “physical things” to generate views
of the things as smart environments. The realisa-
tion of this then requires technologies, computing
power, and distributed cloud computing platforms.
Smart environments are used in the control and co-
ordination of the physical systems (which then cause
changes in the smart environments) and services to
the customers.

More importantly, humans in an HCPS behave
and interact with cyber and physical systems in their
smart environments (indicated as “Aml” in Fig. 3)
which greatly augment human abilities.

Therefore, HCPS is about the intersection of



1542 Liu and Wang / Front Inform Technol Electron Eng 2020 21(11):1535-1553

IoT, hybrid systems, ubiquitous computing, big
data, cloud computing, human-machine interaction,
and machine-machine interaction, rather than their
union.

3 Challenges

From the architectural descriptions of CPS,
BDC-CPS, and HCPS, we understand, among other
problems, the following features and challenges of
HCPS.

3.1 Complex heterogeneity

An HCPS comprises heterogeneous constituent
systems and devices, including:

(1) various human systems that belong to dif-
ferent organisations and play different roles in the
operation of the system;

(2) different physical systems that are designed
by different people using different techniques and
tools, run dependently and managed by different or-
ganisations;

(3) different sensors and actuators of different
functionalities, makes, and qualities; and

(4) different software systems that are designed
using different technologies and architectural styles,
implemented in different programming languages
and run on different platforms.

Different software, hardware, physical, and hu-
man resources are shared during the execution of
distributed and collaborative business processes and
workflows, and these resources are of different fea-
tures. The interactions among the heterogeneous
subsystems are very much of different natures.

3.2 Lack of appropriate abstractions

We all understand that advances of computer
systems and software engineering have been driven
by ideas of abstractions and their automation (In
fact this is true for any system engineering dis-
cipline). Important software abstractions in the
history include the symbolic assembler, subroutine,
function and procedure, high-level programming lan-
guage and compiler, abstract datatype, modularity,
object-orientation, and architecture styles (Liu et al.,
2019). These, together with abstractions of hard-
ware resources, have contributed to advances in pro-
gramming languages, operating systems, software ar-

chitecture, software development tools, and environ-
ments. Later, abstractions such as synchronisation,
critical sections and regions, mutual exclusion and
conditional synchronisation, and atomic actions are
all critically important for the development of con-
current and distributed computation and operation
systems. We note that all abstractions are repre-
sented in models and integrated into system archi-
tecture styles, which are common and useful system
organisations. On the subject of the impacts of soft-
ware abstractions, we refer the reader to the recent
perspective article (Liu et al., 2019). There, we also
argued for the essence and importance of abstrac-
tions, including that:

(1) abstractions are an essential and effective
means of mastering complexities;

(2) abstractions allow us to focus on common
aspects and ignore differences;

(3) abstractions allow to work with high-level
information, without the need of low-level domain
knowledge;

(4) abstractions are the key to engineering sup-
port for the principles of separation of concerns that
allow divide and conquer;

(5) abstractions are the key to development of
generic principles and systematic methods; and

(6) higher levels of abstraction enable higher de-
grees of automation.

In system engineering, abstractions emerge from
intuitions, and are then developed into models and
theories, eventually leading to automated mecha-
nisms. They drive the development of systematic
methods and tools.

One of the major challenges to the development
of HCPS engineering is the lack of appropriate ab-
stractions. First of all, most physical process con-
trols have real-time constraints, but as Lee EA (2006,
2008) noted, there is no abstraction for precisely de-
ciding the time required in computation. For exam-
ple, there are four layers of abstraction in embed-
ded system design. They are the bottom layer of
microprocessor, the second layer of x86 instruction
set architecture (ISA), the third layer of bytecode
programs, and the fourth layer of source code pro-
grams (e.g., Java code). The purpose of this lay-
ered structure is for the designer of one layer not to
be concerned with the details of the layers below.
However, the layers of abstractions fail to meet this
purpose in some respects, especially when real-time
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requirements are concerned. For example, ISA does
not provide a means to guarantee the user’s real-
time requirements. Also, programming languages
do not have suitable abstraction for time and there-
fore, the execution time of a program cannot be well
controlled to meet the user’s real-time requirements.
In embedded system design, timing analysis uses es-
timate of worst case execution time (WCET) and
this is done based on the operating system that has
good predictive scheduling policies. With extensive
bench testing, WCET analysis can guarantee real-
time constraints for small-scale and closed embedded
systems. However, this will not work for ultra-large-
scale and open HCPS.

Another serious problem with regard to abstrac-
tions in HCPS is the mismatches of the abstrac-
tions in cyber systems and physical systems. State
changes of physical systems are continuous and in
real time, and their abstract models are in gen-
eral, for example, the ordinary differential equation
(ODE), differential-algebraic equation (DAE), and
partial differential equation (PDE). On the contrary,
the states and state changes of cyber systems are
discrete, and their models are in general automata
or state machines. Time, concurrency, and synchro-
nisation in physical systems are all truly physical,
happening in real time. However, clocks in computer
systems are all approximations, and execution of pro-
grams is essentially sequential. Concurrency in pro-
grams is simply a result of the abstraction of internal
execution details and it exhibits complex nondeter-
minism. We can program concurrency and synchro-
nisation in programs using interruptions to suspend
and resume a process, but this does not in general
work for physical processes. Therefore, it is hard
to define a model of interfaces between cyber and
physical systems to characterise their interactions,
concurrency, and synchronisation. It is important
to note that handling the interaction, concurrency,
and synchronisation among software processes and
physical processes in classical embedded systems (or
in the so-called hybrid systems) is not such a signifi-
cant problem. This is because the systems are closed
and of small scale. Also, when such a closed system
fails, it would not affect any other system. However,
when a large number of such systems are opened up
and integrated in an HCPS, failures of an individ-
ual system can be propagated to other constituent
systems and cause unintended emergent behaviours

(Hu et al., 2008). Also, the current approach to
interactions of embedded systems with sensors and
actuators based on interrupts does not have abstrac-
tion in programming language (Lee EA, 2008).

Furthermore, we have to develop abstractions
for interaction, concurrency, and synchronisation be-
tween humans, humans and machines (cyber sys-
tems), and humans and physical systems, and these
abstractions could be dependent on the ability and
roles of humans in the system. These abstractions
are needed for the analysis and design of systems for
monitoring and control of human behaviours, and for
coordinating human behaviours with the behaviours
of cyber and physical systems. Being intelligent and
autonomous, humans as individuals, organisations,
and social systems are another dimension of source
of uncertainty, and thus pose difficulties in the de-
sign, analysis, and verification of an HCPS.

3.3 Dynamic black-box integration of hetero-
geneous systems

From the introduction to BDC-CPS in Sec-
tion 2.2 and HCPS in Section 2.3, we see an HCPS
as an integration of many heterogeneous subsystems.
The behaviours of the HCPS emerge through the
HCPS control services of the behaviours and inter-
actions of many heterogeneous subsystems for their
coordination. The HCPS control services are organ-
ised in hierarchical layers and each layer controls and
coordinates the interactions and behaviours of a set
of subsystems. The control services of a layer in-
clude orchestration and choreography of the services
of the subsystems of the layer and their composition
into business process services of the corresponding
layer of abstraction. These subsystems are designed
by different people using varying technology frame-
works, running independently, and controlled and
managed by different organisations.

The subsystems are used as black-box systems
in the integration of the HCPS for its mission require-
ments. Even for a subsystem that is developed for a
specific HCPS, abstract black-box models (i.e., inter-
face models) should be developed and documented.
Black-box models for subsystems are used for general
purposes, such as:

(1) by high-level designers, who do not have or
are unable to understand the low-level details of the
design and implementation of the subsystem,

(2) for the maintenance of the subsystem in the
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HCPS, such as its upgrades and replacement, and
(3) in other contexts within the HCPS and even

in other HCPS applications.
A major challenge to black-box integration of

subsystems of complex heterogeneity in HCPS is to
achieve the interoperability among the subsystems.
Interoperability in cyber systems is traditionally de-
fined to be “the ability of two or more systems or
components to exchange information and to cor-
rectly use such information” (IEEE, 1990). It re-
quires that the information exchange should work
well even in scenarios where the subsystems have dif-
ferences in programming languages, interfaces, and
execution platforms. The difficulty is mainly due to
the fact that a common understanding of the data
formats, procedures, contracts, standards, quality,
and interfaces is difficult to achieve among the differ-
ent stakeholders. There is a large body of literature
concerning interoperability of cyber systems and we
refer the reader to Chen D et al. (2008) and Kubicek
et al. (2011). However, interoperability of multiple
dimensions must be considered in the development
of an HCPS, which needs interaction and cooper-
ation among different organisations, suppliers, and
types of systems. With the HCPS layered architec-
ture style, horizontal interoperability requirements
must be defined to allow interactions and exchange
of data and information among heterogeneous and
distributed systems that are provided and devel-
oped by different suppliers. Vertical interoperability
requirements should be established to allow coop-
eration among cross-domain stakeholders, organisa-
tions, and businesses acting in distinct domains and
located in various environments.

It is important to note that interoperable inte-
gration is the key to ensuring the system require-
ments of HCPS, including performance safety, secu-
rity, reliability, and stability. Furthermore, a large
HCPS cannot be built from scratch. It always starts
from a simple and working initial system, and then
continuously evolves (Liu and Chen, 2014; Liu et al.,
2019). Bottom-up evolution of an HCPS allows indi-
vidual subsystems to enter or exit from the HCPS or
refine their behaviours at any moment, and requires
adaptations of SoS internal structures. On the other
hand, top-down evolution is required when system
requirements and/or business processes change. We
propose a general evolutionary framework to allow
the following system refinement:

(1) Plug in new subsystems or components and
refine existing systems and components.

(2) Dynamically find and connect subsystems
and components.

(3) Add more interface devices and/or improve
their performance, such as allowing cyber systems
to:

(a) monitor more and better about its environ-
ment,

(b) become more autonomous (self*),
(c) make more intelligent control decisions and

provide smarter services, and
(d) refine the HCPS control and coordinate

more and better physical components.
An HCPS is continuously evolving to improve

optimisation, smartness, connectivity, autonomy,
and trustworthiness (safety, security, reliability, and
dependability). We note that evolution takes tech-
nology development into account, such as improved
technology for sensor production, advanced tech-
nologies related to the application domains of HCPS,
and development of new technologies in computing,
information, and communication.

3.4 Complex requirements for functionalities,
performance, and quality of services

The mission of an HCPS is to provide solutions
to complex problems in our everyday life, and so-
cial, economic, and industrial development, includ-
ing social order, biomedicine and health, transporta-
tion, and manufacture (Rajkumar et al., 2010; Gunes
et al., 2014; Khaitan and McCalley, 2015). Different
applications can have varying requirements with re-
spect to functionality, performance, and quality of
service (QoS), which are outlined below:

(1) High reliability. Reliability requirements in-
clude safety, fault tolerance, and real-time require-
ments. Applications, such as those in medicine and
health, industry control systems, manufacturing sys-
tems, equipment monitoring, and control systems,
have high reliability requirements.

(2) Security. Security is required to prevent in-
formation leakage and malicious attacks, and protect
privacy. Applications in medicine and health, trans-
portation and industry control systems, smart home,
and smart cities have high security requirements.

(3) Adaptability. Requirements for adaptability
are to ensure the stable and sustainable execution
of the system through effective handling of dynamic
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uncertainty in the internal execution environment,
external operational environment, and in the require-
ments. It is important to understand that not only
the environment is open with complex uncertainty
but also the HCPS system itself is open with sub-
systems dynamically being added in or removed out,
and mobile systems being moving into or out of a lo-
cal execution environment. Therefore, effective self-
adaptation and reconfiguration must be designed to
cope with the complex uncertainty due to the double
openness.

It is a great challenge to understand, formulate,
and specify the requirements for an HCPS, and to our
best knowledge, an established method for require-
ment capture and analysis of HCPS requirements
does not exist.

3.5 Design, implementation, and mainte-
nance of HCPS to meet requirements

Because of the lack of understanding of the prin-
ciples, abstractions, and theoretical foundations, we
do not have systematic methods and tools for cor-
rect design and implementation of an HCPS, or tech-
nology frameworks for maintaining an HCPS to en-
sure that it continuously evolves and grows healthily.
More concretely, there are few clear ideas about and
approaches to:

(1) defining an engineering process for the mis-
sion of an HCPS (it seems that neither a top-
down decomposition and refinement approach nor
a bottom-up synthesis approach alone would work);

(2) defining architectural strategies for the selec-
tion of existing subsystems or their capabilities which
are needed and feasible for the mission requirements
of HCPS;

(3) defining strategies and selecting strate-
gies for interoperable integration of individual, dis-
tributed, and smart subsystems.

There are also known difficulties in the realisa-
tion of orchestration and choreography of behaviours
of heterogenous subsystems. IoT, big data, and
cloud computing can in principle provide technology
and platform support in connectivity, data process-
ing, analytics and usage, control decision making,
and control policy reconfiguration in the system op-
eration and maintenance. They also bring in chal-
lenges such as the following:

(1) Resource control and management. IoT and
cloud platforms in an HCPS control and manage a

large amount of resources. They are heterogenous
components of the HCPS and include data, hard-
ware, software services, physical processes, and even
human elements. Many of these resources are created
for specific tasks and problems. They are normally at
a large granularity and rigid; thus, they are not flex-
ible for dynamic reallocation and adjustment at run-
time for changing requirements and environments.
This implies the need and difficulties in development
of abstractions and a virtual model of heterogenous
resources for building system software including op-
erating systems and middleware components (Tröger
et al., 2015; Schätz, 2016; Mei and Guo, 2018) to sat-
isfy the system adaptability, stability, resilience, and
real-time constraints.

(2) Trustworthiness. Big data and cloud com-
puting provide the technologies and facilities for vir-
tualisation of hardware and physical systems as re-
sources. Virtualised resources can be duplicated
to provide redundancies for ubiquitous connectiv-
ity and fault tolerance. The big data and facilities
for the development and execution of AI algorithms,
those of powerful deep neural networks (DNNs) in
particular, can help handle problems caused by the
complex uncertainty of HCPS, either in the internal
behaviours or in the external environment. How-
ever, these intelligent systems, together with human
intelligence and autonomy, are serious causes of un-
certainty too. Their trustworthiness, in the state
of the art of HCPS and AI, cannot yet be defined.
Thus, we are facing significant challenges in verify-
ing, controlling, composing, and reusing DNNs when
they are integrated in engineering systems like the
HCPS.

(3) Control and management of interactions of
heterogenous subsystems and intelligent agents. In
an HCPS, heterogenous human, physical, and cyber
systems, which can be mobile, join and leave the sys-
tem through the network. Human and other intelli-
gent agents in different layers of abstraction interact
and communicate with each other. Therefore, defin-
ing and implementing their communication protocols
is challenging. Also, given requirements, there are
no design and programming methods for designing
interoperable scheduling, coordination, and orches-
tration of human and intelligent agents (Calvaresi
et al., 2017).
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4 Proposed research directions

Since 2006 when the notion of CPS was pro-
posed, there have been intensive studies. An im-
portant part of the research has been about defining
the area of research and investigating major chal-
lenges. Examples of pioneering work include Lee EA
(2006, 2008, 2010), Sha et al. (2008), Gill (2010),
and Rajkumar et al. (2010). Most of the remaining
work attempts mainly to use existing models and
techniques in computing, communication, and con-
trol engineering and their conservative extensions in
building CPS, but there is little advance in the study
of the intersection of the three engineering disci-
plines. Based on our literature study, initial research
experience and results, and the challenges discussed
in the previous section, we propose the following re-
search directions.

4.1 Abstractions and computational theory of
HCPS

From a system engineering perspective, develop-
ment of systematic methods, techniques, and tools in
HCPS engineering relies on a well-founded scientific
foundation and abstractions. Abstractions are built
up for general characteristics of the systems, and gen-
eral principles and idiomatic solutions to common
problems in constructing, operating, and maintain-
ing HCPS. The relationships among abstractions,
scientific foundation, methods, and tools are that
abstractions come as intuitions gained in practice;
then they are rigorously studied and modelled to
form theories, developed as methods and tools, and
implemented as system constructs and mechanisms.
These constructs and mechanisms are the fundamen-
tal elements used to build system architectures.

The development of computer systems and soft-
ware engineering has been driven by abstractions,
their theories, and their implementations, such as
symbolic assemblers (Wilkes et al., 1951), high-level
programming languages and compilers (Giloi, 1997),
subroutines (Wheeler, 1952), abstract datatypes
(ADT) (Liskov and Zilles, 1974), modularity (Par-
nas, 1972; Lindsey and Boom, 1978) and object ori-
entation (Nygaard and Dahl, 1978), atomic actions,
interactions of concurrency and synchronisation, and
architecture styles like component-based and service-
oriented architecture styles (Liu et al., 2019). There
are many well-established models and theories, e.g.,

theories of automata, state machines, algebraic the-
ory of ADT, process algebras including CSP (Hoare,
1985) and CCS (Milner, 1989), and temporal logics.

Therefore, the first direction of research we pro-
pose is to develop necessary abstractions and a com-
putational model of HCPS. The research starts with
a focus on interactions among human systems, cy-
ber systems, and physical systems, and the flows
of control, data, and communication. To this end,
we propose a theory of human-cyber-physical au-
tomata (HCP-A). HCP-A is an input/output au-
tomaton and is required to be able to model the
interactions among human systems, cyber systems,
and physical systems. It is an extension to the model
of hybrid automata (Alur et al., 1995; Lynch N et al.,
2003). However, it is not a trivial extension because
HCP-A needs to capture the controlled switches of
control between human systems and cyber systems.
This implies that HCP-A has a learning component
and it is context-aware and knows the model of the
autonomous behaviours of human systems.

It is important to note here that we are not
seeking to model generic human intelligence or the
so-called strong AI (yet), but we believe that it is pos-
sible to have a model that learns the behaviours of
a particular human system in a given execution sce-
nario. Still, this is a new and difficult research prob-
lem, as we do not know any initial work in this direc-
tion. However, we understand that this is also very
fundamental and that its importance can be com-
pared with that of the traditional theory for classical
programming, theory of I/O automata for concur-
rent and distributed computing, theory of real-time
automata for real-time computing, etc.

The research can start with considering human-
cyber interactions to develop a model of I/O au-
tomata, called intelligent I/O automata, with a
learning oracle, to represent the intelligent be-
haviours of a human system or a DNN and their in-
teraction with traditional I/O automata (Lynch NA,
1996). Then, we incrementally extend the model to a
model of real-time intelligent I/O automata to deal
with real-time constraints, and eventually a model
of hybrid intelligent I/O automata for human-cyber-
physical interactions and concurrency. To deal with
the multi-dimensional uncertainty of HCPS, proba-
bilistic extensions to the above models are required.

In the research on the above computational
models, we need to study their expressiveness and
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decidability problems. Composition and equivalence
manipulations of models are also important research
topics.

4.2 Theories and methods of HCPS architec-
ture modelling

In general, the architecture of an engineering
system defines its components or the subsystems,
their functionalities, interaction relations, perfor-
mance, and QoS. The architecture is hierarchical
and can be represented at different levels of abstrac-
tion. The specifications at various levels are for
system requirements, design, implementation, and
maintenance.

System architecture is also important for defin-
ing and managing the system development process,
which decides what subsystems will be integrated
or designed and what methods and tools will be
used according to the expertise of the development
team (Liu et al., 2019). The study of architec-
ture modelling is the basis for the development of
methods and tools for system development, including
modelling languages, programming models and lan-
guages, and system analysis, verification, and simu-
lation.

An HCPS controls and coordinates many het-
erogeneous subsystems, but we do not yet have a
clear model to define its architecture. We need such
a modelling theory for these ultra-large-scale SoS in
order to develop HCPS architecture modelling and
design methods. Without such a theory, we can-
not ensure the conceptual integrity and stability in
the whole lifecycle of requirement definition, design,
implementation, maintenance, and evolution.

Therefore, the second research direction we pro-
pose is theories and methods of HCPS architecture
modelling. The aim is to establish unified mathe-
matical models for describing the structures, func-
tionality, performance, and QoS at different levels of
abstraction. This is to establish the foundation for
developing methods, techniques, and tools for model
construction, analysis, decomposition, composition,
and other manipulations. The main difficulty is to
define a unified meta behaviour model for the het-
erogeneous subsystems for their interoperable inte-
gration. What we propose is a research programme
on interface contract-based model-driven HCPS de-
velopment which has, among others, the following
components:

1. Model of HCPS interface contracts
Because an HCPS architecture integrates and

controls, through different layers, many heteroge-
neous subsystems, their end-to-end interaction be-
haviours and composition are essential aspects to
model. The model must support separation of the
interface specification and its implementation for
black-box integration. Therefore, an interface con-
tract specifies an assumption about its environment
and the behaviours it guarantees to deliver if the
environment satisfies the assumption.

A subsystem in an HCPS has a large variety of
aspects and we can understand them from several
viewpoints. Thus, we can define models of different
viewpoints for an HCPS interface, including its in-
terface static type which defines the static structure
of the interface, its external interaction type which
specifies the interaction protocol and communication
flow with the environment of the subsystem, and its
dynamic behaviour type which defines the control
flow and data flow of the subsystem.

The interface behaviour type also describes how
the interface static type and interface interaction
type are realised through the interface static types
and interaction types of subsystems in the layer be-
low, which is the coordination of the behaviours of
the subsystems through their interfaces. Therefore,
the interface contract model, simply called the con-
tract, is an aggregation of these viewpoint models.
The interface interaction type and behaviour type
should be defined based on the definition of HCP-A
in Section 4.1.

2. Theory of HCPS interface contract composi-
tion and refinement

To support the layered architecture style of the
HCPS and black-box integration, we need to de-
fine the necessary composition operations of inter-
face contracts and study their equivalence proper-
ties. The interface static type, interaction type, and
behaviour type of a composite interface contract are
determined through calculation of the interface static
types, interaction types, and behaviour types of the
component interface contracts. Algebraic properties
of the composition operations must be studied.

The layered architecture also requires that an
interface contract at a higher level is correctly re-
alised by a composition of interface contracts at the
layer below. We need a notion for the characteri-
sation of this realisation relation of a contract by a
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composition of several contracts. Furthermore, we
need to support maintenance operations and system
evolution by allowing a subsystem or a component of
it at any layer to be replaced by a better or upgraded
subsystem or a component. To this end, we need to
define the relation of contract refinement. This re-
lation is required to be a partial order; that is, it is
reflexive, transitive, and antisymmetric.

Contract composition operations are also called
architecture operations. They are required to pre-
serve the refinement partial order. These operations
provide information hiding, connectors, adaptors,
data converters, etc. Refinement preserving archi-
tecture operations support architecture evolution to
improve reliability, safety, security, adaptivity, and
autonomy through adding and upgrading software
components (including middleware components).

There is some initial progress in this direction.
We refer the reader to the actor-based model (Lee EA
et al., 2003), hybrid CSP (He, 1994), hybrid Hoare
logic (Wang et al., 2015), contract-based design for
CPS (Sangiovanni-Vincentelli et al., 2012), and our
idea to extend rCOS (Palomar et al., 2016; Chen X
and Liu, 2017; Liu et al., 2019).

4.3 Specification and verification of model
properties

HCPS systems (and subsystems) are compo-
sition of heterogeneous subsystems and they have
inter-related global and local properties of many
kinds. Their specification and verification are dif-
ficult. Among other properties of a large SoS, the
following properties are particularly important and
difficult to specify and verify:

(1) Time-spatial properties. The time-spatial
requirements of HCPS are to guarantee that right
events occur at the right time and in the right loca-
tion. This does not mean the faster the better, but
more about the predictability of time and location
in the design, implementation, and maintenance of
the system. For example, we are not clear about
how to specify when an event is to occur in the inter-
face contract model, and how it can be realised by
a composition of many components. The currently
used model in programming is clock-based timed au-
tomata. However, these clocks do not have a seman-
tic interpretation for physical processes. We envision
a hybrid specification of time constraints that com-
bines models of interval time, accumulative time, fre-

quency, and superdense time (Zhou CC et al., 1991;
Liu et al., 1998).

(2) Safety, security, and fault tolerance. We
can see that, based on the theory and method of
architecture modelling discussed in Section 4.2, mid-
dleware components implementing encryption algo-
rithms, access control, runtime monitoring, fault de-
tection, and fault recovery can be designed and de-
ployed in an HCPS to refine existing subsystems and
HCPS control software (Liu et al., 2008, 2019; Liu
and Chen, 2014). These methods for security are in
general known secure by design and fault-tolerant by
transformation (Liu and Joseph, 1996, 1999). How-
ever, how these methods can be used for human sys-
tems and DNN systems is entirely unknown.

(3) Emergent behaviours. The global be-
haviours of an HCPS emerge from the interaction
and collaboration of its many subsystems. Many of
these behaviours cannot (or at least we do not know
how they can) be defined by behaviours of subsys-
tems (Hu et al., 2008). Examples of these behaviours
reflect as system features of resilience and flexibil-
ity. Such behaviours are not achieved through the
design of one or more subsystems but emerge as re-
sults of coordination and/or collaboration of the sub-
systems, and they are called emergent behaviours.
Some emergent behaviours are required or desired,
but some others are harmful and even disastrous.
We do not know any general method for specifying
and verifying emergent behaviours, or design meth-
ods to achieve or avoid an emergent behaviour.

Most of the current work on verification of
safety, liveness, security, realtime, and robustness is
to extend methods of theorem proving, model check-
ing, and testing, based on extended models. We
would like to point out that, due to the scale and
complex heterogeneity, the verification techniques
are relatively limited and their combination with
simulation techniques is now taken seriously. More-
over, the construction of an HCPS often uses various
kinds of legacy systems which do not have models.
Therefore, model learning and control synthesis are
also important techniques for model construction. In
addition to the above properties, specification, veri-
fication, and simulation of properties of probabilistic
models of human systems, machine learning systems,
and other models dealing with uncertainty are all im-
portant research topics.
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4.4 Software-defined HCPS

A very important nature of a layered architec-
ture of an HCPS (discussed in Section 2) is that a
control service of the control tier in a layer coordi-
nates the behaviours of the subsystems in the layer
below, through orchestration and choreography. Di-
rectly programming the coordination by coupling the
behaviours of the subsystems is not feasible, because
of the many subsystems. It is not feasible either, be-
cause there can be many different control services
that coordinate the subsystems in different ways.
This is why black-box coordination through inter-
face specifications is required.

HCPS computational models and architecture
models are used for the development of program-
ming models, specification languages, programming
languages, and software development tools and plat-
forms for developing, running, and maintaining soft-
ware systems of HCPS. This requires the establish-
ment of abstractions for some data, software services,
hardware devices, physical and human systems in a
layer that are commonly used and shared among the
business service of that layer to be encapsulated as
virtual models of resources.

Resource models are the bases for the develop-
ment of system software for easier and more effective
and efficient control, management, and allocation
of the resources to computational tasks. Resources
in HCPS can be much more generalised than those
of the input and output devices, memory, and pro-
cessing units in traditional operating systems. We
need to study what more abstractions are needed for
HCPS resources and/or what extensions to the tra-
ditional abstractions such as memory and process-
ing units should be developed. Furthermore, various
kinds of system software in HCPS are organised in
different layers where a higher-layer operating sys-
tem coordinates several operating systems in a layer
below. We can call them ubiquitous resources and
ubiquitous operating systems (Mei and Guo, 2018),
respectively.

The abstractions to encapsulate resources as vir-
tual models and then to manage the resources by sys-
tem software are the key to software for an HCPS,
and it is very much like the principle of technologies
of software-defined systems (Jararweh et al., 2015,
2016; Mei and Guo, 2018). The principle of software-
defined techniques is not novel; its main idea is easy

to understand in the following ways:
(1) separation of the laws of control from the

physical hardware through abstractions of hardware
and equipment,

(2) separation of the use of the resource func-
tionalities from their implementations, through ap-
plication programming interfaces (APIs), and

(3) higher-level business services and processes
which are composed based on control flows and data
flows.

The general form of programs in a software-
defined system is as follows:

API-based encapsulated components+control program.

These ideas originate first from control engineer-
ing as in a programmable logic controller (PLC), and
also the design of operating systems. They are then
used in modern programming paradigms, such as
object-oriented programs and service-oriented pro-
grams, in the following forms, respectively:

Classes + main program and
WSDL + BPEL program.

However, the main challenges in the devel-
opment of methods and tools for software-defined
HCPS (SD-HCPS) are to:

(1) define data (or virtual) models of heteroge-
neous resources and their capabilities;

(2) define APIs at different granularities for het-
erogeneous subsystems (including resources) for flex-
ible coordination;

(3) define task models with information about
resource requirements and execution models with re-
source utilities;

(4) design and analyse algorithms for heteroge-
neous resource management and allocation, involv-
ing hierarchical scheduling policies.

Although software-defined techniques have been
available around for some time, it is not yet certain
how they are effective for HCPS development. It
is important to study the integration of technolo-
gies of software-defined network (Molina and Ja-
cob, 2018), software-defined storage (Darabseh et al.,
2015), software-defined cloud (Jararweh et al., 2016),
software-defined IoT (Jararweh et al., 2015; Zeng DZ
et al., 2020), software-defined security, and so on, to
develop a coherent technology for software-defined
HCPS.
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5 Summary of the special section

We have presented our perspective on the main
concepts of HCPS and challenges to further devel-
opment of HCPS engineering. Our view is that al-
though there has been active research in the area
and a large body of work has been published, the
research is still in its infancy and little progress has
been made towards solutions to the challenges out-
lined in Section 3. We have thus proposed four in-
terrelated research directions in Section 4 to promote
further research efforts in building the scientific foun-
dation for engineering HCPS.

As part of the effort, we have organised this spe-
cial section on Model-Driven Software Development
for Cyber-Physical Systems in Frontiers of Informa-
tion Technology & Electronic Engineering, with the
hope of presenting some research results related to
the challenges. We received seven submissions and
organised reviews following the requirements of the
journal. We have accepted four manuscripts to in-
clude in this special section. Each of these four pa-
pers was accepted after revisions following the com-
ments from two rounds of reviews by two or three
experts. We present the abstracts of these papers as
a summary below:

1. Emergence in cyber-physical systems: po-
tential and risk, by Shmuel TYSZBEROWICZ and
David FAITELSON

Cyber-physical systems (CPSs) are distributed
assemblages of computing, communicating, and phys-
ical components that sense their environment, algo-
rithmically assess the incoming information, and af-
fect their physical environment. Thus, they share a
common structure with other complex adaptive sys-
tems, and therefore share both the possible benefits
and the probable harmful effects of emergent phenom-
ena. Emergence is an often unexpected pattern that
arises from the interactions among the individual sys-
tem components and the environment. In this paper
we focus on three major problems concerning emer-
gence in the context of CPSs: how to successfully ex-
ploit emergence, how to avoid its detrimental effects
in a single CPS, and how to avoid harmful emergence
that arises due to unexpected interaction among sev-
eral independently developed CPSs that are operating
in the same environment. We review the state of
the research with regard to these problems and out-
line several approaches that could be used to address

them.
2. A survey of model-driven techniques and

tools for cyber-physical systems, by Bo LIU et al.
Cyber-physical systems (CPSs) have emerged as

a potential enabling technology to handle the chal-
lenges in social and economic sustainable develop-
ment. Since it was proposed in 2006, intensive re-
search has been conducted, showing that the construc-
tion of a CPS is a hard and complex engineering
process due to the nature of integrating a large num-
ber of heterogeneous subsystems. Among other ap-
proaches to dealing with the complex design issues,
model-driven design of CPSs has shown its advan-
tages. In this review paper, we present a survey of re-
search on model-driven development of CPSs. We are
concerned mainly with the widely used methods, tech-
niques, and tools, and discuss how these are applied
to CPSs. We also present comparative analyses on
the surveyed techniques and tools from various per-
spectives, including their modeling languages, func-
tionalities, and the challenges which they address in
CPS design. With our understanding of the surveyed
methods, we believe that model-driven approaches are
an inevitable choice in building CPSs and further re-
search effort is needed in the development of model-
driven theories, techniques, and tools. We also ar-
gue that a unified modeling platform is needed. Such
a platform would benefit research in the academic
community and practical development in industry,
and improve the collaboration between these two
communities.

3. Decentralized runtime enforcement for
robotic swarms, by Chi HU et al.

Robotic swarms are usually designed in a bottom-
up way, which can make robotic swarms vulnerable to
environmental impact. It is particularly true for the
widely used control mode of robotic swarms, where it
is often the case that neither the correctness of the
swarming tasks at the macro level nor the safety of
the interaction among agents at the micro level can
be guaranteed. To ensure that the behaviors are safe
at runtime, it is necessary to take into account the
property guard approaches for robotic swarms in un-
certain environments. Runtime enforcement is an
approach which can guarantee the given properties in
system execution and has no scalability issue. Al-
though some runtime enforcement methods have been
studied and applied in different domains, they cannot
effectively solve the problem of property enforcement
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on robotic swarm tasks at present. In this paper,
an enforcement method is proposed on swarms which
should satisfy multi-level properties in uncertain en-
vironments. We introduce a macromicro property
enforcing framework with the notion of agent shields
and a discrete-time enforcing mechanism called D-
time enforcing. To realize this method, a domain
specification language and the corresponding enforcer
synthesis algorithms are developed. We then apply
the approach to enforce the properties of the sim-
ulated robotic swarm in the robotflocksim platform.
We evaluate and show the effectiveness of the method
with experiments on specific unmanned aerial vehicle
swarm tasks.

4. Architecture-level particular risk modeling
and analysis for a cyber-physical system with AADL,
by Ming-rui XIAO et al.

Cyber-physical systems (CPSs) are becoming
increasingly important in safety-critical systems.
Particular risk analysis (PRA) is an essential step in
the safety assessment process to guarantee the quality
of a system in the early phase of system development.
Human factors like the physical environment are the
most important part of particular risk assessment.
Therefore, it is necessary to analyze the safety of
the system considering human factor and physical
factor. In this paper, we propose a new particular
risk model (PRM) to improve the modeling ability
of the Architecture Analysis and Design Language
(AADL). An architecture-based PRA method is
presented to support safety assessment for the AADL
model of a cyber-physical system. To simulate
the PRM with the proposed PRA method, model
transformation from PRM to a deterministic and
stochastic Petri net model is implemented. Finally,
a case study on the power grid system of CPS is
modeled and analyzed using the proposed method.
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