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Abstract: This paper investigates the issue of event-triggered adaptive finite-time state-constrained control for
multi-input multi-output uncertain nonlinear systems. To prevent asymmetric time-varying state constraints from
being violated, a tan-type nonlinear mapping is established to transform the considered system into an equivalent
“non-constrained” system. By employing a smooth switch function in the virtual control signals, the singularity in
the traditional finite-time dynamic surface control can be avoided. Fuzzy logic systems are used to compensate for
the unknown functions. A suitable event-triggering rule is introduced to determine when to transmit the control
laws. Through Lyapunov analysis, the closed-loop system is proved to be semi-globally practical finite-time stable,
and the state constraints are never violated. Simulations are provided to evaluate the effectiveness of the proposed
approach.
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1 Introduction

In recent years, some meaningful control tech-
nologies have been studied for a class of uncertain
nonlinear systems. As an effective control method,
backstepping control technology has been investi-
gated and applied in uncertain nonlinear systems.
To avoid the issue of “complexity explosion,” dy-
namic surface control (DSC) (Swaroop et al., 2000)
and command filter backstepping (Dong et al., 2012)
have been proposed. Fuzzy logic systems (FLSs)
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(Yu et al., 2015; Tian et al., 2016) or neural net-
works (NNs) (Ge and Wang, 2004; Wang M et al.,
2010) are usually combined with adaptive backstep-
ping control technology to compensate for the un-
known smooth functions.

Note that output/state constraints often oc-
cur in practical systems. The transgression of out-
put/state constraints may decrease system perfor-
mance or even cause danger. Considering the out-
put/state constraints, barrier Lyapunov function
(BLF) based control approaches have been proposed
by Tee et al. (2009). Since then, many kinds of
BLFs have been presented, such as log-type BLFs
(Li GJ, 2017; Wei et al., 2019), tan-type BLFs (Jin,
2016), and integral BLFs (iBLFs) (Tee and Ge, 2012;
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Wei et al., 2020b). When using log-type BLFs or
tan-type BLFs, the output/state constraints should
be transformed on error constraints, which leads to
the initial state selection tending to be conservative.
When applying iBLFs, the output/state constraints
can be handled directly. However, feasibility condi-
tions for virtual control signals are usually needed
(Zhao and Song, 2019). Another effective way to
handle output/state constraints is nonlinear map-
ping (NM). When using NM, the considered system
can be transformed into a new system that is free of
constraints. Then, the controller is designed based
on the transformed system, so that the state con-
straints of the system will not be violated. To settle
the output constraints, a log-type NM function was
proposed by Guo and Wu (2014). A neural DSC ap-
proach for state-constrained systems using log-type
NM was presented by Zhang et al. (2017). A com-
mand filter backstepping state-constrained control
scheme for multi-input multi-output (MIMO) sys-
tems using NM was designed by Qiu et al. (2020),
and Liu YL et al. (2018) extended this work to asym-
metric time-varying constraints. Some new forms of
NM have also been put forward to handle the prob-
lem of output/state constraints, such as tanh-type
NM (Hua and Zhang, 2020a) and fraction-type NM.
However, if there are no requirements for state con-
straints, the restrictions of state constraints cannot
be ignored in these studies.

It is noticed that the above studies cannot guar-
antee that the system will achieve the control goal
in finite time. Different from infinite-time control
approaches, finite-time control approaches have bet-
ter robustness and tracking performance. Recently,
many studies have been done on finite-time control
of nonlinear uncertain systems (Miao et al., 2016;
Wang F et al., 2018; Li YM et al., 2019; Xue et al.,
2020). Among them, Wang F et al. (2018) proposed
an adaptive fuzzy finite-time control method. A
finite-time adaptive DSC approach for MIMO uncer-
tain systems was developed by Li YM et al. (2019),
a fuzzy finite-time command filtered control scheme
was developed by Yu et al. (2018), and Xia et al.
(2019) performed studies of finite-time control for
systems subject to state constraints. In previous
studies, an exponential parameter 0 < ı < 1 was
used in the virtual control laws. Unfortunately, when
tracking errors converge to zero, the time derivative
of the virtual control laws will grow infinitely. To

avoid this problem, a C1 smooth finite-time NN con-
trol scheme using a log-type BLF was proposed by
Cui B et al. (2020).

The above-mentioned studies are based on time-
triggered methods. To save communication re-
sources, event-triggered control (ETC) approaches
have received much attention. ETC-related meth-
ods have been studied using FLSs or NNs (Liu TF
and Jiang, 2015; Sahoo et al., 2016; Wang YY et al.,
2019; Zhu et al., 2020). Among them, ETC schemes
were investigated with the help of input-to-state sta-
bility (ISS) (Liu TF and Jiang, 2015; Sahoo et al.,
2016; Wang YC et al., 2017). To remove the ISS
assumption, an ETC-based adaptive approach for
uncertain nonlinear systems was proposed by Xing
et al. (2017). ETC approaches have been applied
widely in other systems (Li BW et al., 2018; Demirel
et al., 2019; Liu Y et al., 2020; Xu et al., 2020; Zhu
et al., 2020). Recently, finite-time control meth-
ods using event-triggered strategies were also in-
vestigated (Chen MH et al., 2020). An adaptive
event-triggered finite-time control scheme was pro-
posed by Chen MH et al. (2020), and event-triggered
state-constrained control method was investigated
by Wang YC et al. (2020). However, the event-
triggered finite-time state-constrained control prob-
lem has not been mentioned.

Motivated by existing results, an event-
triggered adaptive smooth finite-time DSC approach
for MIMO uncertain nonlinear systems under asym-
metric time-varying full state constraints is provided.
The contributions of this paper are summarized as
follows:

1. A novel NM function is introduced to trans-
form an asymmetric time-varying state-constrained
system into a new system that is free of constraints.
Different from existing NM-based control methods
(Guo and Wu, 2014; Hua and Zhang, 2020a; Zhao
and Song, 2020), the tan-type NM-based control
scheme is also available without state constraint re-
quirements. Different from the tan-type NM-based
method proposed by Wei et al. (2020a), we ex-
tend this work to deal with asymmetric time-varying
constraints.

2. A new ETC-based smooth finite-time DSC
approach is introduced for state-constrained sys-
tems. Note that some finite-time DSC-based control
strategies have been developed (Li YM et al., 2019).
However, when the tracking errors converge to zero,
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the time derivative of the virtual control laws grows
infinitely. To solve this problem, smooth switch func-
tions are applied to the virtual laws. Then, the sin-
gularity in the traditional finite-time DSC can be
avoided. Different from the smooth finite-time ap-
proach using BLFs by Cui B et al. (2020), a tan-type
NM is applied to settle the state constraints directly.
Moreover, an ETC rule is introduced to reduce the
burden of communication while maintaining the sta-
bility of the state-constrained system.

2 Problem formulation and preliminar-
ies

2.1 System description

Given a class of MIMO nonlinear systems in the
following strict-feedback form:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋj,rj = Fj,rj (x̄j,rj ) +Gj,rj (x̄j,rj )xj,rj+1,

j = 1, 2, · · · , n, rj = 1, 2, · · · ,mj − 1,

ẋj,mj = Fj,mj (X, τ̄j−1) +Gj,mj (x̄j,mj )τj(t),

yj = xj,1,
(1)

where x̄j,rj =
[
xj,1, xj,2, · · · , xj,rj

]T ∈ R
rj ,

xj,rj and xj,mj denote the system states,
Fj,rj (x̄j,rj ) and Fj,mj (X, τ̄j−1) are smooth non-
linear functions, X =

[
xxxT1 ,xxx

T
2 , · · · ,xxxTj

]T with

xj =
[
xj,1, xj,2, · · · , xj,mj

]T, Gj,rj (x̄j,rj ) and
Gj,mj (x̄j,mj ) are nonzero control gains, τj(t) is the
control inputs with τ̄j−1 = [τ1, τ2, · · · , τj−1]

T ∈
R

j−1, and y = [y1, y2, · · · , yn]T ∈ R
n denotes the

system output.
The aim of this work is to design an event-

triggered adaptive finite-time fuzzy control approach
using a tan-type NM, such that the asymmetric time-
varying state constraints are never transgressed and
yj can follow the reference signal ydj in finite time.
Remark 1 The system described in Eq. (1) is a
general MIMO strict-feedback system that can be
found in many practical applications, such as robotic
systems (Zhang et al., 2018), aero vehicle systems
(Hua and Zhang, 2020b), and underwater vehicle
systems (Wang LJ et al., 2020). Meanwhile, output/
state constraints often exist in these systems.
Assumption 1 The control gain Gj,rj is bounded.
The control gainGj,mj is known and bounded. There
exist constants g0 > 0 and g1 > 0 such that 0 < g0 <

|Gj,rj | < g1.

Assumption 2 The reference signal ydj(t) satis-
fies ydj(t) ∈ �y := {|ydj(t)| < bdj,1 < bj,1, ∀t >
0}, where bdj,1 > 0 and bj,1 > 0 are constants.
Meanwhile, the jth-order derivatives of ydj(t) (j =

1, 2, ..., n) are continuous and bounded.

2.2 Finite time

Definition 1 (Wang F et al., 2018) Consider the
system ς = φ(ς, τ), ς(t0) = ς0. If a constant ι and
a settling time Ts < ∞ exist, where |ς | ≤ ι, ∀t ≥
t0 + Ts, then the equilibrium point ς = 0 of the
system is semi-globally practical finite-time stable
(SGPFS).
Lemma 1 (Hardy et al., 1952) For ∀ω ∈ R and
0 < ı < 1, the following inequality holds:
⎛

⎝
m∑

j=1

|ωj|
⎞

⎠

ı

≤
m∑

j=1

|ωj|ı ≤ m1−ı

⎛

⎝
m∑

j=1

|ωj |
⎞

⎠

ı

. (2)

Lemma 2 (Qian and Lin, 2001) For any variables
χ1 and χ2 and positive constants ς1, ς2, and ς3, one
has

|χ1|ς1 |χ2|ς2 ≤ ς1
ς1 + ς2

ς3|χ1|ς1+ς2

+
ς2

ς1 + ς2
ς

−ς1
ς2

3 |χ2|ς1+ς2 . (3)

Lemma 3 (Polycarpou, 1996) Considering the
constant � > 0 and ∀ς ∈ R, the following inequality
holds:

0 ≤ |ς | − ς tanh
( ς

�

)
≤ 0.2785�. (4)

Lemma 4 (Chen CLP et al., 2014) For ς1, ς2 ∈ R,
the following Young’s inequality holds:

ς1ς2 ≤ λp

p
|ς1|p + 1

qλq
|ς2|q, (5)

where λ > 0, p > 1, and q > 1 with (p−1)(q−1) = 1.
Lemma 5 (Wang F et al., 2018) Consider the
system ς = φ(ς, τ) and the Lyapunov function V (ς).
If there exist c1 > 0, c2 > 0, and 0 < ı < 1, so that

V̇ (ς) ≤ −c1V ı(ς) + c2, (6)

then the system ς = φ(ς, τ) is SGPFS.

2.3 Fuzzy logic systems

FLSs are designed to compensate for unknown
functions. The inference rules can be described as
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Rj: If ς1 is Hj
1, ς2 is Hj

2, · · · , and ςn is Hj
n, then y

is Kj (j = 1, 2, · · · , N), where ςj represents the FLS
input, y is the FLS output, and N represents the
number of rules. Hj

r andKj are fuzzy sets, associated
with the fuzzy membership functions μHj

i
(ςr) and

μKj(y), respectively.
By the singleton fuzzifier and center average de-

fuzzification, the FLS can be described as

y(ς) =

∑N
j=1

[
ȳj
∏n

r=1 μHj
i
(ςr)
]

∑N
j=1

∏n
r=1 μHj

i
(ςr)

, (7)

where ȳj = max
y∈R

μKj(y).

The fuzzy basis function is defined as

Sj =

∏n
r=1 μHj

i
(ςr)

∑N
j=1

∏n
r=1 μHj

i
(ςr)

. (8)

Denote ΘT = [ȳ1, ȳ2, · · · , ȳN ] = [Θ1, Θ2, · · · , ΘN ]

and S(ς) = [S1(ς), S2(ς), · · · , SN (ς)]T. Then,
Eq. (7) can be described as

y(ς) = ΘTS(ς). (9)

Lemma 6 (Tong et al., 2012) Consider a continu-
ous function h(ς) which is defined on a compact set
Ω. Then, a fuzzy logic system exists such that

sup
x∈Ω

|h(ς)−ΘTS(ς)| ≤ δ, (10)

where δ > 0 is a bounded constant.
Define the optimal approximation weight as

ΘΘΘ∗ = min
ς∈Θ

[

sup
x∈Ω

|h(ς)−ΘTS(ς)|
]

. The function

f(x) can be expressed as f(ς) = (Θ∗)TS(ς) + δ̄,
where δ̄ is a bounded constant.

2.4 Nonlinear mapping

Definition 2 A tan-type NM function ξ(x) is
defined as follows:

� = q(x)
2b̄

π
tan

(πx

2b̄

)
+ (1− q(x))

2b

π
tan

(
πx

2b

)

,

(11)
where

q(x) =

{
1, x ≥ 0,

0, x < 0.
(12)

For ease of notation, q(x) is abbreviated as q, and
b̄ > 0 and b > 0 are time-varying state constraints of
x. Then we can obtain the time derivative of Eq. (11)
as

�̇ = μ+ νẋ, (13)

where μ and ν are given as follows:

μ =q

[
2˙̄b

π
tan

(πx

2b̄

)
− x ˙̄b

b̄
sec2

(πx

2b̄

)
]

+ (1 − q)

[
2ḃ

π
tan

(
πx

2b

)

− xḃ

b
sec2

(
πx

2b

)]

,

(14)

ν = qsec2
(πx

2b̄

)
+ (1− q)sec2

(
πx

2b

)

. (15)

Using Eq. (13), the considered system (1) can be
transformed as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�̇j,rj = fj,rj +�j,rj+1

s = 1, 2, · · · , n, rj = 1, 2, · · · ,mj − 1,

�̇j,mj = fj,mj + gj,mjτj(t),

y∗j = �j,1,

(16)

where

fj,rj =νj,rj
(
Fj,rj +Gj,rjxj,rj+1

)

+ μj,rj −�j,rj+1,
(17)

fj,mj = νj,mjFj,mj + μj,mj , (18)

gj,mj = νj,mjGj,mj . (19)

Meanwhile, ydj can be transformed as

y∗dj = q
2b̄j,1
π

tan

(
πydj

2b̄j,1

)

+(1−q)2bj,1
π

tan

(
πydj
2bj,1

)

.

(20)
Lemma 7 Consider the sets Ωx = {xj,rj (t) :

−bj,rj < xj,rj (t) < b̄j,rj} and Ω� = {�j,rj (t) :

�j,rj(t) ∈ R}. For any initial condition satisfying
xj,rj (0) ∈ Ωx, if the signal �j,rj(t) is bounded, then
xj,rj (t) ∈ Ωx, ∀t ≥ 0.
Proof The proof is provided in Appendix A.
Lemma 8 Consider the sets Ωx = {xj,rj (t) :

−bj,rj < xj,rj (t) < b̄j,rj} and Ω� = {�j,rj (t) :

�j,rj(t) ∈ R}, and parameters l∗, l ∈ R. If the signal
�j,rj(t) → l∗, then xj,rj (t) → l = ξ−1 (l∗).
Proof The proof is provided in Appendix B.
Remark 2 We compare the proposed tan-type NM
with the existing log-type NM (Guo and Wu, 2014).
For fair comparison, we discuss only the case of sym-
metric constraints. That is, the state xj,rj is required
to remain in the set Ωx = {xj,rj | − bj,rj ≤ xj,rj ≤
bj,rj}, where bj,rj > 0 is a constraint.

When no state constraints are required, that is,
bj,rj → ∞, then we have

lim
bj,rj→∞

�j,rj =
2bj,rj
π

tan

(
πxj,rj
2bj,rj

)

= xj,rj . (21)
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When bj,rj → ∞, the log-type NM proposed by
Guo and Wu (2014) can be rewritten as

lim
bj,rj→∞

�j,rj = lg

(
bj,rj + xj,rj
bj,rj − xj,rj

)

= 0. (22)

It can be seen from Eq. (21) that when bj,rj → ∞,
�j,rj → xj,rj . Thus, the states of the original sys-
tem will not be affected by the tan-type NM. How-
ever, from Eq. (22) we can see that when bj,rj → ∞,
�j,rj → 0. Therefore, tan-type NM is a versatile
function, which is more suitable to handle state con-
straint problems.
Remark 3 It is noticed that a tan-type NM was
proposed in our previous paper (Wei et al., 2020a).
However, the tan-type NM proposed in Wei et al.
(2020a) was a symmetrical one. In this study, we ex-
tend tan-type nonlinear mapping to solve the prob-
lem of asymmetric state constraints. That is to say,
compared with the old tan-type NM, the new tan-
type NM is a more general one.

3 Event-triggered finite-time con-
troller design

Fig. 1 shows the main structure of the designed
control method. First, the error equations are de-
fined as

χj,1 = �j,1 − y∗dj, (23)

χj,rj = �j,rj − vcj,rj , (24)

zj,rj = vcj,rj − vj,rj−1, (25)

where χj,1 denotes the tracking error, χj,rj denotes
the error surface, vj,rj is the virtual control law, and
vcj,rj denotes the filtered value of vj,rj .

1. Step j, 1 (j = 1, 2, · · · , n)

According to Eqs. (16), (23), and (24), the time
derivative of χj,1 is given by

χ̇j,1 = fj,1 +�j,2 + vj,1 + zj,2 − ẏ∗dj . (26)

Construct the Lyapunov function candidate (LFC)
as follows:

Vj,1 =
1

2
χ2
j,1 +

1

2γj,1
Θ̃ΘΘ

T

j,1Θ̃ΘΘj,1, (27)

where γj,1 > 0 is a constant, Θ̃ΘΘj,1 = ΘΘΘ∗
j,1 − Θ̂ΘΘj,1,

ΘΘΘ∗
j,1 denotes the optimal weight, and Θ̂ΘΘj,1 denotes

the adaptive weight.
Differentiating Vj,1 respective to time and con-

sidering Eq. (26), we have

V̇j,1 =χj,1

(
ΘΘΘ∗T

j,1SSSj,1 + Θ̄ΘΘj,1 +�j,2 + vj,1 + zj,2

− ẏ∗dj
)− 1

γj,1
Θ̃ΘΘ

T

j,1
˙̂
ΘΘΘj,1.

(28)
We design the virtual control law as follows:

vj,1 =− 3

2
χj,1 − kj,1αj,1(χj,1)− Θ̂ΘΘ

T

j,1SSSj,1 + ẏ∗dj,

(29)
where kj,1 > 0 is a constant. αj,1(χj,1) is a smooth
switch function, which is defined as

αj,1(χj,1) =

{
χ2ı−1
j,1 , |χj,1| ≥ εj,1,

�j,1χj,1 + hj,1χ
3
j,1, |χj,1| < εj,1,

(30)
where εj,1 is a small positive constant, �j,1 = (2 −
ı)ε2ı−2

j,1 , and hj,1 = (ı− 1)ε2ı−4
j,1 .

The adaptive law is presented as follows:

˙̂
ΘΘΘj,1 = γj,1

(
χj,1SSSj,1 − κj,1Θ̂ΘΘj,1

)
, (31)

where γj,1 > 0 and κj,1 > 0 are constants. Substi-
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controller 
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FLSs

Adaptive law

Final 
controller
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filter
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yrj
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*
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−
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...

Fig. 1 Block diagram of the proposed control approach
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tuting Eqs. (29) and (31) into Eq. (28), we have

V̇j,1 =− 3

2
χ2
j,1 − kj,1χj,1αj,1(χj,1) + κj,1Θ̃ΘΘ

T

j,1Θ̂ΘΘj,1

+ χj,1

(
δ̄j,1 + χj,2 + zj,2

)
.

(32)
Using Young’s inequality, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χj,1(δ̄j,1 + χj,2 + zj,2)

≤ 3

2
χ2
j,1 +

1

2
δ̄2j,1 +

1

2
χ2
j,2 +

1

2
z2j,2,

Θ̃ΘΘ
T

j,1Θ̂ΘΘj,1 ≤ 1

2

(
‖ΘΘΘ∗

j,1‖2 − ‖Θ̃ΘΘ2

j,1‖
)
.

(33)

Substituting inequality (33) into Eq. (32) yields

V̇j,1 ≤− kj,1χj,1αj,1(χj,1)− κj,1
2

‖Θ̃ΘΘj,1‖2

+
1

2
χ2
j,2 +

1

2
z2j,2 +Dj,1,

(34)

where Dj,1 =
κj,1

2 ‖ΘΘΘ∗
j,1‖2 + 1

2 δ̄
2
j,1.

2. Step j, rj (j = 1, 2, · · · , n, rj = 2, 3, · · · ,m−
1)

The time derivative of χj,rj is given by

χ̇j,rj =ΘΘΘ∗T
j,rjSSSj,rj + δ̄j,rj + vj,rj + zj,rj+1

+�j,rj+1 − v̇cj,rj .
(35)

Consider the LFC as follows:

Vj,rj =
1

2
χ2
j,rj +

1

2
z2j,rj +

1

2γj,rj
Θ̃ΘΘ

T

j,rjΘ̃ΘΘj,rj , (36)

where γj,rj > 0 is a design parameter, Θ̃ΘΘj,rj = ΘΘΘ∗
j,rj−

Θ̂ΘΘj,rj , ΘΘΘ
∗
j,rj denotes the optimal weight, and Θ̂ΘΘj,rj

denotes the adaptive updating weight. Taking the
time derivative of Vj,rj yields

V̇j,rj = χj,rj χ̇j,rj + zj,rj żj,rj −
1

γj,rj
Θ̃ΘΘ

T

j,rj

˙̂
ΘΘΘj,rj .

(37)
The first-order filter is introduced as follows:

v̇cj,rj = −σj,rjzj,rj , vcj,rj (0) = vj,rj−1(0). (38)

According to Eqs. (25) and (38), we have

żj,rj = −σj,rjzj,rj + βj,rj , (39)

where βj,rj is a continuous function. Substituting
Eqs. (35) and (39) into Eq. (37), we have

V̇j,rj =χj,rj

(
ΘΘΘ∗T

j,rjSSSj,rj + δ̄j,rj + vj,rj + zj,rj+1

+ χj,rj+1 − v̇cj,rj
)− 1

γj,rj
Θ̃ΘΘ

T

j,rj

˙̂
ΘΘΘj,rj

+ zj,rj
(−σj,rjzj,rj + βj,rj

)
.

(40)

The virtual control law is designed as follows:

vj,rj =− 2χj,rj − kj,rjαj,rj (χj,rj )

− Θ̂ΘΘ
T

j,rjSSSj,rj + v̇cj,rj ,
(41)

where kj,rj is a positive constant. αj,rj is a smooth
switch function provided as

αj,rj =

{
χ2ı−1
j,rj

, |χj,rj | ≥ εj,rj ,

�j,rjχj,rj + hj,rjχ
3
j,rj , |χj,rj | < εj,rj ,

(42)
where εj,rj is a small positive constant, �j,rj = (2 −
ı)ε2ı−2

j,rj
, and hj,rj = (ı− 1)ε2ı−4

j,rj
.

The adaptive law is designed as follows:

˙̂
ΘΘΘj,rj = γj,rj

(
χj,rjSSSj,rj − κj,rjΘ̂ΘΘj,rj

)
, (43)

where κj,rj > 0 is a design constant. Substituting
Eqs. (41) and (43) into Eq. (40) yields

V̇j,rj =− 2χ2
j,rj − kj,rjχj,rjαj,rj (χj,rj )

− σj,rj z
2
j,rj + χj,rj

(
δ̄j,rj + zj,rj+1 + χj,rj+1

)

+ zj,rjβj,rj + κj,rjΘ̃ΘΘ
T

j,rjΘ̂ΘΘj,rj .

(44)
Using Young’s inequality, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

χj,rj

(
δ̄j,rj + zj,rj+1 + χj,rj+1

)

≤ 3

2
χ2
j,rj +

1

2
δ̄2j,rj +

1

2
z2j,rj+1 +

1

2
χ2
j,rj+1,

zj,rjβj,rj ≤ β2
j,rj

2ϑ2
z2j,rj +

1

2
ϑ2,

Θ̃ΘΘ
T

j,rjΘ̂ΘΘj,rj ≤ 1

2

(
‖ΘΘΘ∗

j,rj‖2 − ‖Θ̃ΘΘj,rj‖2
)
,

(45)
where ϑ is a nonzero constant. Substituting inequal-
ity (45) into Eq. (44), we have

V̇j,rj ≤− 1

2
χ2
j,rj − kj,rjχj,rjαj,rj (χj,rj ) +

1

2
χ2
j,rj+1

−
(

σj,rj −
β2
j,rj

2ϑ2

)

z2j,rj +
1

2
z2j,rj+1

− κj,rj
2

‖Θ̃ΘΘj,rj‖2 +Dj,rj ,

(46)
where Dj,rj = 1

2ϑ
2 + 1

2 δ̄
2
j,rj

+
κj,rj

2 ‖ΘΘΘ∗
j,rj‖2.

3. Step j,mj (j = 1, 2, · · · , n)
Inspired by the studies in Xing et al. (2019), a

relative threshold ETC is introduced in this step:

τj(t) = wj(tk), ∀t ∈ [tk, tk+1), (47)
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tk+1 = inf{t > tk||wj(t)− τj(t)| ≥ d|wj(t)|+ η},
(48)

where τj(t) denotes the actual controller, inf{·} de-
notes the infimum of {·}, wj(t) is the control law,
tk denotes the updating time, and 0 < d < 1 and
0 < η < 1 are constants. When t ∈ [tk, tk+1), the
actual control input τj(t) stays constant at wj(tk).
Then, we have

|wj(t)− τj(t)| ≤ d|τj(t)|+ η, ∀t ≥ 0. (49)

Therefore, there exist |s1(t)| ≤ 1 and |s2(t)| ≤ 1,
which makes the following equality holds:

wj(t) = [1 + s1(t)d]τj(t) + s2(t)η. (50)

Then we have

τj(t) =
wj(t)

1 + s1(t)d
− s2(t)η

1 + s1(t)d
. (51)

The time derivative of χj,mj is given as

χ̇j,mj =(ΘΘΘ∗
j,mj

)TSSSj,mj + δ̄j,mj + gj,mjτj(t)

− v̇cj,mj−1.
(52)

Consider the LFC as follows:

Vj,mj =
1

2
χ2
j,mj

+
1

2
z2j,mj

+
1

2γj,mj

Θ̃ΘΘ
T

j,mj
Θ̃ΘΘj,mj ,

(53)
where γj,mj is a positive constant, Θ̃ΘΘj,mj = ΘΘΘ∗

j,mj
−

Θ̂ΘΘj,mj , ΘΘΘ
∗
j,mj

denotes the optimal weight, and Θ̂ΘΘj,mj

denotes the adaptive weight. Then, the time deriva-
tive of Vj,mj is given as

V̇j,mj =χj,mj χ̇j,mj + zj,mj żj,mj

− 1

γj,mj

Θ̃ΘΘ
T

j,mj

˙̂
ΘΘΘj,mj .

(54)

Similarly, the first-order filter is introduced as
follows:

v̇cj,mj
= −σj,mjzj,mj , v

c
j,mj

(0) = vj,mj−1(0). (55)

According to Eqs. (25) and (38), we have

żj,mj = −σj,mjzj,mj + βj,mj . (56)

Substituting Eqs. (52) and (56) into Eq. (54),

we have

V̇j,mj =− 3

2
χ2
j,mj

− χj,mjαj,mj + χj,mj

[
gj,mjwj(t)

1 + s1(t)d

− gj,mjs2(t)η

1 + s1(t)d
+ vj,mj + δ̄j,mj

]

− σj,mjz
2
j,mj

+ zj,mjβj,mj

+ Θ̃ΘΘ
T

j,mj

(

χj,mjSSSj,mj −
1

γj,mj

˙̂
ΘΘΘj,mj

)

,

(57)
where vj,mj is given as follows:

vj,mj =
3

2
χj,mj + kj,mjαj,mj (χj,mj )

+ Θ̂ΘΘ
T

j,mj
SSSj,mj − v̇cj,mj−1,

(58)

where kj,mj is a positive constant. αj,mj is a smooth
switch function designed as

αj,mj =

{
χ2ı−1
j,mj

, |χj,mj | ≥ εj,mj ,

�j,mjχj,mj + hj,mjχ
3
j,mj

, |χj,mj | < εj,mj ,

(59)
where εj,mj is a small positive constant, �j,mj = (2−
ı)ε2ı−2

j,mj
, and hj,mj = (ı− 1)ε2ı−4

j,mj
.

Using Young’s inequality, we have
⎧
⎪⎪⎨

⎪⎪⎩

χj,mj δ̄j,mj ≤ 1

2
χ2
j,mj

+
1

2
δ̄2j,mj

,

zj,mjβj,mj ≤ β2
j,mj

2ϑ2
z2j,mj

+
1

2
ϑ2.

(60)

Substituting inequality (60) into Eq. (57), we have

V̇j,mj ≤− χ2
j,mj

− χj,mjαj,mj + χj,mj

[
gj,mjwj(t)

1 + s1(t)d

− gj,mjs2(t)η

1 + s1(t)d
+ vj,mj

]

+
1

2
ϑ2 +

1

2
δ̄2s,mj

+ Θ̃ΘΘ
T

j,mj

(

χj,mjSSSj,mj −
1

γj,mj

˙̂
ΘΘΘj,mj

)

−
(

σj,mj −
β2
j,mj

2ϑ2

)

z2j,mj
.

(61)
Then, the ETC approach and the adaptive law are
designed as follows:

wj(t) =− g−1
j,mj

(1 + d)υj,mj tanh
(χj,mjυj,mj

�

)

− g−1
j,mj

η(1 + d) tanh
(χj,mjη

�

)
,

(62)
˙̂
ΘΘΘj,mj = γj,mj

(
χj,mjSSSj,mj − κj,mj

Θ̂ΘΘj,mj

)
, (63)
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where � > 0 and κj,mj > 0 are constants. Substitut-
ing Eqs. (62) and (63) into inequality (61) yields

V̇j,mj ≤− χ2
j,mj

− χj,mjαj,mj + χj,mjvj,mj

− 1 + d

1 + s1(t)d
χj,mjυj,mj tanh

(χj,mjυj,mj

�

)

− 1 + d

1 + s1(t)d
χj,mjη tanh

(χj,mjη

�

)

− gj,mjs2(t)

1 + s1(t)d
χj,mjη + κj,mjΘ̃ΘΘ

T

j,mj
Θ̂ΘΘj,mj

−
(

σj,mj −
β2
j,mj

2ϑ2

)

z2j,mj
+

1

2
ϑ2 +

1

2
δ̄2s,mj

.

(64)
Using Young’s inequality, Lemma 3, and the fact
1 + s1(t)d < 1 + d, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1 + d

1 + s1(t)d
χj,mjυj,mj tanh

(χj,mjυj,mj

�

)

≤ −|χj,mjυj,mj |+ 0.2785�,

− 1 + d

1 + s1(t)d
χj,mjη tanh

(χj,mjη

�

)

≤ −|χj,mjη|+ 0.2785�,

Θ̃ΘΘ
T

j,mj
Θ̂ΘΘj,mj ≤ 1

2

(
‖ΘΘΘ∗

j,mj
‖2 − ‖Θ̃ΘΘj,mj‖2

)
.

(65)
From Assumption 1, we have that Gj,mj is

known and bounded. Then, gj,mj is also bounded.
Therefore, there exist positive constants ḡj,mj and
g
j,mj

, such that 0 < g
j,mj

< |gj,mj | < ḡj,mj . Thus,
the following inequality holds:

− gj,mjs2(t)

1 + s1(t)d
χj,mjη ≤ 1

2
χ2
j,mj

+
1

2
ḡ2j,mj

η2. (66)

Substituting inequality (65) into inequality (66)
yields

V̇j,mj ≤− 1

2
χ2
j,mj

− χj,mjαj,mj −
κj,mj

2
‖Θ̃ΘΘj,mj‖2

−
(

σj,mj −
β2
j,mj

2ϑ2

)

z2j,mj
+Dj,mj ,

(67)
where Dj,mj = 0.557�+ 1

2 ḡ
2
j,mj

η2 + 1
2ϑ

2 + 1
2 δ̄

2
s,mj

+
1
2‖ΘΘΘ∗

j,mj
‖2.

Remark 4 For most kinds of state-constrained
control methods based on log-type BLFs (Liu YJ
et al., 2020), integral BLFs (Tee and Ge, 2011), and
tan-type BLFs (Jin, 2016), feasibility conditions on
virtual controllers are all required. It can be seen
from Section 3 that the designed control approach in

this study can handle the state constraints directly
without any feasibility conditions.
Remark 5 We can see from Eqs. (30), (42), and
(59) that αj,rj (ε

+
j,rj

) = αj,rj (ε
−
j,rj

) = ε2ı−1
j,rj

and
α̇j,rj (ε

+
j,rj

) = α̇j,rj (ε
−
j,rj

) = 2ı− 1ε2ı−2
j,rj

. Thus,
αj,rj (χj,rj ) are smooth switch functions. When
|χj,rj | ∈ [0, εj,rj ], the time derivative of the virtual
control signals remains bounded. Different from the
C1 smooth finite-time control approach proposed by
Cui B et al. (2020), the proposed control method is
an ETC approach. Using the event-triggered rule,
communication resources can be saved.

4 Stability analysis

Theorem 1 Consider system (1), with Assump-
tions 1 and 2, under the virtual control laws (29),
(41), and (58), the adaptive laws (31), (43), and
(63), and the final control law (62), with the initial
states satisfying xj,rj (0) ∈ Ωx = {xj,rj(t) : −bj,rj <
xj,rj (t) < b̄j,rj}. Then, we have the following con-
clusions: (1) The closed-loop system is SGPFS; (2)
All signals of the closed-loop system are bounded,
and xj,rj (t) ∈ Ωx, ∀t ≥ 0; (3) There exists a time
constant tr satisfying tk+1 − tk ≥ tr.
Proof The LFC is constructed as follows:

V =

n∑

j=1

m∑

rj=1

Vj,rj . (68)

Differentiating V and considering inequalities (34),
(46), and (67), we have

V̇ ≤
n∑

j=1

m∑

rj=1

(

− kj,rjχj,rjαj,rj −
κj,rj
2

‖Θ̃ΘΘj,rj‖2

+Dj,rj

)

−
n∑

j=1

m∑

rj=2

σ̄j,rj z
2
j,rj ,

(69)

where σ̄j,rj = σj,rj −
β2
j,rj

2ϑ2 . The proof is divided into
two cases:
Case 1: When |χj,rj | ≥ εj,rj , substituting αj,rj =

χ2ı−1
j,rj

into inequality (69) yields

V̇ ≤
n∑

j=1

m∑

rj=1

(

− kj,rjχ
2ı
j,rj −

κj,rj
2

‖Θ̃ΘΘj,rj‖2

+Dj,rj

)

−
n∑

j=1

m∑

rj=2

σ̄j,rjz
2
j,rj .

(70)
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According to Lemma 2, let ω1 = 1, ω2 = ‖Θ̃ΘΘj,rj‖2,
ς1 = ı, ς2 = 1− ı, and ς3 = ı

1−ı
ı . So we have

‖Θ̃ΘΘj,rj‖2ı ≤ ıς3 + ‖Θ̃ΘΘj,rj‖2. (71)

Similarly, let ω1 = 1, ω2 = z2j,rj , ς1 = ı, ς2 = 1 − ı,
and ς3 = ı

1−ı
ı . We have

z2ıj,rj ≤ ıς3 + z2j,rj . (72)

Substituting inequalities (71) and (72) into inequal-
ity (70), we have

V̇ ≤
n∑

j=1

m∑

rj=1

(

− kj,rjχ
2ı
j,rj −

κj,rj
2

‖Θ̃ΘΘj,rj‖2ı
)

−
n∑

j=1

m∑

rj=2

σ̄j,rjz
2ı
j,rj + C2,

(73)

where C2 =
∑n

j=1

∑m
rj=1

(
ıς3 +Dj,rj

)
+

∑n
j=1

∑m
rj=2 ıς3. Using Lemma 1, inequality (73)

can be expressed as

V̇ ≤− C1V
ı + C2, (74)

where C1 = min{2ıkj,rj , 2ı−1κj,rjγj,rj , 2
ıσ̄j,rj}.

Case 2: When |χj,rj | < εj,rj , substituting αj,rj =

�j,rjχj,rj + hj,rjχ
3
j,rj into inequality (69) yields

V̇ ≤
n∑

j=1

m∑

rj=1

(

− kj,rj�j,rjχ
2
j,rj −

κj,rj
2

‖Θ̃ΘΘj,rj‖2

+ kj,rj |hj,rj |ε4j,rj +Dj,rj

)

−
n∑

j=1

m∑

rj=2

σ̄j,rjz
2
j,rj .

(75)
Using Lemma 1, inequality (74) can be changed to

V̇ ≤− C3V + C4, (76)

where C3 = min{2ıkj,rj�j,rj , 2ı−1κj,rjγj,rj , 2
ıσ̄j,rj}

and C4 =
∑n

j=1

∑m
rj=1

(
kj,rj |hj,rj |ε4j,rj +Dj,rj

)
.

First, we will prove conclusion (1). When
|χj,rj | ≥ εj,rj , considering Lemma 5 and inequal-
ity (74), we can conclude that the closed-loop system
is SGPFS. That is, a constant ι and a settling time
Ts < ∞ exist such that |χj,rj | ≤ ι, ∀t ≥ t0 + Ts.
When |χj,rj | < εj,rj , we also have |χj,rj | < ι. There-
fore, we conclude that the whole system is SGPFS.

In the following, we will prove conclusion (2).
From inequality (74) and the study by Wang F et al.
(2018), we have V ≤ ( C2

(1−	)C1

)ı, for t ≥ t0+Ts. From
inequality (76), we have V ≤ V (0)e−C3 + C4

C3
. Thus,

V is bounded. Considering Eq. (68), it follows that
χj,rj , zj,rj , and Θ̃ΘΘj,rj are bounded. Thus, we have
that �j,rj , Θ̂ΘΘj,rj , and υcj,rj are all bounded. Because
�j,rj is bounded, from Lemma 7, we can determine
that the state constraints are not transgressed.

Finally, we will prove that conclusion (3) can
be achieved. Define the control sampling error as
ε(t) = w(t) − τ(t), ∀t ∈ [tk, tk+1). Then, we can
obtain

d

dt
|ε(t)| = d

dt
(ε2)

1
2 = sign(ε)ε̇ ≤ |ẇ(t)|. (77)

From Eq. (62), it can be seen that ẇj(t) is a continu-
ous and bounded function. Therefore, there exists a
constant Q such that |ẇ(t)| ≤ Q. From Eq. (62), we
have ε(tk) = 0 and limt→tk+1

ε(t) = d|wj(t)|+η > η.
Then, the lower bound of the inter-execution interval
tr satisfies tr ≥ η

Q . Thus, Zeno behavior is avoided.
Remark 6 From inequalities (74) and (76), we can
obtain some suggestions on parameter selection. To
achieve a smaller tracking error, we can enlarge C1

and C3 while reducing C2 and C4. Hence, we can se-
lect large kj,rj and κj,rjγj,rj , and small �, η, and ϑ.
Furthermore, the energy cost and the actual ability
of the control force must be considered when select-
ing control parameters.

5 Simulation studies

In this section, two simulation examples are of-
fered to validate the effectiveness of the designed
ETC approach.

5.1 Example 1

Simulations of a fully actuated autonomous un-
derwater vehicle (AUV) are offered. The motion
functions of the AUV are described as follows:

⎧
⎪⎨

⎪⎩

ẋ1 = J(ψ)x2,

ẋ2 = FFF (x2) +M−1τττ(t),

y = x1,

(78)

where x1 = [x, y, ψ]T denotes the position and yaw
angle of the AUV in the Earth frame, x2 = [u, v, r]T

denotes the linear velocities and yaw angular veloc-
ity in the body frame, J(ψ) is the rotation from the
AUV body frame to the Earth frame, M is the iner-
tia matrix, and FFF (x2) = M−1 (C(x2) +D(x2))x2

denotes the nonlinear function. The detailed descrip-
tions and the values of parameters can be found in
Cui RX et al. (2017).
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Using the NM function, Eq. (78) can be trans-
formed as ⎧

⎪⎨

⎪⎩

�̇1 = f1 +�2,

�̇2 = f2 + g2τττ (t),

y∗ = �1,

(79)

where
⎧
⎪⎨

⎪⎩

f1 = ν1 (F1 + Jx2) + μ1 −�2,

f2 = ν2F2 + μ2,

g2 = ν2J .

(80)

Here, ν1, ν2, μ1, and μ2 can be obtained from
Eqs. (14) and (15).

In this simulation, the function f2 =

[f1,2, f2,2, f3,2]
T is assumed to be unknown. An FLS

is designed to compensate for the unknown function.
The fuzzy membership functions are selected as

μHj
j,2

= expj=1,2,··· ,7

[

− (xj,2 + 4− j)2

4

]

, j = 1, 2, 3.

The control parameters are designed as k1 = k2 = 5,
σ1 = 0.1, ı = 5

7 , ε1 = ε2 = 0.1, d = 0.1, η =

0.3, and � = 5. The parameters of the adaptive
weights are given as γ2 = 1 and κ2 = 10. The
selected simulation time is t = 20 s. The initial
states are x1 =

[−1, −1, π
6

]T and x2 = [0, 0, 0]T.
Other initial values are given as zero. The reference
trajectories are selected as xd = 1 + 2 sin

(
πt
6

)
and

yd = 1− 2 cos
(
πt
6

)
. Then, the desired yaw angle can

be calculated as ψd = arctan[2(ẏd, ẋd)]. The state
constraints are selected as b̄bb1 = [5 + sin

(
πt
8

)
, 5 +

sin
(
πt
8

)
, 5000]T, bbb1 = [4+sin t, 4+sin t, 5000]T, b̄bb2 =

[5 + sin t, 5 + sin t, 5 + sin t]T, and bbb2 = [4, 4, 4]T.
The simulation results are plotted in Figs. 2–6.

The output-tracking performance under asymmetric
time-varying state constraints is plotted in Fig. 2. At
4 and 12 s, the desired yaw angle ψd changes from π

2

to −π
2 . Fig. 3 depicts the linear velocities and yaw

angular velocity under constraints. The responses of
the adaptive weights are plotted in Fig. 4. The ETC
control law is shown in Fig. 5. The time intervals
are plotted in Fig. 6. As we can see from Fig. 2, the
system outputs can follow the reference trajectories
well. From Fig. 2, the system can also achieve good
trajectory tracking with large finite constraints. As
observed in Figs. 2 and 3, no state constraints are
violated. We can see from Figs. 2–5 that all signals
are bounded. In Fig. 6, for τ1(t), τ2(t), and τ2(t), the
total numbers of triggers are 606, 450, and 278 re-
spectively, and the numbers of non-triggering events
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Fig. 2 Output-tracking performance under con-
straints x (a), y (b), and ψ (c) in Example 1
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Fig. 3 Trajectories of the system states under con-
straints u (a), v (b), and r (c) in Example 1

are 1394, 1450, and 1722 respectively. Thus, using
the designed ETC rule, the communication burden
can be reduced significantly.

5.2 Example 2

Consider a two-degrees-of-freedom robot ma-
nipulator system with state constraint (Jin, 2016),
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whose dynamics is presented as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = x2,

D(x1)ẋ2 = τττ (t)−C(x1,x2)x2 −G(x1)

− F (x1,x2, t),

y = x1,

(81)
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Fig. 4 Responses of the adaptive weights in
Example 1
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Fig. 5 Trajectories of control inputs in Example 1
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Fig. 6 Time intervals of triggering events τ1(t) (a),
τ2(t) (b), and τ3(t) (c) in Example 1

where x1 = [x1,1, x2,1]
T and x2 = [x1,2, x2,2]

T de-
note the joint position and velocity vectors, respec-
tively, D(x1) denotes the inertia matrix, C(x1,x2)

denotes the centripetal-Coriolis matrix, G(x1) de-
notes the gravity vector, and F (x1,x2, t) denotes the
unmodeled structure vector. We defineFFF 2(x1,x2) =

D−1(x1)[−C(x1,x2)x2 −G(x1)− F (x1,x2, t)]. In
this simulation, the function FFF 2(xxx1,xxx2) is assumed
to be unknown. The detailed model information and
values of the parameters in Eq. (81) can be found in
Jin (2016).

The control parameters are selected as k1 =

k2 = 4, σ1 = 0.1, ı = 5
7 , ε1 = ε2 = 0.1, d = 0.1,

η = 0.3, and � = 5. The parameters of the adaptive
weights are given as γ2 = 1 and κ2 = 10. The simu-
lation time is t = 20 s. The initial states are x1(0) =

[0, 1]T and x2(0) = [0, 0]T. Other initial values are
given as zero. The desired trajectory is set as yd =

[1 + sin
(
πt
4

)
, 1 − cos

(
πt
4

)
]T. The state constraints

are selected as b̄1 = [4+sin
(
πt
3

)
, 4+cos

(
πt
3

)
]T, bbb1 =

[2+ sin t, 2+ cos t]T, b̄2 = [4+ sin(2t), 4+ sin(2t)]T,
and b2 = [4+sin(2t), 4+cos(2t)]T. The fuzzy mem-
bership functions are the same as those in Example 1.

The simulation results are plotted in Figs. 7–10.
The output-tracking performance under asymmetric
time-varying state constraints is plotted in Fig. 7.
Fig. 8 shows the system states under constraints.
The ETC control law τττ(t) is shown in Fig. 9. The
time intervals are plotted in Fig. 10. We can see from
Fig. 7 that the system outputs can follow the refer-
ence trajectories well. As observed in Figs. 7 and 8,
the proposed control approach can be easily applied
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Fig. 7 Position-tracking performance under con-
straints x1,1 (a) and x2,1 (b) in Example 2



Wei et al. / Front Inform Technol Electron Eng 2021 22(12):1610-1624 1621

Time (s)
0 5 10 15 20

−5

0

5

x
2,

2 (
m

/s
)

x
1,

2 (
m

/s
)

−5

0

5

0 5 10 15 20

x1,2

b1,2
−b1,2–

–

x2,2

b2,2
−b2,2–

–

Fig. 8 Trajectories of the system states under con-
straints x1,2 (a) and x2,2 (b) in Example 2
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Fig. 9 Trajectories of control inputs in Example 2

to cope with the asymmetric time-varying state con-
straints. In Fig. 10, for τ1 and τ2, the total num-
bers of triggers are 337 and 329 respectively, and the
numbers of non-triggering events are 1663 and 1671
respectively. Thus, using the designed ETC rule, the
communication burden can be reduced significantly.

6 Conclusions

This paper investigated the issue of event-
triggered adaptive finite-time control for MIMO
nonlinear systems subject to asymmetric time-
varying state constraints. With the help of tan-type
NM, the considered system can be transformed
into an equivalent “non-constrained” one, and the
feasibility conditions can be removed. Based on the
transformed system and the smooth switch function,
a new adaptive fuzzy finite-time constrained-control
approach was presented. Furthermore, the energy
consumption was reduced using the designed ETC.
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Fig. 10 Time intervals of triggering events τ1(t) (a)
and τ2(t) (b) in Example 2

Stability analysis and two simulation examples were
offered to confirm the effectiveness of the proposed
ETC scheme. Our future works will expand this
result to stochastic switched systems.
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Appendix A: Proof of Lemma 7

Using proof by contradiction: Suppose that
some time t = t1 and a constant Δ ≥ 0 exist, such
that xj,rj (t1) = b̄j,rj + Δ or xj,rj (t1) = −bj,rj −Δ.
Because xj,rj (t) is a continuous function, there exists
a time instant 0 < t∗ < t1 such that xj,rj (t∗) = b̄j,rj
or xj,rj (t∗) = −bj,rj . Then, we have �j,rj (t

∗) =

ξj,rj (b̄j,rj ) = ∞ or �j,rj (t
∗) = ξj,rj (−bj,rj ) = −∞,

which leads to the boundedness of �j,rj (t). Because
xj,rj (0) ∈ Ωx, we have xj,rj (t) ∈ Ωx, ∀t ≥ 0. This
completes the proof.
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Appendix B: Proof of Lemma 8

According to Definition 2, we can determine
that ξ and ξ−1 are two continuous functions. De-
fine χj,rj = �j,rj − l∗ and ej,rj = xj,rj − l. First, we
assume that xj,rj ≥ 0. Then, we have

ej,rj =xj,rj − l

=
2b̄j,rj
π

[

arctan

(
π�j,rj

2b̄j,rj

)

− arctan

(
πl∗

2b̄j,rj

)]

=
2b̄j,rj
π

arctan
π

2b̄j,rj

⎛

⎜
⎝

�j,rj − l∗

1 +
π2�j,rj

l∗

4b̄2j,rj

⎞

⎟
⎠ .

(B1)

From Eq. (B1), we can obtain

lim
ej,rj→0

ej,rj

= lim
�j,rj

→l∗

2b̄j,rj
π

arctan
π

2b̄j,rj

⎛

⎜
⎝

�j,rj − l∗

1 +
π2�j,rj

l∗

4b̄2j,rj

⎞

⎟
⎠

=0.

(B2)
Thus, we have �j,rj → l∗ as xj,rj → l. For xj,rj < 0,
the proof process is the same as that in the case of
xj,rj ≥ 0.
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