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Abstract: To detect spacecraft damage caused by hypervelocity impact, we propose an advanced spacecraft defect
extraction algorithm based on infrared imaging detection. The Gaussian mixture model (GMM) is used to classify
the temperature change characteristics in the sampled data of the infrared video stream and reconstruct the image
to obtain the infrared reconstructed image (IRRI) reflecting the defect characteristics. The designed segmentation
objective function is used to ensure the effectiveness of image segmentation results for noise removal and detail
preservation, while taking into account the complexity of IRRI (that is, the required trade-offs are different).
A multi-objective optimization algorithm is introduced to achieve balance between detail preservation and noise
removal, and a multi-objective evolutionary algorithm based on decomposition (MOEA/D) is used for optimization
to ensure damage segmentation accuracy. Experimental results verify the effectiveness of the proposed algorithm.
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1 Introduction

It is well known that there is a large amount of
debris in space (Lamb, 2018; Adushkin et al., 2020;
Murtaza et al., 2020). With the systematic devel-
opment of human space activities, the amount will
continue to increase sharply. The harm it causes
to spacecraft in hypervelocity collisions seriously
threatens on-orbit operation, reusability, and safety
of the spacecraft (Aglietti et al., 2020; Huang et al.,
2020). The research object in this study is a re-
peatable spacecraft. When it collides with space
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debris at an average speed of 10 km/s, the hyper-
velocity impact causes multiple types of damage to
the surface, subsurface, and interior of the space-
craft (Gurtin and Francis, 1981), and the energy
and heat generated in the process will melt part of
the material to varying degrees, forming more and
more complicated spacecraft impact damage situ-
ations (Schonberg, 2009; Ciampa et al., 2018), as
shown in Fig. 1. Infrared thermal imaging tech-
nology (Florez-Ospina and Benitez, 2014; Bossi and
Georgeson, 2018) has the in situ, high speed charac-
teristics to meet the needs of repeatable spacecraft
defect detection (Maldague, 2001; Veidt and Liew,
2013) of barely visible impact damages (BVID) (Gar-
nier et al., 2011) to aircraft wings, and cracks and
delamination in aerospace composite materials (Me-
ola et al., 2015). It has also achieved good detection
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results and is cost-effective.
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Fig. 1 Schematic of hypervelocity impact damage

The fuzzy C-means (FCM) algorithm (Hossain
and Chen, 2019) and its improved algorithm (Nam-
buru et al., 2017) have achieved certain results in
image segmentation. Gharnali and Alipour (2018)
proposed magnetic resonance imaging (MRI) image
segmentation based on nuclear-induced FCM. Vaib-
havi and Rupal (2018) proposed a new FCM clus-
tering method based on K-means. However, these
segmentation problems are often oriented to a dam-
age function, that is, an objective function that can-
not meet the corresponding detection requirements
at the same time (Xu et al., 2020).

The defect detection rate will be improved to
a certain extent when details are preserved, but the
noise is also retained, which will cause incorrect de-
fect recognition and increase the false detection rate.
However, if only the overall denoising of the image
is achieved, for the damage pattern caused by space
debris impact, such as the scattered pits and the
small impact points (Fig. 2) distributed around them
(Cheng et al., 2018), the defects similar to the noise
will be removed along with the denoising. The re-
moval of noise during the denoising process reduces
the defect detection rate, which will cause incorrect
defect assessment and pose a significant threat to the
safety of the spacecraft (Liu et al., 2017).

To improve spacecraft damage detection, retain
details, and remove noise interference, we propose
a novel multi-objective optimization damage detec-
tion algorithm for spacecraft hypervelocity impact
evaluation. The algorithm is designed for data pro-

cessing of a damage detection infrared video stream
to obtain an infrared reconstructed image (IRRI) us-
ing the transient thermal response (TTR) curve. We
also propose a defect segmentation algorithm that
achieves the best noise suppression and the best de-
tails of IRRI through multi-objective optimization.
In the segmentation process, the detailed informa-
tion of the damaged area should be segmented from
the material background area as much as possible to
ensure complete defect detection. Simultaneously,
it is correctly divided into noise areas to ensure the
accuracy of damage detection.

Fig. 2 Hypervelocity impact damage (https://
orbitaldebris.jsc.nasa.gov/)

2 IRRI segmentation method based on
two-layer multiple targets

2.1 FCM segmentation algorithm

According to Biju and Mythili (2015), FCM is
often used in medical image segmentation such as
computed tomography (CT) and MRI, and some re-
searchers have used it for microarray image segmen-
tation. The objective function of the FCM image
segmentation algorithm is defined as follows:

JFCM =
MN∑

i=1

c∑

k=1

umki‖xi − vk‖2, (1)

where xi is the gray value of pixel i, i = 1, 2, ...,MN ,
M and N represent the numbers of pixels cor-
responding to the length and width of the im-
age, respectively, c is the number of clusters, and
m is the value of fuzzification, usually set to 2.
The algorithm has the following constraints: uki ∈
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[0, 1] ,
c∑

k=1

uki = 1. After the iteration is completed,

all pixels are classified according to the principle of
maximum membership to complete the segmentation
of the entire image.

2.2 IRRI segmentation objective function

Although the FCM algorithm can effectively
deal with fuzzy problems such as partial vol-
ume effects, it still has some flaws. Because
the FCM segmentation algorithm ignores the lo-
cal spatial characteristics of the segmented ob-
ject, and only the gray value of the pixel is con-
sidered, the segmentation result is easily affected
by noise. The traditional FCM algorithm has
an ideal processing effect only for noise-free im-
ages. To solve this problem, the FCM_S algo-
rithm adds a neighborhood item to introduce the
neighborhood information of the image space. The
corresponding objective function is fFCM_S (ν) =
MN∑
i=1

c∑
t=1

umti [‖xi − vt‖2 + β
Ns

∑
j∈Ni

‖xj − vt‖2], where

Ni is the number of pixels of the ith pixel in the Ns
neighborhood window, and β is the number of neigh-
borhood points, a parameter controlling the neigh-
borhood items. However, the IRRI of the segmented
object in this study (Fig. 3) has significant problems
caused by the noise interference of the imaging link,
the detection environment, and the interference of
material surface impurity. The blurred edge contour
of the impact damage will affect the quantitative re-
sults. Therefore, traditional FCM and FCM_S can-
not meet the segmentation needs of the experimental
objects in this study.

Fig. 3 Multi-objective optimization for image seg-
mentation purposes. References to color refer to the
online version of this figure

As shown in Fig. 4, for denoising and preserv-
ing detail segmentation for multiple different IR-
RIs, the comprehensiveness and accuracy of damage
detection are ensured. The IRRI segmentation al-

gorithm based on multi-objective optimization pro-
posed in this study establishes an objective function
for the two problems that need to be solved, and ap-
plies the multi-objective theory to complete image
segmentation.

2.2.1 Double-layer multi-objective function con-
struction

It is necessary to perform noise removal and con-
tour detail extraction in IRRI. The segmentation ob-
jective function is merged as follows:

min f3 (v) = f1 (v) + f2 (v) , (2)

where f1(v) is the edge detail preservation objective
function and f2(v) is the noise elimination objective
function. These two functions will affect each other:
while suppressing the noise, the details of the defect
will be reduced; when the details are maintained,
the noise information will be preserved. So, we make
the following improvements using the relationship
between the two objective functions to adjust the
weights:

min f3 (v) = ωq1 · f1 (v) + ωq2 · f2 (v) , (3)

where ωq1 and ωq2 are the weights corresponding to
the objective functions f1 (v) and f2 (v), respectively.
f1 (v) and f2 (v) are introduced in the following.

2.2.2 Detail preservation function f1 (v)

The impact damage infrared image detail
preservation function (DEPF) f1(v) is constructed
to realize the segmentation of image pixel detail in-
formation. When constructing f1(v), the closeness
measure Com(X, v) and departure measure Sep(v)
are considered at the same time, and the ratio of
Com(X, v) to Sep(v) is expected to be as small as
possible to ensure that the detailed information of
the infrared image segmentation result of the impact
damage is fully retained. Function f1(v) is defined
as

f1 (v) =
Com(X, v)

Sep(v)
. (4)

In Eq. (4), the closeness measure Com(X, v) cor-
responds to the degree of dispersion, and the depar-
ture measure Sep(v) represents the difference of the
corresponding pixels. The concepts of compactness
and separation come from the literature (Bandy-
opadhyay et al., 2007; Maulik and Sarkar, 2012)
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using the fuzzy clustering index Xie-Beni (XB) pro-
posed by Xie and Beni (1991), to guide the classifica-
tion of image pixels and realize image segmentation.
The idea of establishing the XB index is to complete
image classification through the ratio of compactness
to separation. When f1(v) has the minimum value,
the defect information of the IRRI itself has the best
degree of preservation of detail information.

Com(X, v) =

c∑

t=1

MN∑
i=1

umti ·M (xi, vt)

MN∑
i=1

uti

, (5)

where M (xi, vt) = ‖xi − vt‖2 + α1‖δi − vt‖2 +

α2‖τi − vt‖2.
In defining the degree of compactness, the com-

plementary effect of local spatial information and
non-local spatial information in the pixel space is

used to suppress the noise. In Eq. (5), vt is the clus-
tering center, and the membership of the ith pixel to
the kth clustering core is denoted by uti. Here uti =(

c∑
p=1

(
‖xi−ct‖2+α1‖δi−ct‖2+α2‖τi−ct‖2

‖xi−cp‖2+α1‖δi−cp‖2+α2‖τi−cp‖2

) 1
m−1

)−1

,

and α1 and α2 are weighting factors that con-
trol Info and NL-Info, respectively. Info δi is
δi = 1

|Ni|
∑
a∈Ni

xa, where a set Ni is formed by

the pixels in the neighborhood window based
on pixel i, and xa is the ath pixel in Ni. NL-
Info τi is τi =

∑
j∈Sp

i

ρijxj , where Spi is a search

window of size p × p centered on the ith pixel,
and the weight ρij (j ∈ Spi ) is determined by the
similarity of the ith and jth pixels, satisfying
0 ≤ ρij ≤ 1,

∑
j∈Sp

i
ρij = 1. The weight is defined

as ρij = 1
ηi
exp(− ∥∥ϕ (N s

i )− ϕ
(
N s
j

)∥∥2
2,α

/ψ2), where
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Fig. 4 Image segmentation method based on the multi-objective problem
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ϕ (N s
i ) represents the gray vector on the similar

window, and ψ is the filtering degree parameter.

The Gaussian weighted Euclidean distance∥∥ϕ (N s
i )− ϕ

(
N s
j

)∥∥2
2,α

is used to measure the similar-
ity between the center pixel xi and the neighboring

pixel xj , and ηi =
∑

j∈Sp
i
exp

(
−‖ϕ(Ns

i )−ϕ(Ns
j)‖2

2,α

ψ2

)

is an institutionalization term. When defining the
global separation function of pixels, distance is
used to indicate the degree of dispersion between

classes, so there is Sep (v) =
c∑

p=1

c∑
q=1

umpq ‖vq − vp‖,

where upq =

⎡

⎣
(

c∑
l=1,l �=q

‖vq−vp‖
‖vq−vl‖

) 1
m−1

⎤

⎦
−1

(p �= q) is

the membership of clustering center vp to vq.

2.2.3 Noise suppression function f2 (v)

To improve the noisy image segmentation,
Krinidis and Chatzis (2010) proposed fuzzy local in-
formation C-means clustering (FLICM), which uses
spatial information of neighboring pixels to define a
fuzzy factor. The objective function is

fFLICM(v) =

MN∑

i=1

c∑

k=1

umki‖xi − vk‖2 + UFLICM, (6)

where

UFLICM =
∑

j∈Ni

ζsd (1− μkj) ‖xj − vk‖. (7)

In the FLICM algorithm, the spatial distance of
the fuzzy factor is used to measure the influence de-
gree of the neighboring pixels. However, using only
the spatial distance cannot accurately measure the
neighborhood points or the influence of the neigh-
borhood points on the center point. To resolve the
above problem, this paper refers to the construc-
tion of the noise suppression function (NOSF) based
on the kernel-based fuzzy C-means (KFCM) algo-
rithm proposed by Wu et al. (2003), which has ideal
segmentation effect for non-linear clusterable pixels.
For the construction of NOSF f2(v), a new weighted
fuzzy term

∑
j∈W r

i

ξtijP (xj , vt) is introduced in the

objective function fKFCM (v) =
MN∑
i=1

c∑
t=1

umtiP (xi, vt).

The expression of f2(v) is as follows:

f2 (v) =

MN∑

i=1

c∑

t=1

umti

⎡

⎣P (xi, vt) +
∑

j∈W r
i

ξtijP (xj , vt)

⎤

⎦ .

(8)
In Eq. (8), W r

i represents the neighborhood
search window, m ∈ [1,∞) is the smoothing param-
eter, and P (xi, vt) = 1−exp

(
− ‖xi−vt‖2

ε

)
represents

the Gaussian radial basis similarity between pixels.
ε is a scalar parameter which fully considers the in-
herent structure of the pixel data itself and satisfies
the following equation: ξtij = ζdc · ζgc · (1− utj)

m.
In the weighted fuzzy term, the fuzzy factor ζij

considers both the spatial distance constraint rela-
tionship ζdc and the gray-level constraint relation-
ship ζgc between the pixels in the neighborhood win-
dow. f2(v) uses the neighborhood information ad-
justment constraints to reduce the influence of noise
pixels on infrared image segmentation. The spatial
distance constraint ζdc satisfies ζdc = 1

dij+1 .
The spatial gray constraint ζgc satisfies

ζgc =

⎧
⎪⎪⎨

⎪⎪⎩

2 +
εij∑

p∈Wr
i

εip
, Dj < D,

2− εij∑

p∈Wr
i

εip
, Dj ≥ D,

where Dj = Var(Yi)

[Mean(Yi)]
2 is the ratio of the variance

to the mean square of all pixel points Yi in the r

neighborhood of pixel xj , and D =
∑

j∈W r
i

Dj/r
2. εij

is the value projected in the kernel space of the mean
square error of the neighborhood pixel in the search
window, where the pixel xj is located with respect
to the center xi, which is εij = exp[−(Dj −D)], j ∈
W r
i . Use the optimization process to find the mem-

bership function uki for Eq. (8), where
c∑

k=1

uki = 1.

Then

D1 (uti, vt, λi)

=
c∑

t=1

umti

⎡

⎣P (xi, vt) +
∑

j∈W r
i

ξijP (xj , vt)

⎤

⎦

+ λi

(
c∑

t=1

uti−1

)
.

Thus, the membership of pixel xi relative to
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cluster center vt is

uti =

⎧
⎪⎪⎨

⎪⎪⎩

c∑

p=1

⎡

⎢⎣
P (xi, vt) +

∑
j∈W r

i

ξijP (xj , vt)

P (xi, vp) +
∑

j∈W r
i

ξijP (xj , vp)

⎤

⎥⎦

1
m−1

⎫
⎪⎪⎬

⎪⎪⎭

−1

.

The update equation of cluster center vt is as
follows:
vt =

c∑

t=1
umti

{

(1− P (xi, vt))xi +
∑

j∈Wr
i

ξij [(1− P (xj , vt))xj ]

}

c∑

t=1
umti

[

1− P (xi, vt) +
∑

j∈Wr
i

ξij (1− P (xj , vt))

] .

2.3 Obtaining the objective function weight
for IRRI segmentation

2.3.1 Model design

Using different weight coefficients to optimize
the objective function f3(v), different solutions can
be obtained. The weight coefficient can change the
priority of the objective function in f3(v). Thus,
we need to select an appropriate weight vector for
the objective functions f1(v) and f2(v) to satisfy the
IRRI segmentation requirement. Without sufficient
prior knowledge, it is difficult to find a satisfactory
weight vector and obtain a satisfactory Pareto opti-
mal solution.

For Eq. (3), the optimal compromise solution
(ωq1, ω

q
2) is obtained for each IRRI to obtain the op-

timal defect segmentation result. The segmentation
problem is introduced in multi-objective evolution,
and the following multi-objective optimization prob-
lem is constructed:

minF (v) = [f1 (v) , f2 (v)]
T

s.t. v = (v1, v2, ..., vc)
T
.

(9)

In Eq. (9), c is the number of classifications,
and v represents a set of candidate cluster cen-
ters. Chebyshev’s decomposition technique is used to
solve the sub-problems that result from the decom-
position of the multi-objective optimization prob-
lem (9). The relationship between the weight vector
for noise removal and edge information preservation
has been updated. The first sub-problem is

min gtf
(
v
∣∣ωj

)

= max
{
ωj1 |f1 (v)− f∗

1 | , ωj2 |f2 (v)− f∗
2 |
}
.

(10)

In Eq. (10), ωj = (ωj1, ω
j
2) is the weight vector

of the jth sub-problem, and ωj1 and ωj2 adjust the
degrees of noise cancellation and detail preservation,
respectively. Therefore, f∗

1 and f∗
2 are the current op-

timal function values for the noise removal and detail
preservation functions of impact damage infrared im-
ages. A weight vector ωq = (ωq1 , ω

q
2) corresponding

to the Pareto solution closest to the inflection point
of Pareto front (PF) is required by Eq. (3).

2.3.2 Model solving algorithm

We use the multi-objective evolutionary algo-
rithm based on decomposition (MOEA/D) to solve
the multi-objective optimization problem (9). Based
on the idea of decomposition, MOEA/D combines
rich mathematical programming with the evolution-
ary algorithm, and transform the multi-objective op-
timization problem into a set of single-objective op-
timization problems. A multi-objective evolutionary
algorithm based on decomposition was proposed by
Zhang QF and Li (2007). Impressive search perfor-
mance has been achieved in the literature for various
problems (Xing et al., 2017; Zhang X et al., 2017;
Tamilselvi et al., 2018). In our preliminary work,
Yin et al. (2019) decomposed multi-objective evo-
lutionary algorithms to construct a multi-objective
problem of finding representative temperature points
with multiple performance considerations for dif-
ferences and correlations, using the MOEA/D al-
gorithm based on the principle of decomposition.
The MOEA/D algorithm’s overall solution is as
follows: (1) The decomposition algorithm decom-
poses the problem into several single-objective sub-
problems with unique weights; (2) The Pareto opti-
mal solution is achieved after a significant number of
measurements.

1. Decomposition algorithm
The Tchebycheff algorithm is applied as the core

decomposition algorithm in the MOEA/D algorithm
(Jaszkiewicz, 2002). Tchebycheff’s mathematical ex-
pression is as follows:

min gte
(
x
∣∣λj , z∗

)
= max
i=1,2,··· ,m

{
λji |fi (x)− z∗i |

}
.

(11)
In Eq. (11), m is the number of objective func-

tions and gte
(
x
∣∣λj , z∗

)
is the sub-objective after de-

composition, where λj = (λj1, λ
j
2, ..., λ

j
m),

m∑
i=1

λji = 1.

z∗ = (z∗1 , z∗2 , ..., z∗m) is the reference point and f1 (v)
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and f2 (v) both have z∗i = min {fi (v) |v ∈ Ω } , ∀i =
1, 2, ...,m.

2. Evolutionary algorithm
The differential evolution algorithm will in-

crease the ability to search for optimal solution
while preserving population diversity in the estima-
tion of the object dilemma. As a result, it is used
in the MOEA/D algorithm. The following is the
mathematical expression of the differential evolution
algorithm:

e =

{
sr0 + ε (sr1 − sr2), CR,

si, 1− CR,
(12)

where e is a new individual created as a result of evo-
lution, and CR (0 ≤ CR ≤ 1) and ε are evolutionary
control parameters. si is the ith individual in the
population. r0, r1, and r2 are the actual numbers
on the inside.

The IRRI segmentation scheme is as given in Al-
gorithm 1, based on the multi-objective evolutionary
theory.

2.3.3 Model solving process

Step 1: parameter setting
The following parameters are set: the objective

function of multi-objective optimization in Eq. (12);
the maximum iteration number gmax; the evolution-
ary parameters CR and ε in Eq. (12); the population
size N ; the number neighborhood weight vectors T .

Step 2: initialization
1. Obtain N weight vectors λ1, λ2, ..., λN with a

uniform distribution and count the T nearest weight
vectors of λi, denoted as B(i) = {i1, i2, ..., iT }.

2. This yields an initial population s1, s2, ..., sN

that solves the multi-objective problem. Let FVi =

F (si), i = 1, 2, ..., N .
3. z∗ = (z1

∗, z2∗, ..., zm∗)T is initialized to find
the optimal value of the objective function.

4. Set the external population (EP) to the
empty set.

Step 3: algorithm update
When the maximum number of iterations has

not been reached:
1. Choose k, l fromB(i), and use the differential

evolution algorithm in Eq. (12) to produce a new
solution e from sk, sl.

2. The constraint processing proposed in the im-
age segmentation multi-objective optimization prob-
lem for e yields e′.

3. Update z: If zj < fj(e
′), then zj = fj(e

′), j =
1, 2, ...,m.

4. Update the neighborhood solution: If
gte

(
y′
∣∣λj , z

) ≤ gte
(
xj
∣∣λj , z

)
, j ∈ B(i), then sj =

e′, FVi = F (e′) according to Eq. (11).
5. Update EP: Delete all vectors that are occu-

pied by F (e′). If F (e′) is not governed by vectors in
EP, add e′ to EP.

Step 4: termination of the iteration
If g = gmax is satisfied, the output EP is optimal;

that is, the optimal weight solution ωq = (ωq1 , ω
q
2) is

obtained for the image segmentation multi-objective
problem. Otherwise, g = g + 1, and go to step 3.
Count the weight vector ωq = (ωq1, ω

q
2), put it into

Eq. (3), and obtain the membership function and
cluster center. For the following purposes, use the
plier method:

f3 (v) = ωq1

c∑
t=1

(
MN∑
i=1

umti ·M (xi, vt)

/
MN∑
i=1

uti

)

c∑
q=1,q �=t

umtq ‖vq − vt‖

+ωq2

MN∑

i=1

c∑

t=1

umti

⎡

⎣P (xi, vt) +
∑

j∈W r
i

ξtijP (xj , vt)

⎤

⎦ .

(13)

For Eq. (13), the membership degree update

Algorithm 1 Image segmentation
1: Initialize threshold ε, set the maximum number of

iterations T , initialize the cluster center V (1) =
(
v
(1)
1 , v

(1)
2 , ...v

(1)
c

)T
, and set h = 1.

2: Calculate U (h): If ∀j, p, f3(v) > 0, then

uti
(h) =

⎧
⎪⎪⎨

⎪⎪⎩

c∑

p=1

⎡

⎣
ωq
1

(
Ψ

t(h)
i

)
+ ωq

2

(
Γ

t(h)
i

)

ωq
1

(
Ψ

p(h)
i

)
+ ωq

2

(
Γ

p(h)
i

)

⎤

⎦

1
m−1

⎫
⎪⎪⎬

⎪⎪⎭

−1

,

where Ψ
t(h)
i = ‖xi − ct‖2 + a1

∥
∥
∥δi − v

(h)
t

∥
∥
∥
2

+

a2

∥
∥
∥τi − v

(h)
t

∥
∥
∥
2
, and Γ

t(h)
i = P

(
xi, v

(h)
t

)
+

∑

j∈Wr
i

ξijP
(
xj , v

(h)
t

)
.

3: If ∃j, p, f3(v) = 0, then let upi(h) = 1 and t �= p, uti(h) =

0.
4: Use Eq. (15) to calculate the cluster center.
5: If

∥
∥V (h+1) − V (h)

∥
∥ < ε or h > T , the algorithm ends.

The optimum segmentation cluster center and the seg-
mentation outcome are obtained; otherwise, h = h + 1,
and go to step 2.

6: Output En.
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formula is

uti =

1

c∑
p=1

⎡

⎢⎢⎣

ωq
1(Ψ t

i )+ω
q
2

⎛

⎝P (xi,vt)+
∑

j∈Wr
i

ξijP (xj ,vt)

⎞

⎠

ωq
1(Ψ

p
i )+ω

q
2

⎛

⎝P (xi,vp)+
∑

j∈Wr
i

ξijP (xj,vp)

⎞

⎠

⎤

⎥⎥⎦

1
m−1

,

(14)
where Ψ ti = ‖xi − ct‖2 + β1‖δi − ct‖2 + β2‖τi − ct‖2.

The cluster center update formula is

vt =

MN∑
i=1

umti

[
ωq1xi + ωq2

(
Kt
ixi +

∑
j∈W r

i

ξij
(
Kt
jxj

)
)]

MN∑
i=1

umti

[
ωq1 + ωq2

(
Kt
i +

∑
j∈W r

i

ξij
(
Kt
j

)
)] ,

(15)
where Kt

i = 1−P (xi, vt). After obtaining Eqs. (14)
and (15), the IRRI can be further divided.

3 IRRI construction algorithm

The IRRI as the segmentation object uses the
temperature change characteristics that correspond
to different defects in the tested sample to display the
defects. We want to use the infrared video stream
composed of multiple infrared images to obtain the
defect characteristics’ characterisation. The specific
steps are as the following.

3.1 Step 1: classification of TTRs with the
GMM algorithm

1. Infrared video stream sampling
Obtain the initial thermal image sequence of the

infrared video stream S(m,n, ·),m = 1, 2, ...,M, n =

1, 2, ..., N (Fig. 5), where the three-dimensional ma-
trix hasM rows andN columns, and the correspond-
ing frame size is d. Because of the high resolution
of thermal images and the number of frames, use a
threshold T (ŵ)

(
ŵ = 1, 2, ..., ĥ

)
to divide the video

stream data into h + 1 data blocks. Perform TTR
collection on the data blocks according to Recl and
Rerow, and vectorize the collected TTRs to obtain a
sampled data set U(·, zg), g = 1, 2, ..., G.

2. TTR data set classification
Specify the G TTR curves in U (·, zG) as

(x1, x2, ..., xG), where x1 = U(·, z1), x2 =

U(·, z2), · · · , xG = U(·, zG), and establish a Gaus-
sian mixture probability density function

p
(
xi|θ (v)

)
=

K∑

k=1

avikpk (xi |μvk, Σv
k ),

K∑

k=1

aik = 1, i = 1, 2, ..., G,

(16)

to approximate the complex distri-
bution of the TTRs in the sam-
pled data set, where pk (xi |μvk, Σv

k ) =
1√

(2π)dμv
k

exp
(
− 1

2 (xi − μvk)
TΣv

k
−1(xi − μvk)

)
is

the probability density function of the Gaussian
distribution. In this study, d is the number of
sampling frames in the infrared video stream.

To realize the idea of using the infrared im-
age sequence to obtain IRRI, the transient ther-
mal response curve needs to be measured and classi-
fied. Compared with supervised learning (Hou et al.,
2020), due to the diversity of defect features, we use
prototype clustering to classify TTRs. The disad-
vantage of using the Euclidean distance metric is
the limited maximum zoom, which causes distortion
of the distance metric and produces a hyperspheri-
cal disk (Fig. 6). Gaussian mixture model (GMM)
is a probabilistic model that has advantages in im-
age data classification (Permuter et al., 2006) and
noise data classification (Fu et al., 2021). GMM
usually assigns data to multivariate normal compo-
nents for clustering, to maximize the posterior prob-
ability of the given data. The fitted model is used
to cluster and estimate the posterior probability of
the components to obtain the classification results
(Reynolds, 2015). In this study, we use GMM to ex-
press the characteristic temperature change process
as the probability density function of the weighted
sum of multiple local Gaussian components. GMM
can overcome the limitations of the superelliptical
star clusters and normalize continuous features into
a common variance range.

3. Find the posterior probability that the ith U
comes from the kth Gaussian distribution:

γik
(v) = p

(
k
∣∣∣xi, θ(v)

)
=

[aikfk (xi |μk, Σk )]∂
[
K∑
j=1

aijfj (xi |μj , Σj )
]∂ ,

i = 1, 2, ..., z, k = 1, 2, ...,K,

(17)
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Fig. 5 Schematic of infrared reconstructed image (IRRI) generation

where ∂ is the Lagrangian multiplier, which reduces
the influence of the posterior probability in early it-
erations. First let ∂ = ∂min, 0 < ∂min ≤ 1, v = 0.

4. We can obtain

Q(θ, θv) =

K∑

k=1

G∑

i=1

p(k |xi, θv) log aik

+

K∑

k=1

G∑

i=1

p(k |xi, θv) log pk(xi |θ)

from Q(θ, θv) = E [log p (U,Z |θ ) |U, θv ]. Find
θv+1 = argmax

θ
Q (θ, θv); that is, use the following

formulae to update the parameters to obtain θv+1:
Calculate the new mixing factor:

av+1
k =

1

G

G∑

i=1

γik.

Calculate a new mean vector:

μv+1
k =

G∑

i=1

γikxi

/ G∑

i=1

γik.

Calculate the new covariance matrix:

Σv+1
k =

G∑

i=1

γik(xi − μk)(xi − μk)
T

/ G∑

i=1

γik.

5. Increase ∂. If the stop condition ∂ > 1 is met,
the iteration stops and the GMM model parameters
are output; otherwise, go to steps 2–4.

6. Use the final model parameters to solve
Eq. (16) to divide the G TTRs in the sample set
U into K clusters using Eq. (17). The xi label of
each sample is counted by the following formula:
k = arg max

k∈{1,2,...,K}
γik, k = 1, 2, ...,K. Divide xi into

the corresponding cluster Dk = Dk ∪ {xi}, and di-
vide the TTRs into clusters D = {D1, D2, ..., DK} ;
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Fig. 6 Schematic of the difference between Euclidean distance and Gaussian probability density function
clustering

that is, divide the TTRs in the sample set into K

types.

7. Select the cluster that corresponds to
the maximum posterior probability REk =

maxwik , k = 1, 2, ...,K in each cluster of D as the
K most representative TTRs, which are stored in
matrix H1(·, k), k = 1, 2, ...,K.

3.2 Step 2: obtaining IRRI using typical ther-
mal response curves

The process is shown in Table 1. The schematic
of the IRRI extraction algorithm described in this
subsection is shown in Fig. 5. Different defects have
different temperature change characteristics. In this
subsection, the GMM algorithm is used to classify
the TTRs in the infrared image sequence and ex-
tract the typical TTR. The typical TTR obtained is
reconstructed to obtain the IRRI.

Table 1 Step 2 for the IRRI segmentation algorithm

S(m,n, ·) ⇒ P (x, y)a×b, a = d, b = M ×N

O = Ĥ′
1 ∗ P

Ĥ′
1 is the pseudo-inverse matrix of matrix H1

OK×MN ⇒K IRRIs of size M ×N are obtained

4 Experiments

A sample from an ultra-high-speed impact test
of an aerospace material composite metal plate was
used in the experiments. A certain number of perfo-
ration defects and impact stress areas were generated
in the sample due to the hypervelocity impact, but
they cannot be clearly distinguished.

The infrared thermal spectrum was used to
record the thermal distribution on the surface of the
test specimen excited by a halogen lamp with in-
frared resolution of 512 × 640 for infrared thermal
video acquisition. For sample A we received 502
frames of size 512 × 640 pixels. The experimental
platform was Windows 10, Intel� CoreTM i5-4260U
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CPU@1.40 GHz, 16 GB memory, MATLAB 2017b.

4.1 Obtaining IRRI

We set the number of classifications K to 3.
In this experiment, U(·, zg) (g = 1, 2, ..., 502) were
obtained for S(m,n, ·)512×640×502. According to Sec-
tion 3, the TTRs were classified using the GMM al-
gorithm. The parameters are shown in Table 2. The
probability that the TTRs correspond to the clas-
sification model for the corresponding classification
were calculated (Table 3).

Table 2 GMM parameters for the sample

Parameter Value

GMM p(x |θ ) = wifi(x |μi, Σi), i = 1, 2, 3

related w1 = 0.2669, w2 = 0.1486, w3 = 0.5846

μ

μ1=
[

27.292 27.347 · · · 29.214
]

1×502

μ2=
[

27.335 27.461 · · · 29.214
]

1×502

μ3=
[

28.059 28.064 · · · 30.730
]

1×502

Σ

Σ1=

⎡

⎢
⎢
⎣

0.0460 0.0471 · · ·
0.0471 0.0509 · · ·

...
...

⎤

⎥
⎥
⎦

502×502

Σ2=

⎡

⎢
⎢
⎣

0.0912 0.1025 · · ·
0.1025 0.1204 · · ·

...
...

⎤

⎥
⎥
⎦

502×502

Σ3=

⎡

⎢
⎢
⎣

1.0771 1.0657 · · ·
1.0657 1.0562 · · ·

...
...

⎤

⎥
⎥
⎦

502×502

Table 3 Video stream data classification by GMM

Data type Value

Original TTRs 327 680

Sampling TTRs G = 727

Classification

Cgmm
1 = 93

Cgmm
2 = 74

Cgmm
3 = 49

Cfcm
1 = 50

∗

Cfcm
2 = 198

∗

Cfcm
3 = 498

∗

∗The number of repetitions is 7

As shown in Figs. 7 and 8, the same sampled
data set was processed using FCM and GMM, sepa-
rately. It can be seen from Fig. 7 that there were re-
peated classification data with membership degrees
P1 = P2 = P3 = 0.333. As shown in Fig. 8, two
points corresponding to a TTR were extracted, and
their temperature change rates were similar. It can

be concluded that the GMM algorithm used in this
study has good classification performance on the
data set, to ensure that the reconstructed image can
correctly reflect the defect characteristics.
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Fig. 7 FCM classification results for the sample (Ref-
erences to color refer to the online version of this
figure)

155
−50

160

165

800

170

750

175

−100 700

180

650
600−150 550

140

160

−110 720

180

700−120

0 500
26

28

30

32

Class 1
Class 2
Class 3

XY

Z

Fig. 8 GMM classification results for the sample (Ref-
erences to color refer to the online version of this
figure)

Using the steps shown in Table 4 we obtained
three IRRIs, and the corresponding TTR curves are
shown in Fig. 9.

Table 4 Obtaining IRRI using a linear matrix

S(m,n, ·) ⇒ P (x, y)a×b, a = 502, b = 327 680

O = Ĥ1 ∗ P
Ĥ′

1 is the pseudo-inverse matrix of matrix H1

O3×327 680 ⇒ Three IRRIs are obtained
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Fig. 9 IRRI acquisition results for the sample: (a) stress damage around the perforation defect; (b) drum kit;
(c) perforation damage; (d) TTR for damage (References to color refer to the online version of this figure)

1. Stress damage around the perforation defect
Stress damage was created when the impact en-

ergy worked on the periphery of the perforation de-
fect during internal penetration. High average ther-
mal resistance was caused by uneven defect thick-
ness, the heating rate was higher, and the temper-
ature peak was 29.91 ◦C; the cooling rate was first
high and was then affected by the lower area. The
cooling rate gradually decreased.

2. Drum kit
Due to the high overall thermal resistance of

the defect and faster heat exchange with the air, the
temperature showed a slow rise during the heating
process, and the peak point was low.

3. Perforation defects
For fragments generated by hypervelocity im-

pacts, the largest impact fragments or scattered,
uniformly sized impact fragments can cause dam-

age. According to the TTR curve, it can be seen
that the perforation part directly transmitted heat
to the infrared thermal imager, which showed the
characteristics of faster heating and cooling.

4.2 IRRI segmentation

The algorithm proposed in this study aims to
segment Fig. 10 to help identify and quantify defects
later. The parameters involved in the algorithm are
shown in Table 5.

Our algorithm first evaluated Eq. (9), used
the MOEA/D algorithm to obtain the weight vec-
tor (ωq1=0.6721, ωq2=0.3279), and substituted it
into Eq. (3), which obviously changed the cor-
responding weight coefficients in Eq. (3). The
MOEA/D algorithm was used to solve the multi-
objective optimization problem, and the PF surface
formed by the PF solution and the spatial Pareto



Yang et al. / Front Inform Technol Electron Eng 2022 23(4):571-586 583

optimization set was finally obtained (Fig. 11).
Then the cluster centers corresponding to the in-
flection points in the PF curve were used to seg-
ment the IRRI. For f1(v), the intermediate pa-
rameter L-Info δi = [7.4594, 7.4596, ...]T327 680×1

and NL-Info τi = [0.9276, 0.9455, ...]T327 680×1

were obtained. For f2(v), in the weighted
fuzzy factor ξtij = ζdc · ζgc · (1− utj)

m
,

where ζdc = [2.1248, 2.1254, ...]T327 680×1,

ζgc=

[
1.4142 · · ·
· · · · · ·

]

8×327 680

. The MOEA/D algo-

rithm was used to solve the multi-objective optimiza-
tion problem to finally obtain the PF solution and
the formed PF (Fig. 11).

In the dual process embodied here, first a trade-
off solution was selected. Then the trade-off solution
was used to obtain the optimal solution of f3(v).
Changing the corresponding weight coefficient can
change the priority of the objective function and op-
timize the segmentation problem, so that we can
obtain a set of PF solutions. Then the segmented
image corresponding to the cluster center [14.420,
1.282, −17.572, 2.685, 0.892, 0.489] in the inflection
point in the PF solution was used for segmentation.

Table 5 Multi-objective optimization segmentation
algorithm parameters

Parameter Value

Maximum number of iterations, gmax 100
Fuzzy index, m 2
Population, N 30
Number of clusters, c 2
DEPF f1(v) parameter, r 3
NOSF f2(v) parameter s(s, ψ) (5, 30)
Number of groups of weight vectors, T 40

We verified the effect of the different objective
segmentation functions of the proposed algorithm
on the segmented image through the combination of
weights. The segmentation results obtained by each
sub-target segmentation function f1 (v) or f2 (v) con-
structed in this study are presented in Fig. 12.

Fig. 10 IRRI to be segmented (References to color
refer to the online version of this figure)

Y

X
Y

X

Fig. 11 Pareto front

                          (a)                                                              (b)                                                           (c)

A

C

B

A

Enhance details while 
enhancing noise

B

Eliminate noise 
with details

Fig. 12 Comparison of the image segmentation results of our proposed algorithm with those of the single
segmentation function involved in the algorithm: (a) image segmentation object in this study; (b) detail preser-
vation function (DEPF) f1(v) segmentation result; (c) noise suppression function (NOSF) f2(v) segmentation
result (References to color refer to the online version of this figure)
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Fig. 12b shows that the detailed information of
the segmented image under the DEPF f1 (v) was re-
tained. It can be seen that the clustering results
contained many noise points. In contrast, compar-
ing area B in Figs. 12a and 12c, it can be seen that
in Fig. 12c, under the effect of f2 (v), the noise of
the segmented image had better suppression effect.
However, some defect details such as stress damage
and perforation damage around the perforation de-
fect were also suppressed. The weight combination
of ωq1 and ωq2 was used to obtain the segmentation re-
sults with complete detail preservation and less noise.
It can be seen that the IRRI segmentation based
on a single performance function cannot achieve the
desired effect, which verifies the necessity of our al-
gorithm to introduce a multi-objective optimization
framework.

To emphasize the effectiveness of the proposed
algorithm, we conducted a more detailed analysis
through theory and experiments. We compared
it with the following four traditional algorithms:
FCM_S (Ahmed et al., 1999), FLICM (Krinidis and
Chatzis, 2010), fast and robust fuzzy C-means (FR-
FCM) (Lei et al., 2018), and deviation-sparse fuzzy

C-means (DSFCM) (Zhang YX et al., 2019). The
codes of these four algorithms are open-source ones,
and the parameters were set to their default val-
ues. The images used in the comparison experiments
are shown in Fig. 13 in terms of the different sized
damages caused by the impact on the test object.
It can be seen that the FCM_S algorithm had the
roughest segmentation results. The segmentation
threshold of the algorithm is a soft threshold, which
improves the anti-noise ability of the FCM segmen-
tation algorithm, but it is still prone to incomplete
segmentation. When segmenting the area of concen-
trated defect pixels, the defect details are treated as
noise. For images with more details such as IRRIs,
the FCM_S algorithm cannot achieve correct and ef-
fective segmentation. As shown in the Figs. 13c and
13d, the results of DSFCM and FLICM IRRI pro-
cessing were similar. They usually cannot effectively
distinguish relatively scattered target areas, and
can divide only larger concentrated areas. Among
them, the FLICM algorithm cannot accurately seg-
ment the edges of perforation and stress damage
with gray-scale approximation because they do not
consider the positional relationship or gray-scale

                                                 (a)                                                                                  (b) 

                          (c)                                                             (d)                                                              (e)

Fig. 13 Comparison of the segmentation results of the proposed algorithm and four state-of-the-art segmen-
tation algorithms: (a) image segmentation object in this study; (b) FCM_S segmentation result; (c) FLICM
segmentation result; (d) DSFCM segmentation result; (e) FRFCM segmentation result (References to color
refer to the online version of this figure)
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relationship between pixels. The DSFCM algorithm
had a better processing effect on noise while con-
sidering the pixel neighborhood relationship, but it
cannot handle the detailed features of the IRRI well,
and the segmentation was not accurate. In the seg-
mentation processing of small parts (that is, tiny
impact craters), these algorithms usually cannot ef-
fectively deal with weak edges. As shown in Fig. 13e,
FRFCM was simple and fast, and it also had a good
effect on dealing with IRRI noise. However, when the
FRFCM algorithm was used for the perforated area
and the non-perforated area of the defect, it is very
unreasonable for the FRFCM algorithm to simulta-
neously divide the two areas directly. In this study,
we propose an improved algorithm to avoid this situ-
ation. Our algorithm can effectively distinguish the
target part (perforated and non-perforated areas) in
the detailed area, divide it correctly, and produce a
clear result of dividing the defect edge. The results
in Fig. 13a showed that the improved algorithm can
accurately separate perforated and non-perforated
areas, stress damage, background, and other parts,
and that the image obtained after segmentation was
closer to the original image.

5 Conclusions

We designed a defect detection algorithm using
infrared video streams to detect defects in space-
craft specimens impacted at hypervelocity. First,
we obtained the infrared reconstructed image (IRRI)
that highlights different defect features using GMM
to extract different temperature change information,
that is, transient thermal responses. To separate the
damaged part from the background, and to avoid the
possible noise interference and blurring of details in
IRRI, an adapted objective segmentation function
was designed. To obtain more accurate segmenta-
tion, we used the idea in solving multi-objective op-
timization problems to obtain segmentation weights
that adapt to each IRRI by constructing a two-
layer multi-objective optimization segmentation al-
gorithm. Experimental results verified the effective-
ness of the algorithm.
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