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Abstract: Low-angle estimation for very high frequency (VHF) radar is a difficult problem due to the multipath effect in the
radar field, especially in complex scenarios where the reflection condition is unknown. To deal with this problem, we propose an
algorithm of target height and multipath attenuation joint estimation. The amplitude of the surface reflection coefficient is
estimated by the characteristic of the data itself, and it is assumed that there is no reflected signal when the amplitude is very
small. The phase of the surface reflection coefficient and the phase difference between the direct and reflected signals are
searched as the same part, and this represents the multipath phase attenuation. The Cramer-Rao bound of the proposed algorithm
is also derived. Finally, computer simulations and real data processing results show that the proposed algorithm has good
estimation performance under complex scenarios and works well with only one snapshot.
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1 Introduction

In recent decades, the problem of low-angle esti‐

mation for very high frequency (VHF) radar has at‐

tracted a lot of attention (Barton, 1974; Bosse et al.,

1991; Xu et al., 2013, 2014) because of the multipath

effect, especially in complex scenarios (Wang et al.,

2014) where the reflection condition is unknown. The

direct and reflected signals passing along the Earth’s

surface enter the radar main beam together. It is as‐

sumed that only the specular reflection signal is in‐

cluded in the reflected path signals, while the diffuse

reflection signal can be ignored (Bosse et al., 1991).

The target height is calculated from the elevation

angle and other information about the target, which
is known for the height estimation, so the height esti‐
mation is equivalent to the elevation estimation. The
direct and reflected signals cannot be distinguished
in the time, Doppler, and space domains, resulting in
degradation of target height estimation performance.
In particular, the performance for complex scenarios
is greatly reduced.

Subspace and maximum likelihood (ML) algo‐
rithms are currently the main methods to overcome
this problem. Subspace algorithms such as music
(Schmidt, 1986) and esprit (Roy and Kailath, 1989)
usually require more snapshots, and cannot directly
deal with coherent signals. Spatial smoothing (Shan
et al., 1985; Pillai and Kwon, 1989) can help reduce
the coherence between the signals by losing a certain
aperture before angle estimation. ML algorithms (Zis‐
kind and Wax, 1988) can directly process coherent
signals and can work even with only one snapshot.
The refined maximum likelihood (RML) algorithm
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(Lo and Litva, 1991) makes full use of the prior
knowledge of geometric information and the surface
reflection coefficient, and uses a composite guide
vector instead of a conventional guide vector. The
RML algorithm performs well in simple scenarios
where the reflection condition is known precisely, but
not well in complex scenarios. The reflected signal
can also be eliminated (Ahn et al., 2010; Park et al.,
2014), but the information about the space domain in
the reflected signal is lost. In Takahashi et al. (2010)
and Wang et al. (2016), the height of the reflector is
treated as an unknown parameter, and is searched to‐
gether with the target height. Thus, the sensitivity to
the fluctuation of the reflector is reduced. However,
the error of the surface reflection coefficient is not tak‐
en into account. In complex scenarios, the composite
guide vector cannot be accurately calculated, resulting
in performance degradation and even failure of the
above algorithms. To overcome these problems, we
propose an algorithm of target height and multipath at‐
tenuation joint estimation. This study considers the
case of low antenna height and a far field target. The
reflected signal is thought of as symmetric with re‐
spect to the horizontal plane of the direct signal. The
amplitude of the surface reflection coefficient is esti‐
mated by the characteristic of the data itself, and it is
considered that there is no reflected signal when the
amplitude is very small. The phase of the surface re‐
flection coefficient and the phase difference between
the direct and reflected signals are searched as the
same part, and this is the multipath phase attenuation.
An alternating projection (AP) is used to reduce com‐
putation by iterative processing (Ziskind and Wax,
1988; Heylen et al., 2016). The proposed algorithm
fully exploits the characteristics of data in complex
scenarios and improves the performance of target
height estimation.

2 Multipath signal model based on 4/3 Earth

In this section, we give the multipath signal model
based on 4/3 Earth and briefly review the surface re‐
flection coefficient.

2.1 Multipath signal model

Electromagnetic waves do not travel along a
straight line on the Earth. This is because of the effects

of the Earth’s atmosphere and its curved surface
(Ayasli, 1986; Teti, 2000; Griesser and Balanis, 2003).
However, it can be equivalent to traveling along a
straight line with appropriate approximation. Using
the 4/3 Earth model (Beckmann and Spizzichino, 1987;
Mahafza, 2013), the effective Earth radius is

Re = 4R0 /3, (1)

where R0 is real Earth radius. Based on the above ap‐
proximation, the geometry for a 4/3 Earth model
with multipath propagation is shown in Fig. 1. The
linear array with the M elements receives the two
paths of signal echoes from the different directions
of arrival. One path returns directly from the target to
the radar antenna, whereas the other path returns
from the reflecting surface, where θ1 and θ2 are the
incident angles of the direct signal and the reflected
signal, respectively. The height of the array radar cen‐
ter is hr. The distance between two adjacent array ele‐
ments is d. The height of the target is ht. The distance
from the target to the array radar center is Rd.

After pulse compression and Doppler filtering,
the signal received by array radar can be written as

x = αw + n, (2)

w = a (θ1 ) + εa (θ2 ), (3)

where α is the complex amplitude related to target
characteristics, w is the composite array steering
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Fig. 1 Geometry for a 4/3 Earth model with multipath
propagation
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vector including direct and reflected signals, and a(θ)∈
CM, called the array steering vector, is defined as

a (θ )=é

ë
êêêêe

-jπd ( )M-1 sinθ
λ ,e

-jπd ( )M-3 sinθ
λ ,…,

ù

û
úúúúe

jπd ( )M-1 sinθ
λ

T

, (4)

where λ is the working wavelength, and ε is the atten‐
uation coefficient, satisfying

ε = ρe-jφ = ρ exp ( -
j2πΔR
λ ) , (5)

where ρ is the surface reflection coefficient. The de‐
tails of ρ will be discussed later. φ is the phase differ‐
ence between the direct and reflected signals, and ΔR
is the wave path difference between the direct and re‐
flected signals. n is the Gaussian white noise vector
with zero mean. This is not correlated with the target
signals. The variance matrix of the noise vector is
σ2IM. σ2 represents the noise power of a single array
element, and IM represents an identity matrix of size
M×M. In addition, from the multipath geometry in
Fig. 1, we give the calculation of θ2 and ΔR. The
height of the target is

h t = R2
d + ( Re + hr )2 - 2Rd ( Re + hr )cos ( )θ1 +

π
2

-Re.

(6)

The angle Φ is

Φ = Φ1 + Φ2 = arccos
( Re + hr )2 + ( Re + h t )2 - R2

d

2 ( Re + hr ) ( Re + h t )
.

(7)

The length of the arcEF is

G = ReΦ. (8)

The length of the arcEB (Skolnik, 2008) is

G1 =
G
2

- p sin
ξ
3

, (9)

where

p =
2

3
Re (hr + h t ) +

G2

4
, (10)

ξ = arcsin
2ReG (h t - hr )

p3
. (11)

The angles Φ1 and Φ2 are

Φ1 =
G1

Re

, (12)

Φ2 =
G2

Re

=
G - G1

Re

. (13)

Then, R1 and R2 can be calculated by △OAB and
△OBC. We have

R1 = R2
e + ( )Re + hr

2

- 2Re( )Re + hr cosΦ1 , (14)

R2 = R2
e + ( )Re + h t

2

- 2Re( )Re + h t cosΦ2 . (15)

Similarly, the relationship between θ1 and θ2 can
be calculated by △ABC. We have

θ1 + | θ2 | = arccos
R2

1 + R2
d - R2

2

2R1 Rd

. (16)

From the above formula, ΔR and θ2 can be easily
obtained:

ΔR = R1 + R2 - Rd, (17)

θ2 = θ1 - arccos
R2

1 + R2
d - R2

2

2R1 Rd

. (18)

2.2 Surface reflection coefficient analysis

According to the electromagnetic scattering theory,
the surface reflection coefficient ρ depends on the
working frequency, type of surface, polarization of
the signal, surface roughness, etc. It can be expressed
as (Lo and Litva, 1991)

ρ = ρo ρs D, (19)

where ρo, ρs, and D are the smooth surface reflection
coefficient, rough surface factor, and divergent factor,
respectively. The smooth surface reflection coefficient
ρo is generally divided into horizontal and vertical
polarizations (Beckmann and Spizzichino, 1987;
Mahafza, 2013), as

ρo =

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

ï

ï

sin γ - εc - cos2γ

sin γ + εc - cos2γ
, horizontal,

εc sin γ - εc - cos2γ

εc sin γ + εc - cos2γ
, vertical,

(20)
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where γ is the glancing angle, as

γ =
1
2 (π - arccos

R2
1 + R2

2 - R2
d

2R1 R2 ) , (21)

and εc is the complex dielectric constant related to
the reflection surface. The rough surface factor ρs is
given by (Lo and Litva, 1991)

ρs = e-z, (22)

where

z =
ì
í
î

2 (2πη )2, η ⩽ 0.1 rad,

0.16η2 + 7.42η + 0.0468, otherwise,
(23)

η =
σh

λ
sinψs, (24)

and σh is the root-mean-squared value of the reflec‐
tion surface. The divergent factor D is given by (Lo
and Litva, 1991)

D ≈ 1

1 +
2G1G2

ReG sinψs

. (25)

3 Target height and multipath attenuation

joint estimation

For complex scenarios where the reflection con‐
dition is unknown, θ2, ρ, and φ cannot be accurately
calculated. This will result in performance degradation
and even failure of conventional height estimation
algorithms. Next, we analyze these three parameters
in detail.

3.1 Incident angle of the reflected signal θ2

For a far-field target, the direct wave ray is
approximately parallel to the reflected ray in the case
of low antenna height. The reflection area is very
close to the radar. Thus, the reflection on the radar
side can be approximated by plane reflection. Then,
we obtain the approximation of

θ2 = -θ1. (26)

Fig. 2 shows the difference between |θ2| and θ1

against the target elevation angle. Consider a digital
array radar equipped with a uniform linear array. Set

hr=5 m and Rd=100 km. It can be seen that the differ‐
ence between |θ2| and θ1 can be negligible. The above
approximation is acceptable. Therefore, in the following
discussion, we believe that Eq. (26) holds.

3.2 Surface reflection coefficient ρ

The surface reflection coefficient ρ can be divided
into amplitude and phase, as

ρ = ρA ρψ = ρAejψ, (27)

where ρA denotes the amplitude of the surface reflection
coefficient, and ψ denotes its phase. The precise ρA

and ψ are difficult to obtain. For vertical polarization,
ψ varies with the glancing angle, but for horizontal
polarization, ψ is close to 180°. In complex scenarios,
an error in ψ results in reduction of the target height
estimation performance, but the approximate value
of the phase for horizontal polarization can play a
role in estimating ρA. Fortunately, horizontal polariza‐
tion is often used for low-angle tracking. Thus, we
discuss mainly the case of horizontal polarization.

Consider a digital array radar equipped with a
uniform linear array with M elements where the dis‐
tance between two adjacent array elements is d. Ignor‐
ing the effect of noise and assuming that there is no
reflected signal, the signal received by array radar
can be written as

x = αa (θ1 ), (28)

which shows that there is no relationship between the
signal and the reflection coefficient. Next, ignoring
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Fig. 2 The angle difference against the target elevation angle
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the effect of noise and assuming the existence of a re‐

flected signal, the signal received by array radar can

be written as

x = α[a (θ1 ) + ρe-jφa (θ2 )] . (29)

Then, we obtain the amplitude of x:

| x | = | α | ( )1 + || ρ 2
eM + 2 || ρ β , (30)

where eM = [1, 1,…,1]T ∈ CM, and

β = cos
ì
í
î

ïï

ïïïï

ü
ý
þ

ïïïï

ïïïï

2πd ( )sin θ1 - sin θ2 m

λ
+
é

ë
ê
êê
ê ù

û
ú
úú
úρψ -

4πhr sin θ1

λ
eM ,

(31)

m = é
ë
êêêê -

M - 1
2

, -
M - 3

2
,…,

M - 1
2

ù
û
úúúú

T

. (32)

Eq. (30) shows that || x depends on the reflec‐

tion coefficient, target elevation angle, and antenna

height. To distinguish the spectrum of Eq. (30) from

the case where there is no reflected signal, we nor‐

malize Eq. (30) and take the normalized result minus

the mean of itself, as

X =
|| x

max || x
, (33)

y = X -
1
M∑i = 1

M

Xi eM, (34)

where X∈CM, Xi denotes the ith element of X. Next,

we take y as a time series and obtain the spectrum of

y by the Fourier transform, as

F ( k ) = ∑
i = 0

N - 1

yie
-

j2πik
M , k = 1, 2,…, N, (35)

where yi denotes the ith element of y, yi=0, i=M,

M+1, …, N, N is the number of samples of the Fourier

transform, and F(k) denotes the kth element of F.

Then, we obtain the maximum element of F as

Q = max | F |. (36)

We call Q the multipath characteristic value
(MCV), which depends on the reflection coefficient,
target elevation angle, and antenna height. Although
the target elevation angle cannot accurately be known,
the rough estimate of the elevation angle can be used
as a priori knowledge. The details of rough estimation
of the elevation angle will be discussed in Section
3.4. The error of ψ and the antenna height are gener‐
ally acceptable for the estimation of ρA. In addition, a
small error in ρA has little effect on the performance
of height estimation (Wang et al., 2016). Then MCV
depends only on ρA, so we can establish the relation‐
ship between MCV and ρA to estimate ρA. More con‐
cretely, the estimate of ρA can be written as

ρ̂A =
ì
í
î

0, ρ̄A ⩽ 0.2,

ρ̄A, otherwise,
(37)

where ρ̄A is the direct estimate of ρA by the relation‐

ship between MCV and ρA. We set ρ̂A to zero when ρ̄A

is less than or equal to the empirical value of 0.2, be‐
cause we believe that this is caused by the influence
of noise. Note that the empirical value 0.2 is derived
from data processing experience. Small adjustments to
the empirical value generally do not affect the height
estimation performance.

Consider a digital array radar equipped with a
uniform linear array with 16 elements where the dis‐
tance between two adjacent array elements is 0.5 m.
Set hr=5 m, Rd=100 km, ht=3500 m, λ=1 m, and α=1.
The amplitudes of the signals without noise against
the number of array elements are shown in Fig. 3.
From Fig. 3, it can be observed that the amplitude
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No reflected signal
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Fig. 3 The amplitude of signal against the number of array
elements
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of the multipath signal varies with the number of

elements. Next, set N=128. The spectrum amplitude of

y and the case where there is no reflected signal are

shown in Fig. 4. There is a distinct difference in the

maximum values of the spectrum amplitude between

the two cases. The steps for estimation of ρA are sum‐

marized in Algorithm 1.

3.3 Phase difference between direct and reflected

signals

The phase difference between the direct and re‐

flected signals φ is a very important parameter for

height estimation. The antenna height can be searched

as an unknown parameter to obtain the phase differ‐

ence (Wang et al., 2016). However, there is also an

error in the phase of the surface reflection coefficient

ψ. From Eq. (5), it can be seen that the effects of φ

and ψ on the signal are equivalent. Thus, we treat

them as the same part, called multipath phase attenu‐

ation. Then, the composite array steering vector can

be written as

w (θ1,ϕ ) = a (θ1 ) + | ρ |ejϕa (-θ1 ), (38)

where ϕ=ψ−φ is the multipath phase attenuation.

3.4 Target height and multipath attenuation joint
estimation by alternating projection

Previously, we analyzed the key factors that affect
the performance of height estimation under complex
reflecting surface conditions. The main idea of the
proposed algorithm is to estimate the amplitude of the
surface reflection coefficient first, and then to conduct
a joint search for target height and multipath phase
attenuation by AP.

The log-likelihood function can be written as
(Zhu et al., 2017)

f (θ1,ϕ ) = xH Pw (θ1,ϕ ) x, (39)

where [·]H denotes the conjugate transpose operation,
and

Pw (θ1,ϕ ) =
w (θ1,ϕ )wH (θ1,ϕ )

wH (θ1,ϕ )w (θ1,ϕ )
. (40)

The ML estimates of the target elevation angle
and multipath phase attenuation are the values corre‐
sponding to the largest peak in the amplitude of the
function:

( θ̂1,ϕ̂) = arg max
θ1,ϕ

f (θ1,ϕ) . (41)

It requires a lot of computation to solve the above
problem directly. The AP technique reduces computa‐
tion by iterative processing. The technique solves the
one-dimensional maximization problem by fixing all
the other parameters at every iteration. By Ziskind and
Wax (1988), the algorithm must converge to a local
maximum. The initial estimation method in Ziskind
and Wax (1988) has good performance, which ensures
that the local maximum is the global maximum.

First, for the initial estimation of θ1, which is
the rough estimation mentioned earlier, we use the
method in Ziskind and Wax (1988) and take Eq. (26)
into account. Then, we obtain the initial estimate
of θ1 as

θ̂ ( )0
1 = arg max

θ1

( xH PA (θ1 ) x ) , (42)
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Fig. 4 The spectrum amplitude against the number of array
elements

Algorithm 1 Estimation of ρA

Step 1: Set system parameters and obtain the rough estimate

of the elevation angle.

Step 2: According to Eq. (29), establish the signal model.

Step 3: According to Eq. (36), calculate the MCV varying

with ρA.

Step 4: According to Eq. (36), calculate the MCV of real data.

Step 5: Obtain ρ̄A by the results of steps 4 and 5, and obtain

ρ̂A by Eq. (37).
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where

PA (θ1 ) = A (θ1 ) [ AH (θ1 ) A (θ1 )]-1

AH (θ1 ), (43)

A (θ1 ) = [a (θ1 ),a (-θ1 )] . (44)

Second, we use the method in Algorithm 1 to
estimate the amplitude of the reflection coefficient.
Then, we start the iteration to estimate the elevation
angle. The estimate of ϕ at the (k+1)th iteration is
obtained by

ϕ̂( )k + 1 = arg max
ϕ

( xH Pw( θ̂ ( )k
1 ,ϕ) x ) . (45)

The estimate of θ1 at the (k+1)th iteration is
obtained by

θ̂1
( )k + 1 = arg max

θ1

( xH Pw(θ1,ϕ̂( )k + 1 ) x ) . (46)

Next, from the idea of AP, we repeat the above
iteration process until the results of the two adjacent
iterations are the same.

Note that when ρ̄A is less than 0.2, ρ̂A will be set

to zero. That is, there is no reflected signal in the
target echo. Thus, the estimate of θ1 can be obtained
directly by

θ̂1 = arg max
θ1

 a (θ1 ) x
2

2
, (47)

where ||· ||2 denotes the 2-norm. Finally, we calculate

the target height ĥ t by Eq. (6). The proposed algo‐
rithm is summarized in Algorithm 2.

4 Cramer-Rao bound

Assume that there are L discrete samples of the
target echo. Based on the above analysis, the signal
received by array radar can be written as

x ( l ) = α ( l )w (θ1,ϕ ) + n ( l ) , l = 1, 2,…, L. (48)

The log-likelihood function can be written as

T = ln{P ( x (1),…, x ( L ); [θ1, ϕ] )}
= -

L
2

ln (2πσ 2 ) -
1

2σ 2∑
l = 1

L
é
ë
êêêê( )x ( l ) - α ( l )w (θ1,ϕ )

H

]·( )x ( l ) - α ( l )w (θ1,ϕ ) . (49)

The Fisher information matrix is given by

J = é
ë
êêêê ù

û
úúúúJ11 J12

J21 J22

=

é

ë

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

ú
-E

ì
í
î

ü
ý
þ

∂2T
∂θ1∂θ1

-E
ì
í
î

ü
ý
þ

∂2T
∂θ1∂ϕ

-E
ì
í
î

ü
ý
þ

∂2T
∂ϕ∂θ1

-E{ }∂2T
∂ϕ∂ϕ

,

(50)

where

J11 = -
Lα2

σ 2
real ( ∂wH

∂θ1

∂w
∂θ1 ) , (51)

J12 = J21 = -
Lα2

σ 2
real ( ∂wH

∂ϕ
∂w
∂θ1 ) , (52)

J22 = -
Lα2

σ 2
real ( ∂wH

∂ϕ
∂w
∂ϕ ) , (53)

∂w
∂θ1

= a (θ1 )∗η - | ρ |ejϕa (-θ1 )∗η, (54)

η =
é

ë
êêêê jπd [ - ( M - 1),…, ( M - 1) ] cos θ1

λ
ù

û
úúúú

T

, (55)

∂wH

∂ϕ = -j| ρ |e-jϕa (-θ1 ), (56)

real(· ) denotes the real part, and * denotes the Had‐
amard product. Define

H = J -1 = é
ë
êêêê ù

û
úúúúH11 H12

H21 H22

. (57)

We obtain the Cramer-Rao bound (CRB) of θ and ϕ
as follows:

Algorithm 2 The proposed algorithm

Step 1: Estimate the initial θ̂ ( )0
1 by Eq. (42).

Step 2: Obtain ρ̄A by the method in Algorithm 1.

Step 3: If ρ̄A ⩽ 0.2, set ρ̂A = 0 and go to step 4; otherwise, set

ρ̂A = ρ̄A and go to step 5.

Step 4: Estimate the target elevation angle θ̂1 by Eq. (47), and
go to step 8.

Step 5: Estimate the multipath phase attenuation ϕ̂( )k + 1 by

Eq. (45).

Step 6: Estimate the target elevation angle θ̂1
( )k + 1 by Eq. (46).

Step 7: If the results of the two adjacent iterations are the same,
stop the iteration; otherwise, set k=k+1 and go to step 5.

Step 8: Calculate the target height ĥ t by Eq. (6).
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ì
í
î

ïïïï

ïïïï

CRBθ1
= H11 ,

CRBϕ = H22 .
(58)

In what follows, we show the estimated root-
mean-squared error (RMSE) of the target elevation
angle of the proposed algorithm and the CRB against
the signal-to-noise ratio (SNR). We define SNR as

SNR =
LM || α 2

σ 2
. (59)

Set ρ to 0.9ejπ. The other simulation conditions
are the same as in Fig. 4. In the case of a single snap‐
shot, the estimated RMSE of the target elevation angle
of the proposed algorithm and the CRB against SNR
are shown in Fig. 5. The estimated RMSE of the tar‐
get elevation angle is smaller as SNR increases. The
higher the SNR, the closer the estimated RMSE is to
the CRB.

5 Simulation and real data processing results

5.1 Simulation results

In different scenarios, the proposed algorithm is
compared with the RML algorithm (Lo and Litva,
1991), ML-AP algorithm (Ziskind and Wax, 1988),
and height and reflection surface joint estimation
(HRJE) algorithm (Wang et al., 2016). The processing
methods of these four algorithms for key parameters
are shown in Table 1.

Consider a digital array radar equipped with
a uniform linear array with 16 elements where the

distance between two adjacent array elements is d=
0.5 m. Set λ=1 m, hr=5 m, and Rd=100 km. The num‐
ber of Monte Carlo trials is set at 200 in all these sim‐
ulations. All the following simulations follow the above
conditions. These simulations are performed using
MATLAB R2016b on a PC with Intel i7-7700, 3.60 GHz
core frequency, and 8 GB RAM.

First, the ideal scenario with a smooth reflecting
surface is considered. Set ht=3500 m, ρ =0.9ejπ, and
the target elevation angle is 1.67°. The RMSE of
the target elevation angle and height against SNR
of these algorithms mentioned earlier are shown in
Figs. 6 and 7, for 64 snapshots and a single snapshot,
respectively. For the case of 64 snapshots, the RML
algorithm, ML-AP algorithm, and proposed algorithm
perform Doppler filtering before height estimation.
From Figs. 6 and 7, it can be seen that the RML algo‐
rithm is optimal and that the proposed algorithm per‐
forms better than the ML-AP algorithm and the
HRJE algorithm in the ideal scenario. This is because
the RML algorithm uses the most accurate information
and the proposed algorithm tries its best to obtain the
most accurate information. The running time of dif‐
ferent methods for one Monte Carlo trial is shown in
Table 2. The search region for the target elevation
angle is [0.1°, 10°], and the search interval is 0.01°.
The RML algorithm has the minimum running time
because of the one-dimensional search of a single
target. In the ML-AP algorithm, the direct and re‐
flected signals are treated as two targets rather than
two parts of the composite guide vector. The ML-AP
algorithm has the maximum running time because of
multiple one-dimensional searches of two targets. The
HRJE algorithm and the proposed algorithm take
less time than the ML-AP algorithm because of mul‐
tiple one-dimensional searches of a single target. The
proposed algorithm takes less time than the HRJE
algorithm, because the proposed algorithm does not
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Fig. 5 RMSE of the target elevation angle against SNR

Table 1 The processing methods of four algorithms for
key parameters

Parameter
θ1

hr

θ2

ρA

ψ
φ

RML
Search

Measurement
Calculation
Calculation
Calculation
Calculation

ML-AP
Search

–
Search

–
–
–

HRJE
Search
Search

Calculation
Calculation
Calculation
Calculation

Proposed
Search

–
−θ1

Estimation

Search ϕ=ψ−φ
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need to calculate the phase difference between the
direct and reflected signals φ.

Second, the complex scenario with an unknown
reflecting surface is considered. Set ρ =0.7ejπ. Assume
the error of hr is 1 m, the error of ρA is 0.1, and the
error of ρψ is 10°. The radar receives only one snap‐
shot. The RMSE of the target elevation angle and
height against SNR of these algorithms mentioned
earlier are shown in Figs. 8 and 9, for ht=3500 m and
ht=7000 m, respectively. The target elevation angles
for Figs. 8 and 9 are 1.67° and 3.10° , respectively.
The performance of the RML algorithm is improved

little with the increase of SNR because of the use of
inaccurate information, and the three other algorithms
are not so sensitive to the error. The proposed algo‐
rithm performs better than the other algorithms.

Then a more complex scenario with an unknown

reflecting surface is considered. Set ht=3500 m and

ρ=0.7ejπ. Assume the error of hr is 3 m, the error of ρA

is 0.3, and the error of ρψ is 30° . The radar receives

only one snapshot. The RMSE of the target height

against the SNR of these algorithms mentioned earlier

is shown in Fig. 10. The performances of the RML

algorithm and the HRJE algorithm are improved little

with the increase of SNR. The performance of the

HRJE algorithm is greatly reduced because of the

large amplitude error of the reflection coefficient.

Compared with other algorithms, the advantages of the
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Fig. 6 RMSE of the target elevation angle (a) and target height (b) estimation against SNR with a smooth reflecting
surface for 64 snapshots
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Fig. 7 RMSE of the target elevation angle (a) and target height (b) estimation against SNR with a smooth reflecting
surface for a single snapshot

Table 2 Running time of different methods

Method

Time (s)

RML

0.005

ML-AP

1.162

HRJE

0.157

Proposed

0.039
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proposed algorithm are more obvious in the more
complex scenario.

Finally, a special scenario with an unknown
reflecting surface is considered. Suppose that there

is an obstacle blocking the reflected signal from en‐

tering the antenna at some time. That is to say, it is

uncertain whether the reflected signal is included

in a certain echo. Set ht=3500 m and ρ=0.9ejπ. The

radar receives only one snapshot. In the following

simulation, whether the target signal contains the re‐

flected signal is random in each Monte Carlo trial.

The RMSE of the target height against the SNR of

the algorithms is shown in Fig. 11. The conclusion is

similar, and the performance of the proposed algo‐

rithm is also better than those of the others.

For the proposed algorithm, the number of itera‐

tions to convergence decreases with the increase of

SNR. For example, it usually takes four iterations to

obtain the result for 0 dB, three iterations for 20 dB,

and only two iterations for higher SNR.
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Fig. 10 RMSE of height estimation against SNR with a
more complex reflecting surface for ht=3500 m
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5.2 Real data processing results

The real data under complex scenarios are ap‐
plied to further verify the performance of the pro‐
posed algorithm. The array radar is equipped with a
uniform linear array with 18 elements, where a dis‐
tance between two adjacent array elements is d=
0.55λ. The beam width is about 5.13°. The height of
the reflecting surface and the surface reflection coef‐
ficient cannot be accurately obtained. The radar
works in the meter wave band and receives only one
snapshot. The real data are processed by pulse com‐
pression before height estimation.

The terrain scenario is a hilly area of great undu‐
lation. The target is an airplane that is first heading
for the radar and then away from it. Figs. 12 and 13
show the target distance and azimuth change against
frames, respectively. The distance between the air‐
plane and radar first decreases from 235 km to 197 km
and then increases to 210 km. Fig. 14 shows the pro‐
cessing results of the real data using RML, ML-AP,
HRJE, and the proposed algorithm. The target eleva‐
tion angle first increases from 1.3° to 2° and then de‐
creases to 1.7°. The target height is about 9 km. It
can be seen that the proposed algorithm has better
performance in elevation angle and height estima‐
tions, and that the other algorithms have large estima‐
tion errors and less robustness. For the proposed algo‐
rithm, the number of iterations to convergence is two
or three. In case of 2/3 of the frames, the elevation er‐
ror of the proposed algorithm is less than 0.25°, that
is, 1/20 of the beam width, and the height error is
less than 1 km. In most frames, the elevation error of
the proposed algorithm is less than 0.5°, that is, 1/10

of the beam width, and the height error is less than
2 km. Although the estimation error of the proposed
algorithm is slightly larger at the 22nd and 61st frames,
the overall advantage is still obvious.

6 Conclusions

In this paper, the problem of low-angle estima‐
tion for VHF radar with complex scenarios is discussed.
The reflected signal is thought of as symmetric with re‐
spect to the horizontal plane of the direct signal.
The amplitude of the surface reflection coefficient is
estimated by the characteristic of the data itself, and
it is considered that there is no reflected signal when
the amplitude is very small. The phase of the surface
reflection coefficient and the phase difference between
the direct and reflected signals are searched as the
same part, which is the multipath phase attenuation.
Alternating projection is used to reduce computation.

The proposed algorithm fully exploits the char‐
acteristics of data in complex scenarios and improves
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Fig. 11 RMSE of height estimation against SNR with an
unknown multipath for ht=3500 m
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the performance of target height estimation. Computer
simulations and real data processing results show the
superiority of the proposed algorithm under complex
scenarios, and the proposed algorithm works well with
only one snapshot.

This paper discusses only the case of one target
and one path reflection. In the case of multiple targets,
the target echoes will affect each other. However, mul‐
tiple targets can be separated in the range, Doppler,
and angle dimensions by signal processing. If there
are multiple targets in the same range unit, Doppler
channel, and beam direction, the estimation perfor‐
mance will be degraded. In the case of multipaths,
the signal model cannot match the actual data well.
This will also lead to degradation of the estimation
performance.

This paper discusses mainly the case of horizontal
polarization. For vertical polarization, the amplitude
of the surface reflection coefficient is still difficult to
estimate.

This paper discusses the case where the absolute
values of the incident angle and reflection angle are
equal. In the case of high antenna height or a near
field target, the absolute values of the incident angle
and reflection angle are not equal. The reflection angle
needs to be introduced as an unknown parameter, which
greatly increases the complexity of the algorithm.
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