
692 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Devising optimal integration test orders using

cost–benefit analysis∗#

Fanyi MENG1, Ying WANG1,2, Hai YU†‡1, Zhiliang ZHU1

1Software College, Northeastern University, Shenyang 110169, China
2State Key Lab for Novel Software Technology, Nanjing University, Nanjing 210023, China

†E-mail: yuhai@mail.neu.edu.cn

Received Sept. 30, 2021; Revision accepted Jan. 11, 2022; Crosschecked Mar. 24, 2022

Abstract: Integration testing is an integral part of software testing. Prior studies have focused on reducing test
cost in integration test order generation. However, there are no studies concerning the testing priorities of critical
classes when generating integration test orders. Such priorities greatly affect testing efficiency. In this study, we
propose an effective strategy that considers both test cost and efficiency when generating test orders. According to a
series of dynamic execution scenarios, the software is mapped into a multi-layer dynamic execution network (MDEN)
model. By analyzing the dynamic structural complexity, an evaluation scheme is proposed to quantify the class
testing priority with the defined class risk index. Cost–benefit analysis is used to perform cycle-breaking operations,
satisfying two principles: assigning higher priorities to higher-risk classes and minimizing the total complexity of test
stubs. We also present a strategy to evaluate the effectiveness of integration test order algorithms by calculating the
reduction of software risk during their testing process. Experiment results show that our approach performs better
across software of different scales, in comparison with the existing algorithms that aim only to minimize test cost.
Finally, we implement a tool, ITOsolution, to help practitioners automatically generate test orders.

Key words: Integration test order; Cost–benefit analysis; Probabilistic risk analysis; Complex network
https://doi.org/10.1631/FITEE.2100466 CLC number: TP311

1 Introduction

Compared with procedure-oriented program-
ming, object-oriented (OO) programming is charac-
terized by encapsulation, polymorphism, and inher-
itance. Hence, there is a significant difference be-
tween these two types of software in the creation of
‡ Corresponding author
* Project supported by the National Natural Science Founda-
tion of China (Nos. 61902056, 61977014, and 61603082), the
Shenyang Young and Middle-Aged Talent Support Program,
China (No. ZX20200272), the Fundamental Research Funds for
the Central Universities, China (No. N2017011), and the Open
Fund of State Key Lab for Novel Software Technology, Nanjing
University, China (No. KFKT2021B01)
Electronic supplementary materials: The online version of
this article (https://doi.org/10.1631/FITEE.2100466) contains
supplementary materials, which are available to authorized users

ORCID: Fanyi MENG, https://orcid.org/0000-0001-6465-3295;
Hai YU, https://orcid.org/0000-0002-8024-1781
c© Zhejiang University Press 2022

test strategies (Binder, 1996). OO software involves
four levels of testing: method, class, inter-class, and
software testing (Tai and Daniels, 1999). By testing
at the method and class levels, we determine whether
each module of software is in working order. How-
ever, inter-class testing ensures that all modules can
collaborate with one another (Jorgensen and Erick-
son, 1994). In integration testing, it is challenging to
determine the order in which classes are integrated
and tested in inter-class testing.

A class integration test order (CITO) is closely
related to the software testing efficiency, as it af-
fects the sequence in which classes are developed and
inter-class faults are detected, as well as the design of
test cases and construction of test stubs (Abdurazik
and Offutt, 2006).

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 693

The main concept underlying class order testing
is to ensure that non-dependent classes are assigned
higher priorities for integration testing, followed by
the classes that are dependent on classes that have
already been tested. In this manner, the numbers of
test stubs and drivers are minimized, thereby reduc-
ing test costs. Integration test orders are generated
by a reverse sort of classes based on the direct rela-
tionships between them if there are no cyclical depen-
dencies in software. Moreover, due to the structural
complexity of software, testers must perform cycle-
breaking operations when test stubs are introduced
(Assunção et al., 2014). In this process, test stubs are
used to simulate interactive behaviors between class
pairs, and provide attributes and methods for classes
to be tested. Input values and expected outputs
should be set beforehand to make sure that the sim-
ulated behaviors are consistent with the implementa-
tion of the actual classes. Thus, the entire simulation
process is time consuming and complicated (Bansal
et al., 2009). To reduce test costs, prevalent integra-
tion test order strategies (Kung et al., 1995; Tai and
Daniels, 1999; Le Traon et al., 2000; Briand et al.,
2002, 2003; Abdurazik and Offutt, 2006; da Veiga
Cabral et al., 2010; Vergilio et al., 2012; Assunção
et al., 2014; Jiang et al., 2021) focus on two aspects:
reducing the number of test stubs and minimizing
their total complexity (Wang ZS et al., 2011). How-
ever, a class integration test order is closely related
to the sequence in which software bugs are detected.
Such strategies share the limitation that they cannot
expose software bugs immediately, which affects the
test efficiency.

In addition, inherent risk in software projects
leads to budget overruns and delays in the delivery
of software products (Amland, 2000). The NASA-
STD-8719.13A standard (NASA, 1999) defines sev-
eral types of risk, including availability risk, accep-
tance risk, performance risk, cost risk, and sched-
ule risk. In this study, we focus on reliability-based
risk, which represents uncertainties associated with
the frequency and severity of the failures of software
components. Once the inter-class integration test
order is generated, the sequence of detected faults
is determined. Accordingly, the rate of reduction
in software risk is determined. To illustrate this
situation, consider an example software containing
five classes with three faults. Fig. 1a shows their
dependency relationships, Fig. 1b lists the exposed

locations of the faults, and Fig. 1e describes their
risk index distribution. A higher risk index for a
class means a higher probability of malfunction and
a more serious failure consequence. Having removed
edge < D,E >, we can obtain several solutions to
order classes without stubbing efforts. Suppose that
we place the classes in order A–C–D–E–B to be in-
tegrated. Figs. 1c and 1f show the ratio of detected
faults versus the integration steps and the ratio of to-
tal risk covered by this order. Clearly, all faults have
been detected until the integration in the last class
is complete. The area under the curve represents the
weighted average of the ratio of faults detected dur-
ing the integration process. In this case, the measure
is 50%. Figs. 1d and 1g reflect the scenario in which
the class order is changed to A–B–D–E–C. Based on
this integration solution, faster fault detection and
total coverage rates are obtained. Accordingly, the
test efficiency increases.

Testing high-risk classes early is crucial in the
integration process. In this study, we refer to the
higher-risk classes with higher testing priorities as
test efficiency. According to existing works (Briand
et al., 2002; Abdurazik and Offutt, 2006; da Veiga
Cabral et al., 2010; Vergilio et al., 2012), we con-
sider the test stub complexity metric as a test cost
measure. Different class integration test orders lead
to different fault-detection efficiencies and different
costs of constructing test stubs. An efficient class
integration test order can significantly improve the
test efficiency and reduce the test cost. Therefore,
we propose a strategy to devise an optimal integra-
tion test order that balances the priority of crit-
ical classes (obtained by the risk analysis model)
against stubbing complexity when breaking cycles.
Our insight is that special attention should be paid
to critical classes with high risk indices, which po-
tentially induce bugs and bring severe consequences
to software users. As such, we encode two criteria
in cycle-breaking operations: providing higher prior-
ities to critical classes with higher risk indices, and
minimizing the total complexity of the test stubs.
We have conducted experiments on six open-source
projects and compared their effectiveness with 13
state-of-the-art CITO generation algorithms. The
experiment results showed that our approach out-
performs the baseline approaches for software of dif-
ferent scales. With limited test cost, we can ob-
tain a higher benefit rate in reducing software risk

694 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.20 0.4 0.6 0.8 1.0

Ratio of integrated classes

R
at

io
 o

f d
et

ec
te

d
fa

ul
ts

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.20 0.4 0.6 0.8 1.0

Ratio of integrated classes

R
at

io
 o

f d
et

ec
te

d
fa

ul
ts

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.20 0.4 0.6 0.8 1.0

Ratio of integrated classes

R
at

io
 o

f d
et

ec
te

d
fa

ul
ts

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.20 0.4 0.6 0.8 1.0

Ratio of integrated classes

R
at

io
 o

f d
et

ec
te

d
fa

ul
ts0.40

0.35
0.30
0.25
0.20
0.15
0.10
0.05

0 A B C D E
Integrated class

R
at

io
 o

f d
et

ec
te

d
fa

ul
ts

(e) (f) (g)

(c) (d)(a) (b)

AD
C

E
B

Fault 1

Fault 2
Fault 3

A B C D E

Area=50% Area=70%

Change rate=0.3149Change rate=0.1624

Fig. 1 An illustration of how the CITOs affect the test efficiency: (a) dependency diagram; (b) exposed faults
in classes; (c) average ratio of faults detected for order A–C–D–E–B; (d) average ratio of faults detected for
order A–B–D–E–C; (e) class risk distribution; (f) ratio of total risk covered by order A–C–D–E–B; (g) ratio
of total risk covered by order A–B–D–E–C

compared with other approaches.
The main contributions of this study are sum-

marized as follows:
1. Integration test priority measurements
We propose a multi-layer dynamic execution

network (MDEN) model, which describes the com-
plexity of software structure from multiple dimen-
sions, to quantify the testing priority of each class
based on probabilistic risk analysis.

2. An integration test order strategy to balance
test efficiency and cost

From a cost–benefit perspective, we propose a
strategy to devise an optimal integration test order,
which ensures that higher-risk classes can be tested
earlier (to improve the test efficiency) and minimizes
the complexity of the test stubs (to reduce the test
cost).

3. An evaluation scheme for CITOs
We present a scheme that assesses the effective-

ness of integration test order by comparing the rates
of change in system-level risk due to the integration
steps. With the aid of this measurement, we conduct
a comprehensive comparison with previous studies.

4. A publicly available tool and dataset
We provide a publicly available tool, ITOsolu-

tion, and raw data used in our evaluation to support
further replication and research.

2 Related works

In this section, we briefly review related research
from two perspectives: minimizing the number of
test stubs and the total complexity of test stubs.

2.1 Minimizing the number of test stubs

Kung et al. (1995) first addressed problems in
CITO algorithms and proposed a methodology for
generating integration test orders. First, an OO
software was modeled using object relation diagrams
(ORDs). Second, strongly connected components
(SCCs) in the graph were identified. Third, a ran-
dom strategy was used, rather than heuristic infor-
mation, to remove the edges when there were two or
more candidate associations for cycle breaking. Fi-
nally, the orders were derived by sorting the classes
based on the dependencies among them.

Tai and Daniels (1999) integrated classes based
on their major- and minor-level numbers, whereby
inheritance and aggregation relationships between
classes were determined by the major-level num-
bers, and the minor-level numbers were determined
according to association relationships between the
classes of the same major level. As discussed in
Briand et al. (2003), this solution is sub-optimal in
terms of the required number of test stubs in cases

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 695

where class associations are not involved in cycles.
A graph-based strategy to devise inter-class in-

tegration test orders was proposed by Briand et al.
(2003). The product of the number of incoming de-
pendencies of a node a and the number of outgoing
dependencies of a node b determined the directed
edge weight 〈a, b〉. Then, the association edge in-
volved in SCCs with the greatest weight was removed
to break the cycles. More importantly, this study re-
viewed three main strategies proposed by Tai and
Daniels (1999), Le Traon et al. (2000), and Briand
et al. (2002), providing both analytical and empirical
comparisons based on five case studies.

2.2 Minimizing the total complexity of test
stubs

Briand et al. (2002) presented an approach to
obtain optimal integration test orders by combin-
ing coupling measurements with genetic algorithms
(GAs). First, the coupling measurements were used
to differentiate stubs of varying complexities. Then,
the algorithms can minimize complex cost func-
tions based on such measurements. Tentative re-
sults showed that as dependencies and cycles be-
came more complex, genetic algorithms tended to
produce results that became less consistent with each
execution.

Abdurazik and Offutt (2006) modeled test de-
pendencies among classes using a weighted object
relation diagram (WORD) and used fine-grained in-
formation to estimate stub complexity based on cou-
pling measurements. Edges and nodes were assigned
weights by quantitatively analyzing nine coupling
types that were introduced. Their view was that
if a class is used by multiple classes, all or part of the
stub for that class may be shared among all classes
that use it, thus reducing the cost of stubbing. For
this reason, they assessed the cost of removing nodes
according to node weights.

To optimize CITO, da Veiga Cabral et al. (2010)
used a Pareto ant colony algorithm to produce test
orders, which represented a suitable compromise be-
tween the number of attributes and methods in the
stubbing process. Research has shown that this is a
viable approach and provides better results in com-
plex cases, such as testing software that contains a
large number of dependency cycles.

Vergilio et al. (2012) and Assunção et al. (2014)
introduced a generic approach based on multi-

objective algorithms to solve the CITO problem for
both OO and aspect-oriented contexts. The results
demonstrated that the characteristics of software, in-
stantiation contexts, and number of objectives could
affect the performance of the algorithms. The Pareto
archived evolution strategy (PAES) (Knowles and
Corne, 2000) outperformed the other algorithms,
even for more complex software. Considering all
software and indicators, the non-dominated sorting
genetic algorithm NSGA-II (Deb et al., 2002) is the
most suitable for devising CITOs in most cases.

Jiang et al. (2021) presented an integration test
order strategy considering the inter-class indirect re-
lationships caused by control coupling, and proposed
a novel approach to estimate the complexity of stubs
created for a transitive relationship. They showed
that the results could significantly reduce the stub-
bing cost when generating class integration test or-
ders considering the transitive relationship. How-
ever, they considered only the test cost by control-
ling the stubbing complexity created for a transitive
relationship, while our approach made a trade-off
between test cost and test efficiency.

Our previous work (Wang Y et al., 2018a) aimed
to improve the efficiency of regression testing. We
proposed a risk-based test case prioritization (Ri-
TCP) algorithm based on the transmission of infor-
mation flows among software components. Exper-
iment results indicated that the Ri-TCP technique
has a higher fault detection rate with serious risk in-
dicators than the state-of-the-art regression testing
approaches. Afterwards, we preliminarily applied
the above software risk analysis to the integration
test area (Wang Y et al., 2018b). We first presented
a new strategy for mapping the data flow interactions
into a multi-granular flow network model. Based on
it, we identified critical classes and assigned them
higher test priorities when deriving CITOs. How-
ever, our previous risk analysis model cannot accu-
rately describe the structure and behavioral char-
acteristics of software in the execution process. In
this study, to precisely evaluate risk factors in soft-
ware, we propose an MDEN model, which depicts
the dynamic features of a software program in both
time and space. In addition, we provide a more com-
prehensive scheme to evaluate the effectiveness of
our approach, including a risk distribution analysis
of classes in real-world software, comparison with
13 state-of-the-art CITO generation algorithms, and

696 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

the benefits in testing resource allocation created by
the generated CITOs.

However, prior studies of CITO algorithms con-
sider only stubbing efforts (test cost) while ignoring
the testing priorities of critical classes when gener-
ating CITOs. As a result, they cannot expose soft-
ware bugs quickly. In our work, there is a trade-
off between test cost and efficiency when deriving
CITOs, by introducing the proposed criteria to cycle-
breaking operations: providing higher priorities to
critical classes with higher risk indices, and minimiz-
ing the total complexity of the test stubs. In the
following sections, we provide a detailed description
of the proposed approach and discuss our evaluation
results.

3 Proposed approach

Four fundamental steps are involved in the pro-
posed approach: MDEN model construction, prob-
abilistic risk analysis (PRA) for classes, breaking
cycles, and topological sorting. Fig. 2 gives an
overview of our proposed approach.

3.1 Multi-layer dynamic execution network
model

To identify breakable and unbreakable depen-
dencies, modeling the relationships between classes
is considered an important premise for generating
CITOs (Briand et al., 2003). Three models have
been used in previous work: unified modeling lan-
guage (UML) diagrams, ORD, and test dependency
graph (TDG). ORD is obtained by mapping from

a UML diagram, which contains inheritance, aggre-
gation, and association relationships. These cou-
pling relationships are considered the basis for assess-
ing possible stubbing efforts (Abdurazik and Offutt,
2006). To gain insight into method-level informa-
tion, TDG extends ORD by extracting the details
from the source code. Three types of dependen-
cies are associated with this model: class to class,
method to method, and method to class (Le Traon
et al., 2000).

From the perspective of complex system science,
the software topological structure affects software
functionality, performance, and reliability (Myers,
2003). Software behavior shows a characteristic of
dynamic evolution with the execution of its functions
(Cai and Yin, 2009; Xu et al., 2020). Program be-
havior is essentially the collection of all its execution
traces in different scenarios (Bowring et al., 2004).
The execution traces represent the sequential func-
tion execution paths during runtime, and scenarios
are used to describe the functionality and behavior
of a software program from a user-centered perspec-
tive. Traditional static models cannot accurately
describe the structure and behavioral characteristics
of software in the execution process. To comprehen-
sively evaluate risk factors in software, we propose
an MDEN model that depicts the dynamic features
of a software program in both time and space.

Each entity (method or attribute) defined in a
class is considered a basic execution unit. Moreover,
each action that is manually triggered by users is
treated as an execution scenario. If we represent the
entities as nodes and the dependencies between them

Analyzing the
source code
A
sssossssss

Constructing the
MDEN model

Classes,
entities

Dependencies

Evaluating the threat of
each class

Evaluating the complexity
of each class

Evaluating the consequence
of each class failure

Creating the PRA model
to evaluate the risk
index of each class:

If there are cycles
in the software

If there are cycles
in the software

Generating integration
test order

Finding each strongly
connected component
in the software

Breaking cycles

Reverse topological
sorting

N

Y

1 2 3 4 5 6

() () () ()i i i i() () () ()) () () () ((C C C C

()i
q
C

()i
p

C

()iC

Fig. 2 Overview of our approach

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 697

as directed edges, an execution scenario is equal to
a function profile composed of function execution
traces; hence, a set of function profiles in various
scenarios can be modeled as an MDEN.

Let S be any OO software and Ci any class in
the software; then, S = {C1, C2, · · · , CNC}, where
NC is the number of classes. For any class Ci ∈ S,
Ci = {m1,m2, · · · ,mNMi , a1, a2, · · · , aNAi}, where
mt represents any method defined in class Ci, ak de-
notes any attribute of class Ci, and NMi and NAi are
the numbers of methods and attributes in class Ci,
respectively, each scenario can be treated as a top-
down function execution process triggered by users.
Assume that Vet = {m1,m2, · · · ,m|Vet|} is the func-
tion entry method set; i.e., mi ∈ Vet is the method
whose in-degree is zero and out-degree is greater than
zero in the static method-level dependency network.
We define the MDEN model as follows:

Definition 1 (MDEN) Let network Gi = (Vi, Ei)

be the function execution profile in scenario si, where
Vi denotes the entity set that is directly or indirectly
dependent on the function entry method mi ∈ Vet at
runtime, andEi represents the directed dependencies
among the entities of set Vi. Then, MDEN can be
written as G = {Gi | i ∈ {1, 2, · · · , |V et|}}.

If method mt invokes abstract method mk be-
longing to abstract class Ct, we assume that mt

depends on all concrete methods that implement
method mk, defined in the subclasses of Ct. In this
manner, the dynamic binding mechanism can be de-
scribed in MDEN. Note that we ignore the inherited
entities in subclasses that are not invoked by other
methods. This assumption can help avoid redundant
testing without any negative effect.

As one network layer corresponds to a snapshot
of the software execution process in a scenario, the
degree of overlap of edges between network layers
represents the frequency of continuous execution of
method nodes connected by them. Let mi and mj be
a method pair, and NM be the number of methods
in the software for any i, j ∈ {1, 2, · · · ,NM}, i �= j,
and t ∈ {1, 2, ..., |V et|}. The continuous execution
frequencies of mi and mj satisfy

τ(mi,mj) =
1

|V et|

|V et|∑

t=1

δtij , (1)

where δtij is defined by

δtij =

{
1, if〈mi,mj〉 ∈ Et,

0, otherwise.
(2)

Fig. 3 shows an example software contain-
ing six classes (https://github.com/FanyiMeng-
NEU/Class-Example). Five functions exist in
the software: menu initialization (InitializeMenu.
main(String[])), goods purchase (OrderService.
buy(Goods, String)), order details display (Or-
derService.ShowOrderDetails(Order)), goods distri-
bution (Distribution.distributeOrder(String)), and
goods comment submission (Goods.SubmitGoods-
Comments(String, String, Order)). The correspond-
ing MDEN model of the sample code is shown in
Fig. S1 (see supplementary materials for Figs. S1–
S6).

For example, once the function entry Submit-
GoodsComments(String, String, Order) is triggered
by users, entities Goods.setComments(String), Or-
der.getGoods(), and OrderService.orders are exe-
cuted. Then, entities Order.goods and Goods.
comments are used by Order.getGoods() and
Goods.setComments(String), respectively. The
above scenario is expressed in layer 1. Similarly,
the other function profiles can be obtained by map-
ping the execution traces into method-level network
layers. From Fig. 3, we can observe the structural re-
lationships between modules and their execution se-
quences. In particular, edge Order.getOrderNO() →
Order.orderNO appears in three network layers, lay-
ers 2, 3, and 5. Thus, we say that the continuous ex-
ecution frequency of methods Order.getOrderNO()
and Order.orderNO is 0.6.

Compared with existing models, the main im-
provements effected by MDEN are as follows:

1. Software is depicted at a more fine-grained
level. Five types of coupling relationships between
methods, attributes, and classes are taken into con-
sideration: class to class, method to method, method
to class, class to attribute, and method to attribute.
Moreover, the details of dynamic execution scenarios
can be mapped into function profiles.

2. In Le Traon et al. (2000)’s approach, the no-
tion of weight is defined on classes, aimed to capture
the number of cycles in which the nodes are involved.
However, the aim of assigning weights to the nodes
and edges based on information transmission details
within the MDEN model is to estimate the execution

698 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

Fig. 3 The multi-layer dynamic execution network (MDEN) model for the sample code

probability, the complexity, and the consequence to
the software if the nodes fail.

3.2 Probabilistic risk analysis model

In economics, PRA defines risk R as the product
of threat T , complexity V , and consequence C, i.e.,
R = T ×V×C (Al Mannai and Lewis, 2008). T is the
probability of a component or asset being attacked
or stressed, V is the failure probability of a compo-
nent or asset under attack, and C is the financial or
fatality consequence if a failure occurs. The PRA
model provides useful means for identifying poten-
tially troublesome classes that require higher prior-
ity and effort during the integration test process. We
define the heuristic risk indices of classes as a combi-

nation of three factors: likelihood of being executed,
malfunction probability, and failure consequence. A
formalized definition of the risk factor is as follows:
T (Ci) is the probability of code within class Ci be-
ing executed dynamically; V(Ci) is the complexity of
class Ci; C(Ci) is the failure consequence of class Ci,
i.e., the expected damage to the software caused by
class Ci. Then, R(Ci) = T (Ci)× V(Ci)× C(Ci).

The higher the risk index of a class, the more
error-prone the class is; thus, more severe software
damage is caused when it fails. If we assign higher
priorities to critical classes with higher risk indices,
the software reliability and test efficiency are also
improved.

1. Threat T (Ck)

In any function profile Gi ∈ G, let Pi =

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 699

{pi1, pi2, ..., pi|Pi|} be the execution trace set from the
entry to the exit methods, function gi(mt) the num-
ber of paths passing through method mt, and f(si)

the execution probability of scenario si. Then, the
execution probability of method mt in Gi is equal
to the ratio of gi(mt) to the total number of execu-
tion paths in set Pi; f(si) can be estimated as the
frequency at which scenario si is covered by the test
cases in the test case suite. Furthermore, the execu-
tion probability of class Ck is defined as the average
execution probability of all methods belonging to the
class in different scenarios:

Tk(mt) =

|Vet|∑
i=1

ϕi(mt) · f(si)

NM∑
t=1

|Vet|∑
i=1

ϕi(mt) · f(si)
, (3)

ϕi(mt)=gi(mt)/|Pi|, (4)

T (Ck) =
1

NMk

Nk∑

t=1

Tk(mt). (5)

2. Complexity V(Ck)

We analyze the complexity of the class from two
perspectives: complexity within the class, and com-
plexity caused by the dynamic coupling relationships
between classes. Dynamic coupling relationships de-
note the activities of the invocations between con-
nected class pairs. Let the complexity V(Ck) of class
Ck be the average failure rates of all methods de-
fined in the class itself. For any method mt in the
software, the failure of the method may be caused
by its own complexity, or by exceptions returned
from other dependent methods. In other words, in
a function profile, the failures of all nodes that are
reachable by method mt can lead to an exception
for method mt. Let Qt = {m1,m2, · · · ,m|Qt|} be
the method set of directly or indirectly reachable
methods mt, S the sample space of failure reasons,
and EA = {Am1 , Am2 , · · · , Am|Qt| , Amt} a complete
event group, where event Ami represents the failure
of method mi ∈ Qt at some point, which is caused
by its own complexity. Then, all events in EA are
independent of one another. Moreover, as all meth-
ods are executed in order based on the invocations
between them, no event pairs occur simultaneously
in a scenario, i.e.,

(1) Ami ∩ Amj = ∅, mi,mj ∈ Qt, i �= j;
(2) Am1 ∪ Am2 ∪ · · · ∪Am|Qt| ∪ Amt = S.

According to Bayes’ total probability formula
(Walters and Ludwig, 1994), the complexity of
method mt can be calculated by

μ(mt) =

|Qt|∑

i=1

μ(mt|Ami)μ(Ami)+μ(mt|Amt)μ(Amt),

(6)
where prior probability μ(Ami) represents the com-
plexity of method mi due to its own complexity, and
posteriori probability μ(mt|Ami) denotes the com-
plexity of method mt introduced by the exception of
method mi. Thus, μ(mt|Amt) = 1. We discuss the
definitions of μ(Ami) and μ(mt|Ami) below:

(1) The Halstead model (Lipow, 1982) is
adopted to measure the failure rate of method mk,
which is defined as

μ(Amk
) =

Bk

|NM|∑
i=1

Bi

=
VLk/3000

|NM|∑
i=1

(VLi/3000)

=
Nk log 2(ηk + ϕk)

|NM|∑
i=1

Ni log 2(ηi + ϕi)

,

(7)

where Bk is the number of faults in method mk,
VLk is the code volume of method mk, Ni is the
total usage of all operators and operands appearing
in the implementation, and ηi and ϕk represent the
numbers of unique operators and operands in the
code, respectively. Note that in our study, all con-
stants and variables defined in classes are considered
operands, and operators consist of arithmetic, logi-
cal, and relational operational symbols.

(2) Suppose that pti = mt → m1 → m2 →
· · · → mlti → mi is the shortest path from method
mt to method mi in static software topology, and
that lti denotes the number of nodes passed by path
pti (except methods mt and mi); as such, posteriori
probability μ(mt|Ami) is given by

μ(mt|Ami) = τ(mt,m1)τ(m1,m2) · · · τ(mlti ,mi).

(8)
According to Eq. (8), the complexity of class Ck

satisfies

V(Ck) =
1

NMk

Nk∑

i=1

μ(mi). (9)

We adopt Floyd (1962)’s algorithm to search
for all shortest paths between all method pairs,
and the time complexity of the entire process is
O(NM3).

700 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

3. Consequence C(Ck)

Software execution is equivalent to the exchange
of information flows between methods (Henry and
Kafura, 1981). Under normal working conditions,
we denote the total information flows transmitted in
the network layer by Gt = (Vt, Et), corresponding
to scenario st as E(Gt). More precisely, E(Gt) is
the sum of communications between methods in Gt.
Let υt(mi,mj) be the number of paths passing the
directed edge 〈mi,mj〉 in execution trace set Pt =

{pt1, pt2, ..., pt|Pt|}, where mi,mj ∈ Vt and 〈mi,mj〉 ∈
Et. Then, we have

E(Gt) =

NM∑

i=1

NM∑

j=1

υt(mi,mj). (10)

According to the NASA-STD-8719.13A stan-
dard (Goseva-Popstojanova et al., 2003), risk sever-
ity considers the worst-case consequence of a failure
determined by the degree of software damage and
mission loss that can ultimately occur (NASA, 1999).
In our study, we suppose that if method mk fails, the
faults will be propagated via invocation relationships
to the other methods in network layer Gt. In other
words, the failure of method mk leads to the block-
ing of information flows; therefore, the loss of flows
can be treated as the failure consequence of method
mk in this scenario. Suppose that Gk

t= (V k
t , E

k
t) is

the failure network caused by method mk in sce-
nario st, obtained by removing mk as well as all
nodes and edges that can help reach mk from net-
work Gt. Clearly, in scenario st, Ct(mk) is the differ-
ence in information flows between networks Gt and
Gk

t . Let E(Gk
t) be the residual information flows in

failure network Gk
t , P k

t = {pkt1 , pkt2 , ..., pkt|Pk
t |} the ex-

ecution trace set working well in Gk
t , and υk

t (mi,mj)

the number of paths passing through the directed
edge 〈mi,mj〉 in set P k

t , where mi,mj ∈ V k
t and

〈mi,mj〉 ∈ Ek
t . As shown in Eq. (11), the failure

consequence of class Ck can be defined as the average
failure consequence of all methods belonging to the
class in different scenarios:

C(Ck) =
1

NMk

NMk∑

t=1

C(mt) =
1

NMk

NMk∑

t=1

|V et|∑

i=1

Ci(mt)

=
1

NMk

NMk∑

t=1

|Vet|∑

i=1

(
E(Gi)− E(Gt

i)
)
/E(Gi),

(11)

where

E(Gt
i) =

NM∑

i=1

NM∑

j=1

υk
t (mi,mj). (12)

We employ the MDEN model in Fig. 3 as an
example to further illustrate the risk analysis. Ta-
ble 1 lists the statistics of class risk indices in sam-
ple code. From the threat perspective, class Or-
derService containing nine entities is executed in all
five scenarios. In particular, attribute OrderSer-
vice.orders appears in three network layers, layers 1,
2, and 5, and there are seven execution traces pass-
ing through method OrderService.addOrder(Goods,
String) in layer 5. As a result, the execution proba-
bility of class OrderService is relatively high. For the
complexity, class OrderService contains 10 operators
and five operands used by other classes a total of 156
times. In particular, because it depends on a rela-
tively complex class Order, the incoming complexity
results in an increase in its own complexity. For fail-
ure consequence, methods Order.getOrderNO(), Or-
der.orderNO, and Order.orderStatus appear in three
scenarios. Of these, the failure of Order.getOrderNO
leads to a 67%, 71%, and 35% loss in the information
flows in layers 2, 3, and 5, respectively. A compre-
hensive comparison indicates that class Order ranks
first in failure consequence. As the threat, complex-
ity, and failure consequences of class OrderService
are all relatively high in the software, the class should
be assigned a higher test risk index.

In our study, the PRA model is regarded
as a flexible framework for identifying potentially
troublesome classes that require higher priority and
effort during the integration test process. The pro-
posed approach is not an exclusive one for quanti-
fying three indexes of the PRA model. Specifically,
the complexity index V(Ck) of the model can be re-
placed with other effective metrics to quantify the
complexity of each class, such as cyclomatic com-
plexity (Bang et al., 2015; Weyuker, 1988).

Table 1 Statistics of class risk indices in sample code

Class T (Ci) V(Ci) C(Ci) R(Ci)

Store 0.0315 0.1310 0.0933 0.0107
InitializeMenu 0.1205 0.1000 0.0810 0.0272
OrderService 0.3131 0.5341 0.1417 0.6601
Distribution 0.1205 0.0244 0.2644 0.0217
Order 0.2629 0.1104 0.2671 0.2160
Goods 0.1515 0.1000 0.1524 0.0643

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 701

3.3 Algorithm for generating CITOs

To reduce software risk and improve reliabil-
ity, the test effort should be focused on classes with
higher risk indices. In this subsection, we propose a
strategy for generating CITOs, which assigns higher
priorities to higher-risk classes while guaranteeing
that the total test stub complexity is minimized. In
this manner, we can detect and correct bugs as early
as possible, reduce expenses, and improve software
quality.

3.3.1 Complexity measurements for test stubs

A stub is a placeholder that implements the nec-
essary partial functionality of a class for its compila-
tion and integration (Sharma and Sibal, 2013). Sup-
pose that class Ci is dependent on Cj . Then, we
should simulate an object of Cj for class Ci in a sce-
nario in which Ci is being tested when Cj has not
yet been tested. The simulated object is considered a
stub and written as Stub(Ci, Cj), which is composed
of the attributes and methods invoked by class Ci.
However, stub construction is treated as an expen-
sive and error-prone operation. Moreover, the costs
of stub construction can be evaluated based on the
following measurements proposed by Briand et al.
(2002) to control the total test efforts:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

SCplx(Ci, Cj)

=

√
α · ZA(Ci, Cj)

2
+ β · ZM(Ci, Cj)

2
,

ZA(Ci, Cj) =
ZA(Ci,Cj)

ZAmax−ZAmin
,

ZM(Ci, Cj) =
ZM(Ci,Cj)

ZMmax−ZMmin
,

(13)

where Ci, Cj ∈ S, i �= j, α + β = 1, SCplx(Ci, Cj)

represents the complexity of the test stub used to
simulate the behaviors of Cj relative to Ci’s depen-
dencies, ZA(Ci, Cj) denotes the number of attributes
belonging to class Cj and accessed by class Ci,
ZM(Ci, Cj) is the number of methods defined in class
Cj invoked by class Ci, and ZAmax, ZAmin, ZMmax,
and ZMmin represent the maximum and minimum
values of ZA(Ci, Cj) and ZM(Ci, Cj), respectively.
In other words, ZA(Ci, Cj) and ZM(Ci, Cj) are the
normalization values of ZA(Ci, Cj) and ZM(Ci, Cj),
respectively.

3.3.2 Integration test order

The goal of generating integration test order is
to ensure that when one class is tested, most classes

that depend on it have also been tested. The reverse
ordering of classes based on the direction of relation-
ship between classes can help reduce the number of
test stubs and guarantee the completeness of inte-
gration testing. All cycles composed of class rela-
tionships can be found according to the topology of
the class-level network. To obtain an acyclic depen-
dency network, we should break the cycles by re-
moving edges from the software. Once a dependency
has been broken, a test stub should be constructed
(Huang and Lyu, 2005).
Definition 2 (Class-level dependency network) By
merging the network layers in |Vet| scenarios, a com-
plete method-level network Gm = (V m, Em) can be
obtained, which satisfies V m = V1 ∪ V2 ∪ ... ∪ V|V et|.
Furthermore, if we shrink all entities in a class into
one node and merge all relationships between a class
pair into one edge, the class-level dependency net-
work Gc = (V c, Ec) is formed.
Definition 3 (Dependent path) Suppose that SV
is a collection of nodes with an in-degree of zero and
an out-degree greater than zero, and that EV is a
collection of nodes with an in-degree greater than
zero and an out-degree of zero. For any class Ci ∈
SV, class Cj ∈ EV, i ∈ {1, 2, · · · , |SV|}, and j ∈
{1, 2, · · · , |EV|}, if there is a path pij from Ci to Cj

in the software, pij is defined as a dependent path
between Ci and Cj .
Definition 4 (Dependent depth) Suppose that
class C1 ∈ SV, class Cn ∈ EV, and dependent path
pij = C1 → C2 → · · · → Ck → · · · → Cn−1 → Cn;
then, the dependent depth of Ck satisfies Dk = |n−
k|+ 1.
Definition 5 (Maximum dependent depth) Sup-
pose that there are q dependent paths passing
through class Ck, and that Dki is the depen-
dence depth of Ck along the ith dependent path,
k ∈ {1, 2, · · · , |Vc|}, and i ∈ {1, 2, · · · , q}; then,
the maximum dependence depth satisfies Dk

max =

max{Dk1, Dk2, · · · , Dkq}.
Let Ψij = {cp1, cp2, · · · , cp|Ψij |} be the cycle set

passing directed edge 〈Ci, Cj〉 in class-level depen-
dency network Gc. If edge 〈Ci, Cj〉 is removed from
cpt ∈ Ψij , we obtain a directed path ptji = Cj →
Ck → · · · → Cr → Ci. Suppose that Ot is the test
order devised by sorting classes along path ptij ac-
cording to their topologies, and that O′

t is the test
order generated by sorting classes in descending or-
der in ptij based on their risk indices. When removing

702 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

〈Ci, Cj〉 from cpt, SCplx(Ci, Cj) can be considered
the test cost, and the degree of high-risk classes be-
ing integrated preferentially, denoted by PRt, can be
treated as a test benefit. As a result, using cost–
benefit analysis, the benefit rate of removing edge
〈Ci, Cj〉 is quantified as follows:

Bftij =
PRt

SCplx (Ci, Cj)
. (14)

Here, PRt is equal to the ratio of the degree of “high-
risk class being tested first” in order Ot to that of
order O′

t, calculated by

PRt =

rt∑

k=1

2(rt − k + 1)ROt

k

rt(rt + 1)

rt∑
n=1

2(rt − n+ 1)RO′
t

n

rt(rt + 1)

, (15)

where rt represents the number of classes in cycle
cpt, ROt

k is the risk index of the class ranked kth in
order Ot, and RO′

t
n denotes the risk index of the class

ranked nth in order O′
t.

All cycles must exist in the SCCs of the di-
rected graph (Kung et al., 1995). For this reason, be-
fore performing cycle-breaking operations, we should
weigh each edge within the SCCs detected in the
class-level dependency network. Let weight Wij of
edge 〈Ci, Cj〉 be the maximum benefit value of being
removed from all cycles passing through it. Thus,

Wij = max{Bf1ij ,Bf2ij , ...,Bf
|Ψij|
ij }, (16)

where Wij denotes the maximization of the cycle-
breaking operation benefit rates.

Cycle-breaking operations determine the com-
plexity of constructing test stubs (test cost) and the
priority of high-risk classes to be tested (test effi-
ciency). In our strategy, we encode two criteria in
cycle-breaking operations to balance test cost and
test efficiency using the benefit rate Bftij defined in
Eq. (14): providing higher priorities to critical classes
with higher risk indices, and minimizing the total
complexity of the test stubs.

The steps for the strategy in generating CITOs
are as follows:

(1) Merge all network layers in the MDEN model
G; then, obtain class-level dependency network Gc =

(V c, Ec).
(2) Use Tarjan’s algorithm to traverse all nodes

in network Gc; then, a collection of the SCC can be

found, where SCC = {sc1, sc2, · · · , sc|SCC|}. Accord-
ing to the definition of SCC, all cycles must exist in
the SCC of the directed networks.

(3) For each sci ∈ SCC, we repeat steps i and ii:

i. Find and record all cycles in sci, and assign
a weight to each edge of each cycle according to
Eq. (16).

ii. By adhering to the following principles, we
remove edges from the network to break cycles:

(a) If there is only one edge 〈Ci, Cj〉 with the
greatest weight in the network, 〈Ci, Cj〉 is deleted.

(b) If there is more than one edge with the great-
est weight, we delete the edge 〈Ci, Cj〉, whose corre-
sponding Stub(Ci, Cj) has lower complexity.

(c) If there is more than one edge with the great-
est weight, and the test stub complexity values cor-
responding to all edges are equal, the edge whose
starting node has the highest risk index is removed.

(d) When there are no more cycles in sci, stop
the operation of removing edges.

(4) Traverse all nodes in the network and calcu-
late their maximum dependent depths. The nodes
with the same Dk

max are sorted by their risk indices
in descending order, while the other nodes are sorted
by their Dk

max values in ascending order. Finally, we
obtain the inner-class integration test order Otest.

Take SCC1 = {OrderService,Goods,Order}
as an example, which contains three cycles,
i.e., OrderService → Goods → OrderService,
Order → Goods → Order, and OrderService →
Order → Goods → OrderService. From the
statistics in Table 2, we can see that remov-
ing edge 〈Order,Goods〉 requires the minimal
effort to boost the priority of class Order with
a higher index, thereby obtaining larger gains.
Compared with Stub(OrderService, Goods),
constructing Stub(Goods, OrderService) incurs
lower costs. However, we ultimately eliminate
edge 〈OrderService,Order〉 to guarantee that
higher-risk class OrderService is tested earlier.
As shown in Fig. S2, by topologically sort-
ing classes in the acyclic network, test order
Order → OrderService → Goods → Distribution →
Store → InitializeMenu is naturally devised.

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 703

Table 2 SCC statistics in the example software

Edge〈Ci, Cj〉 ω(Ci, Cj) SCplx(Ci, Cj) Bf NMNA

〈Order,Goods〉 2 0.02 0.5394 1 0
〈OrderService,Goods〉 1 0.18 0.1832 3 0
〈Goods,OrderService〉 2 0.02 0.1607 1 0
〈OrderService,Order〉 1 0.32 0.1031 4 0
〈Goods,Order〉 1 0.24 0.0136 1 0

4 Evaluation model

4.1 Strategy for optimizing the allocation of
testing resources

Focusing the testing on critical classes by opti-
mally allocating testing resources can be considered
a mitigation strategy for software risk (Huang and
Lyu, 2005). As test costs rise, the failure probabil-
ity of classes is reduced accordingly. Intuitively, if a
component has been comprehensively tested, the risk
associated with its use should be less than the one
that has not been well tested (Frankl and Weyuker,
2000). To improve the efficiency of integration test-
ing, we propose a scheme for allocating testing re-
sources to classes based on their test benefit rates in
risk reductions; i.e., greater test efforts should be fo-
cused on high-risk classes while less effort should be
invested in low-risk ones. However, software failure
probability can be eliminated only by an infinitely
long testing; thus, the exponential function is appli-
cable in representing the software reliability growth
model. In our study, we extend the fault-discovery
model (Monden et al., 2013) to express the cumula-
tive magnitude of software risk reduction after the
first N̂ classes in the test order have been tested
during the integration process:
⎧
⎪⎨

⎪⎩
R′

N̂
=

N̂∑
i=1

T (Ci)C(Ci)V(Ci)(1− e−θiDAi),

θi = b0/Si, DAi = φiDA
max
i ,

(17)
where N̂ is the total number of classes that have been
tested, θi is the ease coefficient of detecting faults in
class Ci per unit effort, b0 is a constant, Si is the
size of class Ci, DAi is the test resource allocated to
class Ci, DAmax

i is the test resource demand for fully
testing class Ci, and φi is the ratio of DAi to DAmax

i .
We suppose that the maximum test cost DAmax

i

of class Ci is proportional to the number of its enti-
ties and the complexity of test stubs constructed for
class Ci (i.e., the larger the class size, the higher the
test cost). Let μ represent the cost of testing each

entity, including the time, test cases, and manpower
expended on it; then we obtain

DAmax
i = μ(|Ci|+ Stubi), (18)

where Stubi is the number of entities in stubs sim-
ulated for the use of class Ci. If there is no need to
construct stubs for class Ci, Stubi = 0. Furthermore,
after the first N̂ classes of the test order have been
tested, the ratio of the magnitude of the remaining
risks in the software to the total risk satisfies

�N̂ = 1−
R′

N̂

R|V c|
, (19)

where R|V c| represents the total risk of all classes in

the software, and R|V c| =
|V c|∑
i=1

T (Ci)C(Ci)V(Ci).

If adequate test resources are allowed for each
class, the reduction in the total risk to the software
after testing all classes in order can be quantified as

R′
|V c| = R|V c|

·

⎛

⎜⎜⎜⎜⎝
1− exp

⎛

⎜⎜⎜⎜⎝
− b0

|V c|∑
t=1

Stμ

(
|V c|∑
i=1

Si +
Ns∑
k=1

|Stubk|
)

⎞

⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎠
,

(20)
whereNs denotes the total number of established test
stubs. Consequently, we obtain a rough estimate of
b0 · μ as

b0 · μ = −
ln

(
1−

R′
|V c|

R|V c|

)

1 +
Ns∑
k=1

|Stubk|
/

|V c|∑
i=1

|Si|
. (21)

In our study, the value of R′
|V c|
/
R|V c| is set to

0.99. In other words, we assume that software risk
decreases by 99% after all classes have been fully
tested.

Let Φ be the reduction in the overall software
risk when integration testing is complete. Then, we
have

Φ = R′
|V c|. (22)

We need to optimize the allocation of testing

704 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

resources to each class, which satisfies
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max{Φ}
= max{R′

|V c|}
= max

{∑|V c|
i=1 T (Ci)C(Ci)V(Ci)

(
1− e−θiDAi

)}
,

|V c|∑
i=0

DAi = B0, 0 ≤ DAk ≤ DAmax
k ,

(23)
where B0 represents the total test cost allocated to
all classes in the software. To maximize the test
benefit rates, the following two principles should be
observed upon allocation:

(1) Consider the expected risk reduction cre-
ated by each class as a benefit. Moreover, treat the
required test efforts as costs.

(2) With limited resources, try to satisfy the
needs of classes with higher benefit rates while test-
ing the others less comprehensively.

Then, the test benefit rate of class Ck can be
quantified by the ratio of benefit to cost:

γk=
R(Ck)

DAmax
k

=
R(Ck)

μ(|Ck|+ Stubk)
. (24)

Assume Oγ denotes the sequence of classes in
descending order of their test benefit rates γk. To
reduce software risk as quickly as possible, we allo-
cate the maximum required resource DAmax

k to the
top-ranked classes following the order in Oγ , until the
remaining cost is lower than the maximum needed re-
source DAmax

i of the given class Ci. Then, as shown
in Eq. (25), the residual budgets are equally assigned
to classes whose test benefit rates are lower than that
of class Ci:

DAi =

⎧
⎨

⎩

DAmax
i , if B′ ≥ DAmax

i ,
B′

|V c| − i+ 1
, otherwise,

(25)

where B′ is the residual budget after testing the top
i − 1 classes in order Oγ . Let i be the ranking of
classes in Oγ ; then, we have

B′ = B0 −
i−1∑

t=0

DAi−1. (26)

4.2 Rate of risk reduction

Once the top i − 1 classes of order Otest have
been tested, the ratio of residual software risk is

�i = 1− R′
i

R|V c|
. (27)

According to the mapping relationships between
the number of classes having been tested i ∈ V c and
the residual software risk �i, the rate of reduction
in software risk can be calculated using the least
squares method (LSM):

R�i =

i∑
t=1

t2
i∑

t=1
�2

i −
i∑

t=1
t

i∑
t=1

�i

i
i∑

t=1
t2 −

(
i∑

t=1
t

)2 . (28)

Under the condition of controlling the total com-
plexity of the test stubs, a more efficient integration
test order leads to a lower residual amount and a
higher rate of reduction in software risk. As a re-
sult, both Φi and RΦi can be considered evaluation
criteria for integration test orders.

4.3 Fault detection efficiency of integration
test order

The cost-cognizant metric, average percentage
of faults detected per cost (APFDc), has been pro-
posed to evaluate the effectiveness of test case pri-
oritization techniques in detecting faults (Goseva-
Popstojanova et al., 2003). To assess the fault-
detection efficiency of the integration test orders ob-
tained by our strategy, we redefine APFDc based on
the risk severity of classes and stubbing efforts:

APFDr =

∑|F|
i

(
sfi

(∑|V c|
j=TFi

ctj − 1
2ctTFi

))

∑|V c|
i=1 cti

∑|F|
i=1 sfi

.

(29)

F = {f1, f2, · · · , f|F|} represents the set of
faults that exist in the software, where |F| is the
total number of faults in F . sfi is the severity of any
fault fi ∈ F . If class Ct ∈ V c contains fault fi, sfi is
equal to the risk index of Ct. cti is the test cost of
integrating the ith class into the test order. Suppose
that cti is the complexity of the test stub established
to integrate the ith class. If the ith class can be in-
tegrated directly, cti = 0. TFi is the ranking of the
class containing fault fi ∈ F in the test order.

Clearly, the value of APFDr ranges from 0 to 1.
For an integration test order, a higher APFDr value
corresponds to a more efficient detection of severe
faults.

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 705

5 ITOsolution tool

The proposed methodology has been imple-
mented as a tool called ITOsolution (runnable
JAR file: https://github.com/FanyiMeng-NEU/
ITOsolution-Runnable-Jar), which can automati-
cally provide integration test order solutions using
cost–benefit analysis. ITOsolution integrates De-
pendencyFinder (http://depfind.sourceforge.net/)
to analyze the source code of Java projects
and employs the Prefuse visualization toolkit
(http://prefuse.org/) to display the multi-layer
dynamic execution network model mapped from
software. Fig. S3 shows the main features (Demo:
https://www.bilibili.com/video/BV1Ty4y1L7KP)
of ITOsolution. For a software program under test,
ITOsolution can construct its corresponding MDEN
model (Fig. S3a), derive a risk distribution diagram
(obtained based on the PRA model) (Fig. S3b),
provide the intermediate results of cycle-breaking
operations (Fig. S3c), and give the reduction curve
during integration (Fig. S3d):

1. ITOsolution requires byte-code files and
source code files of the software under test as in-
puts. The byte-code files allow the abstract syntax
tree of code to be obtained. Scanning the source
code files, the operators and operands of source
code can be extracted to evaluate their complexity
based on Halstead measurements. Furthermore, as
shown in Fig. S3a, the MDEN model is generated
automatically.

2. Fig. S3b shows the tooltip of the risk distri-
bution diagram of the example code.

3. By removing the edges, which creates more
integration test benefits, the tool eliminates all the
cycles from the software, as shown in Fig. S3c. Then
the established test stubs are listed in the table (pro-
vided by the tool). By default, the coefficients α and
β defined in Eq. (13) are set to be 0.5. This means
that the testers need to make the same effort to emu-
late the attributes and methods in test stubs. How-
ever, there is an additional function to allow users
to adjust the parameters according to their prefer-
ences. More importantly, users can save the raw data
such as the class diagram, class dependency matrix,
attribute coupling matrix, and method coupling ma-
trix, for further replication and research purposes.

4. After the CITO solution is devised, the tool
automatically generates the software risk reduction

curve due to the integration steps (as shown in
Fig. S3d). In this manner, the user can easily as-
sess the results.

6 Experimental analysis and discussion

6.1 Research questions and experimental
design

The probabilistic risk analysis for classes deter-
mines their integration test priorities. In the eval-
uation, we should first analyze the risk distribution
of all classes in open-source software, to understand
how effective the proposed risk analysis model is in
evaluating the threat, failure probability, and failure
consequence of each class (RQ1). Furthermore, as
discussed in Section 2, several algorithms have been
proposed to generate CITOs with minimized stub-
bing efforts. Therefore, we should consider them as
baseline approaches to evaluate the effectiveness of
our approach (RQ2). In addition, because our ap-
proach is proposed based on cost–benefit analysis,
we should verify whether the scheme for allocation
of testing resources is meaningful during the test-
ing process (RQ3). Under the condition of control-
ling test costs, a more efficient integration test order
leads to a lower residual amount and a higher rate of
reduction in software risk.

To address the above concerns, we design three
research questions:

RQ1: Does the proposed risk analysis model ef-
fectively identify critical classes for integration test?

RQ2: Compared with other approaches, what
are the advantages of the proposed strategy in gen-
erating CITO?

RQ3: From the perspective of test costs and
benefits, does the scheme for allocation of testing
resources really make sense?

We selected subjects according to the following
two criteria:

1. To evaluate the effectiveness of our strategy,
six projects, namely, DNS 1.2.0 (http://www.xbill.
org/dnsjava/), ANT 1.9.4 (http://ant.apache.org/)
BCEL 5.0 (http://commons.apache.org/proper/
commons-bcel/), Jmeter 1.8.1 (http://jakarta.
apache.org/jmeter), Xml-security 1.0.5D2 (http://
xml.apache.org/security), and Joda-time 2.8.2
(http://github.com/JodaOrg/joda-time) were used
as experiment subjects. They differed in size,

706 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

complexity, and application domain, which ensures,
to some extent, the generalization of the conclu-
sions we obtained in this study. Existing approaches
(Briand et al., 2002, 2003; da Veiga Cabral et al.,
2010; Jiang et al., 2011, 2021) also adopted the above
six subjects, and provided the corresponding gener-
ated integration test orders. Following the related
works to select these experiment subjects can facil-
itate discussion and comparison of the experiment
results.

2. To evaluate the fault-detection efficiency of
the proposed risk analysis model, we considered
only the open-source projects Jmeter, Xml-security,
and Joda-time as subjects, because they have pub-
licly accessible issue trackers that allow us to iden-
tify real bugs, whereas the three other projects are
closed-source ones that contain limited information
for evaluation. The first two projects were obtained
from the Software-artifact Infrastructure Repository
(SIR) (http://sir.unl.edu/), and the third from its
own repository.

Table 3 describes the demographics of these
six subjects (raw data: https://github.com/Fanyi
Meng-NEU/Experimental-Objects); their corre-
sponding class-level dependency networks are shown
in Fig. S4. Combining Table 3 with Fig. S4, we
provided the statistics of our experiment subjects.
We can tell that the six selected subjects differed in
size (the number of classes ranged from 25 to 285)
and complexity (the number of cycles varied from 16
to 416 091). Thus, we could evaluate the algorithm
from different perspectives including size, complex-
ity, and cycle density.

To address RQ1, we used the total risk indices of
classes covered by test cases to guide the scheduling
of their execution order, and then compared them
with seven state-of-the-art test case prioritization
techniques based on the measurement of severe-fault
detection efficiency.

Table 3 Statistics of the experiment subjects

Software |Vc| |Ec| Nc Nf Fault type Nts

Jmeter 1.8.1 285 709 105 11 Seeded 26
Xml-security 1.0.5D2 219 776 977 10 Seeded 18
Joda-time 2.8.2 156 713 5536 15 Real 133
DNS 1.2.0 61 276 16 – – –
ANT 1.9.4 25 83 654 – – –
BCEL 5.0 45 294 416 091 – – –

|Vc| denotes the number of classes. |Ec| denotes the number
of edges between classes. Nc, Nf , and Nts denote the total
numbers of cycles, faults, and test cases, respectively

To address RQ2, we compared the CITO re-
sults of the six software programs obtained by our
algorithm with those generated by the approaches
of Tai and Daniels (1999), Le Traon et al. (2000),
Briand et al. (2002, 2003), Abdurazik and Offutt
(2006), Jiang et al. (2011), and Assunção et al. (2014)
from multiple perspectives. The above state-of-the-
art CITO generation algorithms were considered as
baselines, because we can use the same stubbing
complexity metric SCplx(Ci, Cj) defined in Eq. (13)
to evaluate their test costs. Such a metric is not
applicable to the approach proposed by Jiang et al.
(2021), which considered the inter-class indirect rela-
tionships caused by control coupling. All simulations
were performed on a personal computer in the follow-
ing hardware environment: 3.7 GHz CPU, 12 GB
memory, and a 1 TB HDD. The software operating
environment was Windows 8.1 and the compiler plat-
form was Eclipse 4.5.0. Note that Tai and Daniels
(1999), Le Traon et al. (2000), and Briand et al.
(2003)’s strategies aim to minimize the number of
test stubs, and that Briand et al. (2002), Abdurazik
and Offutt (2006), Jiang et al. (2011), and Assunção
et al. (2014)’s algorithms devise integration test or-
ders to minimize the total test stub complexity.

6.2 Case studies for RQ1

6.2.1 Risk distribution of the software

The proposed ITOsolution tool can extract cou-
pling relationships between classes from an OO
software program and automatically construct the
MDEN model. Using this, we analyzed the source
codes of Jmeter, Xml-security, and Joda-time. Fur-
thermore, as shown in Fig. S5, the probability den-
sity distribution of risk indices in the three software
programs were derived by risk analysis based on the
PRA model. Table 4 lists the normalized statistical
results of the risk indices, threat, complexity, and
consequence of all classes. Here, Rmax, Rmin, Rmed,
Tmax, Tmin, Tmed, Vmax, Vmin, Vmed, Cmax, Cmin, and
Cmed are the maximum, minimum, and median val-
ues of R(Ci), T (Ci), V(Ci), and C(Ci), respectively,
and NL represents the number of dynamic execution
network layers in the MDEN model mapped from
the software.

From Fig. S5, we can see that few classes in
the three software programs had high-risk indices.
Taking the Jmeter software program as an example,

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 707

Table 4 Statistics of the risk factors

Factor Jmeter Xml-security Joda-time

NL 52 124 333
Rmax 0.1509 0.1091 0.1573
Rmin 6.70× 10−10 1.50× 10−8 0.0017
Rmed 0.0033 0.0042 0.0065
Tmax 0.0517 0.0277 0.1811
Tmin 2.23× 10−4 3.64× 10−4 2.36× 10−6

Tmed 0.0035 0.0046 0.0064
Vmax 0.0291 0.0258 0.0656
Vmin 3.29× 10−6 1.82× 10−5 3.52× 10−4

Vmed 0.0031 0.0040 0.0057
Cmax 0.0382 0.1140 0.1926
Cmin 3.04× 10−5 7.14× 10−5 2.65× 10−6

Cmed 0.0032 0.0039 0.0045

the risk indices of its classes were distributed in the
interval [6.70× 10−10, 0.1509]. Of these, there were
19 classes whose risk indices were higher than 0.01,
whereas the risk indices of 228 classes in the software
were lower than 0.003, accounting for 80% of the
total. Similar situations prevailed in the two other
software programs. In other words, only a limited
fraction of nodes had relatively high fault rates and
the capability of error propagation; therefore, they
should have been tested as early as possible.

Table S1 (see supplementary materials for Ta-
bles S1–S10) presents the statistical results of the top
five and bottom five classes in the software ranked by
the risk index. Metrics including out-degree Kout,
in-degree Kin, message passing coupling MPCout

and MPCin, code volume VLi, number of faults
Bi, structural complexity WMC, and lines of code
(LOC) were used to describe the testing importance
of classes in the software. MPCin represents the to-
tal number of times that the methods of class Ci

were invoked by methods not belonging to class Ci,
MPCout represents the total number of dependen-
cies of class Ci methods on methods not belonging
to class Ci, and WMC is the sum of McCabe’s cy-
clomatic complexity metric (McCabe, 1976) values
of the methods in class Ci. The results showed that
these metric values had a certain correlation with
the threats, vulnerabilities, and fault consequences
of classes in the OO software.

In the Jmeter software, class 258, org.apache.
jmeter.visualizers.RunningSample, was ranked first
by the risk index. It had the largest code volume
and number of faults in software. Fourteen entities
belonging to this class were in use by other classes
for a total of 48 times, and this class was dependent

on the entities of other classes 46 times. Class 258
was in the hub position of the topological structure,
leading to the highest failure consequence. Accord-
ingly, more test efforts should have been focused on
class 258.

Class 210, org.apache.xml.security.utils.XML-
Utils, in the software Xml-security, contained 47 en-
tities, and its VLi, Bi, WMC, LOC, Kin, and MPCin

were all the highest of the software. Nonetheless,
it had a lower risk index than class 66, which was
passed through by more execution traces in all sce-
narios. As a result, class 66 ranked first by the risk
index in software due to its higher execution proba-
bility and failure consequence.

Clearly, class 144, org.joda.time.format.Period-
FormatterBuilder, in the Joda-time software, used
more operators and operands, and had relatively
high code volume, structural complexity, and code
size; hence, it was more error-prone compared with
the other classes. Once it failed, on average, 36.7% of
information flows would have been lost in 245 func-
tion profiles. Although it had a low frequency of ex-
ecution, the product of the three risk factors had the
maximum value in the software. Taking a compre-
hensive view of this class, it was assigned the greatest
risk weight based on the PRA model.

The other top-rank classes were similar to the
classes listed in Table S1, and had relatively high
Kout, Kin, MPCout, MPCin, VLi, Bi, WMC, and
LOC. Accordingly, they also had higher failure prob-
abilities and failure consequences. As a result, they
should have been assigned higher test priorities. Of
the low-rank classes, the Kin or Kout was close to
zero. Thus, they had lower structural complexity
and influence on error propagation due to a lack of
information transmission relationships. Compared
with other classes in the software, low-rank ones were
easier, less fault-prone, and affected fewer functions
if they failed. In the process of integration testing,
the low-rank classes can be paid less attention.

6.2.2 Evaluation of the risk analysis model according
to fault detection efficiency

Because whether a test case can detect faults is
unknown before it runs on the software, fault detec-
tion efficiency can be treated as the ultimate goal
of test case prioritization (TCP) (Hao et al., 2016).
For a given software program, different test case ex-
ecution orders yield different importance of codes

708 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

covered by the test cases. Consequently, the se-
quence of severe faults being detected is determined
by the evaluation of code criticality. To further re-
spond to research question RQ1, we used the total
risk indices of classes covered by test cases to prior-
itize their execution, and then compared them with
the seven other TCP techniques based on APFDc

measurement.

As with the definition of APFDr, we assume
that T = {t1, t2, · · · , t|T |} is the test case suite and
that ct′i is the execution cost of test case ti ∈ T .
Then, we have

APFDc =

∑|F|
i

(
sfi

(∑|T |
j=TFi

ct′j − 1
2ctTF′

i

))

∑|T |
i=1 ct

′
i

∑|F|
i=1 sfi

.

(30)

We used the execution time of each test case
as its cost. The eight TCP techniques compared
are outlined in Table S2. Fig. 4 shows the APFDc

values of the three software programs obtained by all
comparable test case prioritization techniques. The
results demonstrated that the fault detection ability
of the T8 technique was remarkably close to that of
the T3 technique and better than those of the six
other strategies. In particular, for the Joda-time
software, the APFDc metric obtained by risk-based
prioritization reached a maximum of 0.97. This is
because 15 errors existed in the high-risk classes and
were detected by executing the top 30% of the test
cases. In conclusion, the proposed evaluation scheme
is effective in detecting severe faults and reducing the
total software risk, and can be applied to address the
CITO problem.

6.3 Case studies for RQ2

We re-implemented the approaches (Jorgensen
and Erickson, 1994; Tai and Daniels, 1999; Le Traon
et al., 2000; Briand et al., 2002, 2003; Jiang et al.,
2011; Assunção et al., 2014) used in the comparison,
and their main parameter settings and implementa-
tions are described briefly as follows:

1. For all baseline approaches, we ignored the
number of distinct returns and parameter-type mea-
surements, and considered only the attribute depen-
dency and method invocation coupling metrics to
evaluate the complexity of the test stubs. We also
clarified this as a thread to determine validity, be-
cause this might have affected the results of Abdu-
razik and Offutt (2006), Jiang et al. (2011), and As-
sunção et al. (2014)’s strategies, which combine four
types of factors to measure test costs.

2. Polymorphism was modeled by the proposed
MDEN and TDG (Le Traon et al., 2000). However,
the ORD model used in the other algorithms does
not contain dynamic binding relationships. In com-
parison, we analyzed only the results from the point
of view of static software structure.

3. The multi-objective optimization algorithms
were implemented from the version available at
JMetal 3.0. Table S3 lists the parameter settings
for the six software programs.

4. For multi-objective optimization algorithms,
the risk factor can also be treated as an objective
to be minimized. Considering this, we combined
the proposed risk analysis model with the traditional
GA (Briand et al., 2002) and the improved GA (As-
sunção et al., 2014), including NSGA-II, SPEA2, and
PAES, to generate integration test orders, and then

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0

T1 T2 T3 T4 T5 T6 T7 T8
Test case prioritization technique

AP
FD

c (
×1

00
%

)

Jmeter
Xml−security
Joda−timeT1 0.48 0.70 0.65

T2 0.65 0.75 0.78

T3 0.96 0.97 0.97

T4 0.88 0.87 0.89

T5 0.90 0.92 0.93

T6 0.92 0.91 0.93

T7 0.93 0.90 0.94

T8 0.94 0.96 0.97

Fig. 4 APFDc values of the three software programs obtained by all comparable techniques

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 709

compared the effectiveness of the proposed graph-
based algorithm with those of multi-objective op-
timization strategies. We used the benefit rate of
removing edges quantified by Eq. (14) instead of
the fitness function of Briand et al. (2002)’s ap-
proach. Moreover, the degree of “high-risk classes
being tested first” in the integration test order mea-
sured by Eq. (15) was considered as an objective to
be optimized in Assunção et al. (2014)’s approach,
in addition to stubbing cost. These algorithms are
referred to hereinafter as risk-based GA, risk-based
NSGA-II, risk-based SPEA2, and risk-based PAES.

Based on the cycle-breaking operations (the
statistics of operations for breaking cycles in the
three software programs are available at https://git
hub.com/FanyiMeng-NEU/Breaking-cycles-Info),
Table S4 describes the integration test orders of
six subjects. Existing works (Briand et al., 2002;
Vergilio et al., 2012; Assunção et al., 2014) have
adopted the above subjects, and provided the
experimental results of the integration test orders,
to facilitate future validation and comparison
with existing CITO algorithms. Tables S5–S10
describe the statistics, where Ns is the number of
constructed test stubs, OCplx represents the total
complexity of the test stubs, NM and NA denote
the numbers of simulation methods and attributes
in the stubs, respectively, Np is the number of
tested nodes ranking in the top 30% of classes by
the risk index after half of the classes are tested,
Nft represents the number of faults detected in the
middle of integration testing, PR denotes the degree
of “high-risk classes being integrated first” in the
test order, ΣBf is the benefit rate of the obtained
test order, which equals PR/OCplx, and APFDr

reflects the detection efficiency for high-risk faults.
The experimental results are analyzed and discussed
blow.

Two SCCs existed in the DNS software, i.e., {33,
38, 52} and {58, 48, 32, 25, 11, 8, 21}, whose nodes
and edges formed 16 cycles. Six edges, −21 → 11,
8 → 21, 48 → 32, 32 → 58, 38 → 33, and 52 →
33, were removed by the proposed approach. The
total complexity of the test stubs was 1.27, lower
than those of the other approaches. The numbers
of simulation methods and attributes in the stubs
constructed by our approach were smaller those of
Le Traon et al. (2000) by 70 and 58, respectively.

The ANT software contained only one SCC

{4, 22, 23, 19, 21, 10, 18, 20, 17, 16, 24}, which
formed 654 cycles. Briand et al. (2002), Briand et al.
(2003), and Jiang et al. (2011) deleted 13, 11, and
10 edges, respectively, to break all cycles in the soft-
ware, whereas the number of edges removed by our
approach was 14 and, as such, the total complexity of
the test stubs constructed by the proposed algorithm
was lower than those of Tai and Daniels (1999), Le
Traon et al. (2000), Briand et al. (2002), Abdurazik
and Offutt (2006), and Jiang et al. (2011) by 4.37,
2.66, 0.64, 0.40, and 0.24, respectively. This indi-
cated that in the process of constructing stubs, Tai
and Daniels (1999), Le Traon et al. (2000), Briand
et al. (2002), Abdurazik and Offutt (2006), and Jiang
et al. (2011) needed to simulate 552, 385, 188, 165,
and 172 entities, respectively, and the number of sim-
ulated entities of stubs constructed by our approach
was only 123, thereby reducing the corresponding
test expense.

One SCC existed in the BCEL software, which
contained 40 nodes. In other words, except for
classes 1, 3, 23, 24, and 42, all classes constituted
SCCs. There were 416 091 cycles in SCC, although
the software contained only 45 classes. To break all
cycles, Le Traon et al. (2000), Briand et al. (2002),
Briand et al. (2003), and Jiang et al. (2011) on av-
erage removed 67, 71, 70, and 73 edges, respectively.
However, the number of edges removed by our ap-
proach was 75, similar to those removed by the above
algorithms, but much lower than those by Tai and
Daniels (1999) and Abdurazik and Offutt (2006)’s
approaches. Compared with Tai and Daniels (1999),
Le Traon et al. (2000), Briand et al. (2002), and
Jiang et al. (2011), the total test stub complex-
ity decreased by 7.06, 7.88, 2.47, and 4.85, respec-
tively. Further, the number of simulation methods
and attributes decreased by 225, 242, 13, and 120,
respectively.

Similar conclusions can be drawn for the Jme-
ter, Xml-security, and Joda-time software. Ignoring
the risk factors, the NSGA-II algorithm used in As-
sunção et al. (2014)’s strategy always needed a min-
imum test cost for the small software, whereas the
PAES algorithm of Assunção et al. (2014) achieved
better results when analyzing the more complex soft-
ware. Test effort involved in the proposed strategy
was very close to that devoted to achieving the op-
timal results, and even less than that involved in
approaches which aim only to minimize the total

710 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

complexity of the test stubs.
In these six case studies, the Np values obtained

by the proposed approach, risk-based NSGA-II, risk-
based PAES, and risk-based SPEA2 were very close
and significantly higher than those of all the other
algorithms, and this advantage was stable in software
of varying sizes. Halfway through the testing, 90%
of critical classes on average had been integrated by
the proposed approach, which was nearly double the
results of Tai and Daniels (1999), Le Traon et al.
(2000), Briand et al. (2002), Briand et al. (2003),
Abdurazik and Offutt (2006), Jiang et al. (2011),
and Assunção et al. (2014), and 1.48 times higher
than that of risk-based GA, which also considered
both risk factors and test costs.

From Tables S5–S10, we can see that compared
with the 13 baseline algorithms, the proposed strat-
egy increased the APFDr value to varying extents:
on average, it was 49%, 43%, 46%, 42%, 50%, 41%,
27%, 27%, 29%, 31%, 14%, 13%, and 13% higher
than the results of Tai and Daniels (1999), Abdu-
razik and Offutt (2006), Briand et al. (2002), Briand
et al. (2003), Le Traon et al. (2000), Jiang et al.
(2011), NSGA-II in Assunção et al. (2014), PAES in
Assunção et al. (2014), SPEA2 in Assunção et al.
(2014), risk-based GA, risk-based NSGA-II, risk-
based PAES, and risk-based SPEA2, respectively.
In particular, 100% of faults were detected in the
middle of integration testing. Based on the above
experimental analysis, we can draw the following
conclusions:

1. The PR metric defined in Eq. (15) is equal
to the degree of “high-risk class being tested first”
in test order from the perspective of the global op-
timum. As a result, all multi-objective optimization
algorithms yielded better results when considering
the PR metric as an objective.

2. A limitation observed in the risk-based GA
strategy was that it removed only the dependen-
cies in SCCs to maximize the benefit rates of in-
tegration testing without determining the ultimate
results. This is why its total test stub complexity
was acceptable, whereas the PR and APFDr values
were smaller than the ideal ones compared with the
other risk-based strategies.

3. The evolutionary algorithms used in As-
sunção et al. (2014)’s approach yielded better so-
lutions than the traditional GA, because they did
not need to weigh the objectives when generating

test orders. Nevertheless, due to conflicts among the
three objectives, the multi-objective optimization al-
gorithms could not guarantee stable performance in
balancing benefits and costs. Taking the Jmeter
software as an example, although high-risk classes
were assigned higher priorities, slightly more simula-
tion methods for stubbing reduced the overall yield.
However, our approach broke the cycles according
to the edge weights quantified by cost–benefit anal-
ysis, and tended toward the principle of “assigning a
higher priority to the class with a higher risk index”
when there was more than one edge with the great-
est weight. Thus, the proposed graph-based strategy
performed well across different software.

4. For small-scale software, the evolutionary al-
gorithms can obtain satisfactory results. In par-
ticular, for ANT software, PR, ΣBf, and Np mea-
surements give preference to the risk-based NSGA-
II algorithm. However, with more classes in total,
the benefit rate and fault-detection efficiency of our
strategy became more advantageous. In the case of
the BCEL software, which contained 45 classes, the
value of ΣBf obtained by our approach was 68%,
48%, 35%, 49%, 70%, 65%, 10%, 13%, 15%, 15%,
0.4%, 9%, and 3% greater than those of Tai and
Daniels (1999), Abdurazik and Offutt (2006), Briand
et al. (2002), Briand et al. (2003), Le Traon et al.
(2000), Jiang et al. (2011), NSGA-II in Assunção
et al. (2014), PAES in Assunção et al. (2014), SPEA2
in Assunção et al. (2014), risk-based GA, risk-based
NSGA-II, risk-based PAES, and risk-based SPEA2,
respectively. For the Joda-time software, which had
156 classes, the above differences were 76%, 57%,
59%, 56%, 78%, 59%, 44%, 43%, 51%, 43%, 27%,
22%, and 38%, respectively. However, for the Jme-
ter software, which was composed of 285 classes, the
differences increased to 86%, 57%, 83%, 76%, 90%,
68%, 63%, 51%, 71%, 45%, 47%, 44%, and 50%,
respectively.

5. Almost all high-risk classes identified by the
proposed PRA model were “hub” nodes in the func-
tion profiles of MDEN. Thus, removing edges with
these starting nodes broke more cycles simultane-
ously, which reduced the total number of established
test stubs in our strategy. Compared with Jmeter,
Xml-security, and Joda-time, the proposed approach
constructed fewer test stubs.

6. The execution time listed in Tables
S5–S10 did not include the risk analysis step. For

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 711

multi-objective optimization algorithms, we pro-
vided the average of runtime and the standard devia-
tion. Clearly, the execution times of all graph-based
approaches were very close and significantly lower
than those of the multi-objective optimization algo-
rithms. Table 5 shows the execution time of risk
analysis in all case studies, and we can see that the
costs were acceptable, even for more complex soft-
ware such as Jmeter and Joda-time.

Table 5 Execution time of risk analysis in all case
studies

Execution time (s)

Jmeter Xml-security Joda-time DNS ANT BCEL

MDEN 0.84 0.97 1.02 0.38 0.23 0.32
T 6.26 8.93 75.39 1.65 1.36 1.39
V 52.85 20.44 42.68 0.89 0.78 0.81
C 0.38 0.78 3.17 0.21 0.18 0.19

Total 60.33 31.12 122.26 3.13 2.55 2.71

7. Here, we set the coefficients α and β defined
in Eq. (13) as equal, i.e., α = β = 0.5. The ITOso-
lution tool allows testers to assign coefficients ac-
cording to preference. If the project being tested
has complex attributes or methods to be emulated,
testers can adjust coefficient α or β to avoid simulat-
ing complicated entities.

Consequently, combining the risk evaluation to
prioritize class integration can significantly improve
the ability to detect very severe faults without in-
creasing costs.

6.4 Case studies for RQ3

Assume that the invested cost is given by
Eq. (31). If θ ∈ [0, 1), we say that the test cost
is limited.

B0 = θ

⎛

⎝
|V c|∑

k=1

DAmax
k +

|Ns|∑

t=1

DAstub
t

⎞

⎠ . (31)

With the test cost limitation, we compared the
changes in residual software risk affected by different
integration test orders in three cases, θ = 20%, 50%,
80%, i.e., considering situations where the invested
test cost accounted for 20%, 50%, and 80%, respec-
tively, of the total cost of complete software risk elim-
ination. Suppose that our approach assigned costs
using the cost–benefit strategy proposed in Section
4.1, and that the other approaches adopted the av-

erage distribution scheme. Fig. S6 shows a compari-
son of the reduction in the total risk index by various
integration strategies in all cases. Each curve corre-
sponds to the effectiveness of the test order obtained
by a baseline approach, plotted by integration steps
along the horizontal axis and the percentage of resid-
ual software risk resulting from the integrated classes
along the vertical axis. Table 6 shows the statistics of
the results corresponding to Fig. S6. Note that the
experimental data were simulation results based on
the test orders of all comparable algorithms obtained
in Section 5.3. For the multi-objective optimization
strategies in Assunção et al. (2014), we used their
optimal results.

6.5 Threats to validity

1. MDEN model
Because the MDEN model simulates the dy-

namic execution status of the software, it contains
the relationships of dynamic binding between classes.
However, the approaches of Tai and Daniels (1999)
and Briand et al. (2002) broke the cycles of the
software from the point of view of static software
structure. To be fair, we ignored dynamic binding
relationships in the experiments, which might have
affected the results.

2. PRA model
Because different methods have different depths

in the call tree, even if their execution probabilities
and complexities are the same, their failures have
varying influences on the overall software. Thus, the
proposed approach can always identify classes with
relatively high-risk factors. In the extreme case in
which the risk indices of all classes were equal, our
strategy can still generate CITOs by considering only
the complexity of the established test stubs.

3. Experimental design
With regard to our experimental subjects, the

versions of BCEL, ANT, and DNS may be differ-
ent from the software used in Briand et al. (2002,
2003), da Veiga Cabral et al. (2010), and Jiang et al.
(2011). For comparison, we maintained those ver-
sions provided in Briand et al. (2002). In addition,
as the three software programs did not contain a
test case suite, we considered that all the scenarios
had an equal probability of being executed in the
experiments of Section 5. Another threat to validity
is that we used the numbers of simulation methods
and attributes to assess the complexity of the stubs.

712 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

Table 6 Residual software risks under different invested costs

Method
�

DNS ANT BCEL

θ = 80% 50% 20% 80% 50% 20% 80% 50% 20%

Tai and Daniels (1999)’s 0.499 0.636 0.873 0.581 0.669 0.884 0.540 0.645 0.862
Abdurazik and Offutt (2006)’s 0.465 0.611 0.864 0.367 0.500 0.825 0.430 0.560 0.829
Briand et al. (2002)’s 0.467 0.612 0.864 0.371 0.503 0.826 0.420 0.553 0.826
Briand et al. (2003)’s 0.469 0.614 0.865 0.405 0.530 0.836 0.438 0.566 0.831
Le Traon et al. (2000)’s 0.526 0.655 0.880 0.515 0.617 0.866 0.546 0.650 0.864
Jiang et al. (2011)’s 0.469 0.613 0.865 0.393 0.521 0.832 0.494 0.610 0.848
NSGA-II in Assunção et al. (2014) 0.464 0.610 0.865 0.353 0.489 0.821 0.421 0.553 0.826
PAES in Assunção et al. (2014) 0.470 0.615 0.863 0.353 0.489 0.821 0.417 0.550 0.825
SPEA2 in Assunção et al. (2014) 0.469 0.613 0.865 0.353 0.489 0.821 0.422 0.554 0.827
Risk-based GA 0.468 0.613 0.865 0.379 0.510 0.828 0.433 0.563 0.830
Risk-based NSGA-II 0.473 0.617 0.866 0.360 0.494 0.823 0.436 0.565 0.831
Risk-based PAES 0.470 0.614 0.865 0.383 0.513 0.830 0.433 0.563 0.830
Risk-based SPEA2 0.473 0.617 0.866 0.388 0.517 0.831 0.436 0.565 0.831
Ours 0.220 0.316 0.520 0.207 0.307 0.568 0.205 0.310 0.524

Method
R�

DNS ANT BCEL

θ = 80% 50% 20% 80% 50% 20% 80% 50% 20%

Tai and Daniels (1999)’s −0.009 −0.006 −0.002 −0.023 −0.018 −0.006 −0.011 −0.009 −0.003

Abdurazik and Offutt (2006)’s −0.008 −0.006 −0.002 −0.023 −0.019 −0.007 −0.009 −0.007 −0.003

Briand et al. (2002)’s −0.008 −0.006 −0.002 −0.02 −0.016 −0.006 −0.010 −0.008 −0.003

Briand et al. (2003)’s −0.008 −0.005 −0.002 −0.021 −0.020 −0.007 −0.011 −0.008 −0.003

Le Traon et al. (2000)’s −0.009 −0.007 −0.002 0.0191 −0.015 −0.005 −0.007 −0.006 −0.002

Jiang et al. (2011)’s −0.009 −0.007 −0.002 −0.022 −0.017 −0.006 −0.008 −0.006 −0.002

NSGA-II in Assunção et al. (2014) −0.009 −0.007 −0.002 −0.025 −0.024 −0.011 −0.014 −0.011 −0.004

PAES in Assunção et al. (2014) −0.009 −0.007 −0.002 −0.027 −0.025 −0.010 −0.013 −0.010 −0.005

SPEA2 in Assunção et al. (2014) −0.009 −0.007 −0.002 −0.030 −0.023 −0.010 −0.014 −0.011 −0.004

Risk-based GA −0.010 −0.008 −0.002 −0.029 −0.023 −0.008 −0.012 −0.009 −0.004

Risk-based NSGA-II −0.013 −0.009 −0.003 −0.046 −0.036 −0.013 −0.016 −0.013 −0.006

Risk-based PAES −0.012 −0.009 −0.003 −0.044 −0.034 −0.013 −0.015 −0.012 −0.005

Risk-based SPEA2 −0.012 −0.008 −0.003 −0.046 −0.035 −0.013 −0.014 −0.012 −0.005

Ours −0.020 −0.017 −0.013 −0.067 −0.056 −0.027 −0.025 −0.026 −0.019

However, the approaches proposed by Abdurazik and
Offutt (2006), Jiang et al. (2011), and Assunção et al.
(2014) considered other stub characteristics. This
might have affected the evaluation of test costs.

7 Conclusions

Devising optimal integration test orders impacts
the development and evolution of software. Prior
studies have been dedicated to reducing test costs in
integration test order generation but ignore test effi-
ciency. Test efficiency affects the sequence in which
classes are developed and inter-class faults are de-
tected, and affects the design of test cases and con-
struction of test stubs. Thus, we have proposed a
multi-layer dynamic execution network model to an-

alyze the dynamic topology of software from both
temporal and spatial perspectives. This model maps
the function profiles of the software in various sce-
narios triggered by users into network layers consist-
ing of execution paths. On this basis, the dynamic
execution probabilities, complexities, and fault con-
sequences of classes in software were quantified. Fur-
thermore, the testing importance of classes was eval-
uated by risk analysis. In this manner, the class
with a high failure rate and error propagation in-
fluence was assigned a high priority. However, if we
directly generate integration test orders based on risk
indices, the total complexity of the constructed test
stubs increases drastically. To solve this problem,
we weighed each edge in the class-level network with
a trade-off between test benefits and costs. Then,

Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714 713

cycle-breaking operations were performed by remov-
ing edges based on their weights. We proposed an
evaluation scheme that assesses the effectiveness of
integration test orders based on the risk reduction
rate of the overall software. Moreover, the APFDr

metric was proposed to measure the average per-
centage of faults detected per cost of an integration
test order. Finally, a strategy for optimizing the
allocation of testing resources was presented which
balances the expected risk reductions of each class
against the required test efforts. Compared to exist-
ing algorithms, we concluded that the proposed ap-
proach guarantees that higher-risk classes are tested
earlier and, as such, minimizes the total complexity
of the test stubs. With test cost limitations, our in-
tegration strategy can obtain a higher benefit rate
in software risk reduction. Perhaps of greatest prac-
tical significance is the fact that the functions men-
tioned above are encapsulated in an executable tool
ITOsolution, which allows users to assess the risk
factors of classes and generate integration test orders
automatically.

In future work, we plan to apply the ITOsolu-
tion tool on larger datasets and further evaluate the
effectiveness of the proposed approach.

Contributors
Fanyi MENG and Ying WANG designed the research

and processed the data. Fanyi MENG drafted the paper.

Ying WANG helped organize the paper. Hai YU and Zhiliang

ZHU revised and finalized the paper.

Compliance with ethics guidelines
Fanyi MENG, Ying WANG, Hai YU, and Zhiliang ZHU

declare that they have no conflict of interest.

References
Abdurazik A, Offutt J, 2006. Coupling-based class integra-

tion and test order. Proc Int Workshop on Automation
of Software Test, p.50-56.
https://doi.org/10.1145/1138929.1138940

Al Mannai WI, Lewis TG, 2008. A general defender-attacker
risk model for networks. J Risk Finance, 9(3):244-261.
https://doi.org/10.1108/15265940810875577

Amland S, 2000. Risk-based testing: risk analysis fundamen-
tals and metrics for software testing including a financial
application case study. J Syst Softw, 53(3):287-295.
https://doi.org/10.1016/S0164-1212(00)00019-4

Assunção WKG, Colanzi TE, Vergilio SR, et al., 2014. A
multi-objective optimization approach for the integra-
tion and test order problem. Inform Sci, 267:119-139.
https://doi.org/10.1016/j.ins.2013.12.040

Bang L, Aydin A, Bultan T, 2015. Automatically computing
path complexity of programs. Proc 10th Joint Meeting
on Foundations of Software Engineering, p.61-72.
https://doi.org/10.1145/2786805.2786863

Bansal P, Sabharwal S, Sidhu P, 2009. An investigation
of strategies for finding test order during integration
testing of object oriented applications. Proc Int Conf
on Methods and Models in Computer Science, p.1-8.
https://doi.org/10.1109/ICM2CS.2009.5397936

Binder RV, 1996. Testing object-oriented software: a survey.
Softw Test Verif Reliab, 6(3-4):125-252.
https://doi.org/10.1002/(SICI)1099-1689(199609/12)
6:3/4<125::AID-STVR121>3.0.CO;2-X

Bowring JF, Rehg JM, Harrold MJ, 2004. Active learning
for automatic classification of software behavior. ACM
SIGSOFT Softw Eng Notes, 29(4):195-205.
https://doi.org/10.1145/1013886.1007539

Briand LC, Jie F, Labiche Y, 2002. Experimenting with
genetic algorithms to devise optimal integration test
orders. Technical Report, No. SCE-02-03, Carleton
University, Ottawa, Canada.

Briand LC, Labiche Y, Wang YH, 2003. An investigation
of graph-based class integration test order strategies.
IEEE Trans Softw Eng, 29(7):594-607.
https://doi.org/10.1109/TSE.2003.1214324

Cai KY, Yin BB, 2009. Software execution processes as an
evolving complex network. Inform Sci, 179(12):1903-
1928. https://doi.org/10.1016/j.ins.2009.01.011

da Veiga Cabral R, Pozo A, Vergilio SR, 2010. A Pareto ant
colony algorithm applied to the class integration and
test order problem. Proc 22nd IFIP WG 6.1 Int Conf
on Testing Software and Systems, p.16-29.
https://doi.org/10.1007/978-3-642-16573-3_3

Deb K, Pratap A, Agarwal S, et al., 2002. A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE
Trans Evol Comput, 6(2):182-197.
https://doi.org/10.1109/4235.996017

Floyd RW, 1962. Algorithm 97: shortest path. Commun
ACM, 5(6):345. https://doi.org/10.1145/367766.368168

Frankl PG, Weyuker EJ, 2000. Testing software to detect
and reduce risk. J Syst Softw, 53(3):275-286.
https://doi.org/10.1016/S0164-1212(00)00018-2

Goseva-Popstojanova K, Hassan A, Guedem A, et al., 2003.
Architectural-level risk analysis using UML. IEEE
Trans Softw Eng, 29(10):946-960.
https://doi.org/10.1109/TSE.2003.1237174

Hao D, Zhang L, Zang L, et al., 2016. To be optimal or
not in test-case prioritization. IEEE Trans Softw Eng,
42(5):490-505.
https://doi.org/10.1109/TSE.2015.2496939

Henry S, Kafura D, 1981. Software structure metrics based
on information flow. IEEE Trans Softw Eng, 7(5):510-
518. https://doi.org/10.1109/TSE.1981.231113

Huang CY, Lyu MR, 2005. Optimal testing resource alloca-
tion, and sensitivity analysis in software development.
IEEE Trans Reliab, 54(4):592-603.
https://doi.org/10.1109/TR.2005.858099

Jiang SJ, Zhang YM, Li HY, et al., 2011. An approach for
inter-class integration test order determination based on
coupling measures. Chin J Comput, 34(6):1062-1074.
https://doi.org/10.3724/SP.J.1016.2011.01062

714 Meng et al. / Front Inform Technol Electron Eng 2022 23(5):692-714

Jiang SJ, Zhang M, Zhang YM, et al., 2021. An integration
test order strategy to consider control coupling. IEEE
Trans Softw Eng, 47(7):1350-1367.
https://doi.org/10.1109/TSE.2019.2921965

Jorgensen PC, Erickson C, 1994. Object-oriented integration
testing. Commun ACM, 37(9):30-38.
https://doi.org/10.1145/182987.182989

Knowles JD, Corne DW, 2000. Approximating the nondomi-
nated front using the Pareto archived evolution strategy.
Evol Comput, 8(2):149-172.
https://doi.org/10.1162/106365600568167

Kung D, Gao J, Hsia P, et al., 1995. A test strategy
for object-oriented programs. Proc 19th Annual Int
Computer Software and Applications Conf, p.239-244.
https://doi.org/10.1109/CMPSAC.1995.524786

Le Traon Y, Jeron T, Jezequel JM, et al., 2000. Effi-
cient object-oriented integration and regression testing.
IEEE Trans Reliab, 49(1):12-25.
https://doi.org/10.1109/24.855533

Lipow M, 1982. Number of faults per line of code. IEEE
Trans Softw Eng, 8(4):437-439.
https://doi.org/10.1109/TSE.1982.235579

McCabe TJ, 1976. A complexity measure. IEEE Trans
Softw Eng, 2(4):308-320.
https://doi.org/10.1109/TSE.1976.233837

Monden A, Hayashi T, Shinoda S, et al., 2013. Assessing
the cost effectiveness of fault prediction in acceptance
testing. IEEE Trans Reliab, 39(10):1345-1357.
https://doi.org/10.1109/TSE.2013.21

Myers CR, 2003. Software systems as complex networks:
structure, function, and evolvability of software collab-
oration graphs. Phys Rev E, 68(2):046116.
https://doi.org/10.1103/PhysRevE.68.046116

NASA, 1999. Pyroshock Test Crite. Technical Report, No.
NASA-STD-7003A. NASA, Washington, USA.

Sharma C, Sibal R, 2013. Application of different meta-
heuristic techniques for finding optimal test order during
integration testing of object oriented systems and their
comparative study. Int J Soft Comput Eng, 3(12):1-19.

Tai KC, Daniels JF, 1999. Interclass test order for object-
oriented software. J Obj-Orient Progr, 12(4):18-25.

Vergilio SR, Pozo A, Árias JCG, et al., 2012. Multi-objective
optimization algorithms applied to the class integration
and test order problem. Int J Softw Tools Technol
Transf, 14(4):461-475.
https://doi.org/10.1007/s10009-012-0226-1

Walters C, Ludwig D, 1994. Calculation of Bayes posterior
probability distributions for key population parameters.
Can J Fish Aquat Sci, 51(3):713-722.
https://doi.org/10.1139/f94-071

Wang Y, Zhu ZL, Yang B, et al., 2018a. Using reliability risk
analysis to prioritize test cases. J Syst Softw, 139:14-31.
https://doi.org/10.1016/j.jss.2018.01.033

Wang Y, Zhu ZL, Yu H, et al., 2018b. Risk analysis on multi-
granular flow network for software integration testing.
IEEE Trans Circ Syst II Expr Briefs, 65(8):1059-1063.
https://doi.org/10.1109/TCSII.2017.2775442

Wang ZS, Li BX, Wang LL, et al., 2011. A brief survey
on automatic integration test order generation. Proc
23rd Int Conf on Software Engineering & Knowledge
Engineering, p.254-257.

Weyuker EJ, 1988. Evaluating software complexity measures.
IEEE Trans Softw Eng, 14(9):1357-1365.
https://doi.org/10.1109/32.6178

Xu C, Qin Y, Yu P, et al., 2020. Theories and techniques
for growing software: paradigm and beyond. Sci Sin
Inform, 50(11):1595-1611.
https://doi.org/10.1360/SSI-2020-0079

List of supplementary materials
Fig. S1 Sample code illustrating the proposed MDEN model

Fig. S2 Generating an integration test order process

Fig. S3 Main features of our tool ITOsolution

Fig. S4 Class-level dependency networks of the subjects

Fig. S5 Class risk probability density distribution

Fig. S6 Comparison of the reduction in total risk indices

Table S1 Statistics of the top and bottom five nodes

Table S2 Compared test case prioritization techniques

Table S3 Parameter settings

Table S4 Test orders obtained by the proposed algorithm

Table S5 Comparison of experimental results for Jmeter

Table S6 Comparison of experimental results for Xml-

security

Table S7 Comparison of experimental results for Joda-time

Table S8 Comparison of experiment results for DNS

Table S9 Comparison of experimental results for ANT

Table S10 Comparison of experimental results for BCEL

	Introduction
	Related works
	Minimizing the number of test stubs
	Minimizing the total complexity of test stubs

	Proposed approach
	Multi-layer dynamic execution network model
	Probabilistic risk analysis model
	Algorithm for generating CITOs
	Complexity measurements for test stubs
	Integration test order

	Evaluation model
	Strategy for optimizing the allocation of testing resources
	Rate of risk reduction
	Fault detection efficiency of integration test order

	ITOsolution tool
	Experimental analysis and discussion
	Research questions and experimental design
	Case studies for RQ1
	Risk distribution of the software
	Evaluation of the risk analysis model according to fault detection efficiency

	Case studies for RQ2
	Case studies for RQ3
	Threats to validity

	Conclusions

