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Abstract: Traditional matrix-based approaches in the field of finite state machines construct state transition
matrices, and then use the powers of the state transition matrices to represent corresponding dynamic transition
processes, which are cornerstones of system analysis. In this study, we propose a static matrix-based approach
that revisits a finite state machine from its structure rather than its dynamic transition process, thus avoiding the
“explosion of complexity” problem inherent in the existing approaches. Based on the static approach, we reexamine
the issues of closed-loop detection and controllability for deterministic finite state machines. In addition, we propose
controllable equivalent form and minimal controllable equivalent form concepts and give corresponding algorithms.
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1 Introduction

Matrix-based approaches have a wide range of
applications in the field of finite state machines (Lu
et al., 2018; Chen et al., 2020). For matrix-based ap-
proaches, there are two major mathematical model
types: the state transition matrix model (TM model)
(Xu XR and Hong, 2013a; Chen et al., 2020), based
on the conventional matrix product, and the ma-
trix model based on the semi-tensor product (STP)
model (Xu XR and Hong, 2013b; Zhu R et al.,
2022). Several representative results are presented
(Lu et al., 2017; Yan et al., 2022). For a finite state
machine, the TM model is effective for closed-ended
issues such as controllability and reachability. How-
ever, the computational complexity of the TM model
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is often exponential for the optimal path issue or for
finding relevant inputs. The major reason is that
some input information is lost in modeling formal-
ism. Fortunately, the missing information can be
added to the TM model with the help of STP theory,
creating the STP model (Xu XR and Hong, 2013a;
Han et al., 2018). In general, the STP model contains
all information on a dynamic process, both informa-
tion of state transitions and that of inputs. Thus, the
STP model can solve all issues in the field of finite
state machines theoretically. However, a drawback
of the STP model is the “explosion of dimension”
problem (Yue et al., 2019; Yan et al., 2021); that
is, the dimension of state transition matrices in the
STP model increases exponentially with increase in
the time step. This problem also occurs in the TM
model, where the complexity increases polynomially
as the time step increases linearly (Xu Q et al., 2021).
The “explosion of complexity” is caused by the re-
peated product of state transition matrices (Cheng
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and Qi, 2010; Yan et al., 2014). One of the major
reasons for the repeated product is that state tran-
sition processes are always considered as dynamic
processes, which implies that each state transition
requires a product of the state transition matrix.

Motivated by the “explosion of complexity” in-
herent in the existing approaches, in contrast to
traditional matrix-based approaches, we propose a
static matrix-based approach, which relies on the
structure of a finite state machine itself rather than
its dynamic process, thus avoiding the “explosion
of complexity.” Based on the static approach, we
reexamine the issue of closed-loop detection in de-
terministic finite state machines. By the fact that
all states in a closed loop are mutually controllable,
we present the definitions and algorithms of a con-
trollable equivalent form and a minimal controllable
equivalent form. With a static view of the closed
loop, the two-state controllability issue can be re-
solved only once, by matrix division, making use of
our algorithms in the best case.

2 Preliminaries

Notations: Mm×n is the set of m × n real
matrices; coli(A) is the ith column of matrix A;
δin is the ith column of the identity matrix of di-
mension n; |C| is the cardinality of a finite set C;
1m = [1, 1, · · · , 1]T

︸ ︷︷ ︸

m

; A(i, j) is the entry for a matrix

A in row i and column j; Δn := {δ1n, δ2n, · · · , δnn}; ∧
and ∨ are the logical operators of “And” and “Or,”
respectively; ind(a) is the in-degree of a state a;
δn {i1, i2, . . . , in} :=

{

δi1n , δi2n , . . . , δinn
}

.

We assume that the reader is familiar with the
basic notions and concepts of finite state machines
and STP. Identify xi with δin (or xi) (1 ≤ i ≤ n), ex-
pressed as xi ∼ δin(xi) for simplicity, and call δin(xi)
the vector form of xi. In the framework of matrix-
based approaches, the dynamics of A = (X,E, f, x0)

with input e = e1e2 . . . et ∈ E∗ can be formulated as
follows:

1. STP model:

x(t) = F̃ t
� δx0

n � u(t), (1)

where u(t) = �
t
i=1δ

i
m = δ1m�δ2m�. . .�δtm, δjm is the

vector form of ej , j = 1, 2, . . . , t, F̃ = F � W[n,m],
W[n,m] is a swap matrix (Zhu SM et al., 2021), and

F = [F1,F2, . . . ,Fm] is defined as

Fi(s, t) =

{

1, if δsn ∈ f(δtn, δ
i
m),

0, otherwise.
(2)

2. TM model:

x(t) = Tet · · ·Te2Te1δ
x0
n . (3)

Eqs. (1) and (3) are standard matrix models in
that they construct the state transition matrices, F̃
in the STP model and Tei (1 ≤ i ≤ t) in the TM
model, to describe the dynamics of A. Note that we
are more interested in the outcome of a state transi-
tion than in the inputs that can cause the transition.
Therefore, we modify Eq. (3) as

x(t) = T tδx0
n , (4)

where T =
t
∑

j=1

Tej .

We simplify notations by writing δXn instead of
∑

xi∈X

δin and ind(X) instead of
∑

x∈X

ind(x). Ψ(η) :=

{δkn|the kth element of η is non-zero for any η ∈
Mn×1}. For example, let M = [1 0 1 0]T.
Then we have Ψ(M) = {δ14 , δ34}. Also, we use
δn [i1, i2, . . . , in] instead of [δi1n , δi2n , · · · , δinn ] for
brevity.

3 Main results

3.1 Static approach for detection of closed
loops

The closed loops, the core point of this paper,
are proposed in this subsection.
Definition 1 For a deterministic finite state ma-
chine (DFSM) M = (X = Δn, E, f, x0), a state set
Xs ⊆ X is called a single closed loop, if for all x ∈ Xs,

(T |Xs|δxn). ∗ δXs
n = δxn,

where “. * ” denotes element-wise multiplication.
Although Definition 1 is an accurate descrip-

tion, it is not less complex than the repeated matrix
products in Eqs. (1) and (3). Thus, we give the
following definition of a weak version:
Definition 2 For a DFSM M = (X =

Δn, E, f, x0), a state set Xs ⊆ X is called a single
closed loop, if

(TδXs
n ). ∗ δXs

n = δXs
n ∧ (TTδXs

n ). ∗ δXs
n = δXs

n .
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Note that Definition 2 is not strictly a sufficient
condition, but it can be applied to the results pre-
sented in this paper and has time complexity O(1).
Definition 3 For a DFSM M = (X =

Δn, E, f, x0), a state set Xs ⊆ X is called a com-
pound closed loop, if ((T −TT)δXs

n ). ∗ δXs
n = 0, and

a state xi is called a bifurcation state if
∣

∣Ψ(T δin)
∣

∣ > 1.
It is clear that a bifurcation state is the exit for
the transitions from states inside a closed loop in
which the bifurcation state stays to states outside
the closed loop. If a bifurcation state stays in a
closed loop, then we say that the bifurcation state
forms the closed loop. We use symbol α to refer to a
bifurcation state. Also, we use WA to denote all the
single closed loops in DFSM A. Due to the fact that
the increase of complexity caused by the increase of
the number of bifurcation states is not linear, we give
the following function to differentiate DFSMs with
different numbers of bifurcation states:

Given a matrix M ∈ Mm×n, ‖M‖ is defined as
‖M‖ = |{i ||Ψ(coli(M))| > 1}|.
Lemma 1 For any DFSM M = (X = Δn, E, f, x0)

at ‖T ‖ = 0, a state set Xs ⊆ X is a single closed loop
if and only if

(T − In×n)δ
Xs
n = 0 ∧ (T − In×n)δ

X∗
s

n 
= 0,

where X∗
s ∈ 2Xs .

Proof (Necessity) The reachable state set of a
single closed loop is itself at ‖T ‖ = 0; that is, TδXs

n =

δXs
n and/or TTδXs

n = δXs
n .

(Sufficiency) We first prove that if (T −
In×n)δ

Xs
n = 0∧(T −In×n)δ

X∗
s

n 
= 0, then Tδxn = δxn
holds for all x ∈ Xs. It is easy to see, from
the STP properties, that (T − In×n)δ

Xs
n = (T −

In×n)δ
{xi1 ,··· ,xip}
n = (T − In×n)δ

xi1
n + · · · + (T −

In×n)δ
xip
n = 0 (1 ≤ p ≤ n). By contradiction, as-

sume that xi ∈ Xs has Tδxi
n 
= δxi

n (i = a, b). Then
either (T −In×n)δ

xa
n + · · ·+(T −In×n)δ

xb
n · · · 
= 0 if

(T −In×n)δ
xa
n 
= −(T −In×n)δ

xb
n , or (T −In×n)x =

0 has another basic solution x = δ
{xa,xb}
n ∈ 2Xs

if (T − In×n)δ
xa
n = −(T − In×n)δ

xb
n . Hence, a

contradiction exists. Next, we prove that for all
x ∈ Xs, (T |Xs|δxn). ∗ δXs

n = δxn is satisfied. Be-
cause Tδxn = δxn (x ∈ Xs) holds, we have that
(T |Xs|δxn).∗δXs

n = δxn.∗δXs
n = δxn holds for all x ∈ Xs.

Algorithm 1 is designed to find all closed loops
in a DFSM at ‖T ‖ = 0. Note that the solutions of
matrix equations are basic solutions in this paper.

Algorithm 1 Finding closed loops in a DFSM at
‖T ‖ = 0
1: Construct T .
2: The set of all closed loops is C = {Ψ(x)|(T − In×n)x =

0 ∧ (T − In×n)x∗ �= 0} , where x∗ ∈ 2x.

Next, we consider more general cases and begin
with ‖T ‖ = 1.
Lemma 2 For any DFSM M = (X = Δn, E, f, x0)

at ‖T ‖ = 1, if a state set Xs ⊆ X is a single closed
loop, then

(T̃ − In×n)δ
Xs
n = Tδαn ∨ (T − In×n)δ

Xs
n = 0,

where α ∈ S = {i ||Ψ(coli(T ))| > 1}, and T̃ is de-
fined as

T̃ (i, j) =

{

T (i, j) + 1, if δin = δjn ∈ Ψ(Tδαn ),

T (i, j), otherwise.

Proof If Xs is the same type of closed loop
as in Lemma 1, then (T − In×n)δ

Xs
n = 0 is sat-

isfied. Therefore, we assume (T − In×n)δ
Xs
n 
= 0,

which implies that the bifurcation state α must be
in Xs. It is easy to find that TδXs

n = δXs
n + δXα

n ,
where δXα

n = Ψ(Tδαn )\Ψ(δXs
n ). Xβ is defined as

δ
Xβ
n = Ψ(Tδαn ) ∩ Ψ(δXs

n ), and we have δXα
n + δ

Xβ
n =

Tδαn . The known conditions are T and α. For Xs,
we have ind(Xα) = 1. Because δXα

n ∩ δXs
n = ∅

and δ
Xβ
n ∩ δXs

n = δ
Xβ
n , by making f̃(i ∈ f(α)) :=

f(i) ∪ i, we have ind(Xs\Xβ) = 1, ind(Xα) = 1,
and ind(Xβ) = 2 for Xs. In other words, we have
a new state transition matrix T̃ such that the only
difference between the two state transition matrices
is that the new matrix makes f̃(Xs)−Xs = Xα+Xβ

hold. Then T̃ δXs
n − δXs

n = δXα
n + δ

Xβ
n = Tδαn is

obtained using the vector form.
Lemma 2 is also a necessary condition. To find

all single closed loops at ‖T ‖ = 1, the idea is to first
find all possible single closed loops by the necessary
condition, and then to use Definition 2 to determine
which ones are single closed loops. From Lemmas 1
and 2, one way to find single closed loops is given
in Algorithm 2. Note that Algorithm 2 cannot find
compound closed loops. The algorithm for solving
compound closed loops is stated later.
Lemma 3 For any DFSM M = (X = Δn, E, f, x0)

at ‖T ‖ = 2, if a state set Xs ⊆ X is a single closed
loop, then

(T̃ − In×n)δ
Xs
n = TδSn ∨ (T̂ − In×n)δ

Xs
n

= TδSn ∨ (T − In×n)δ
Xs
n = 0,
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where S = {i ||Ψ(coli(T ))| > 1}, T̃ is described in
Lemma 2, and T̂ is defined as

⎧

⎪
⎪
⎨

⎪
⎪
⎩

T̂ (i, j) = T (i, j) + 1, if δin = δjn ∈ Ψ(Tδαn ),

T̂ (i, α) = T (i, α) + 1, if δin ∈ Ψ(Tδ
S\α
n ),

T̂ (i, j) = T (i, j), otherwise,

where α ∈ S.

Algorithm 2 Finding all single closed loops for M =

(X = Δn, E, f, x0) at ‖T ‖ = 1

1: Construct T̃ by computing α.
2: Compute Xs = {x|(T̃ − In×n)x = Tδα

n}.
3: Apply Definition 2 to Xs.
4: Apply Algorithm 1 to M .

Proof For clarity, suppose that there is only one
single closed loop Xs and (T − In×n)δ

Xs
n 
= 0. Then

we can have only two cases, that is, S ⊂ Xs (case
1) or S 
⊂ Xs (case 2). Assume that α ∈ Xs and
S\α = β ∈ Xs if case 1 occurs, and that α ∈ Xs

and β /∈ Xs if case 2 occurs. It is easy to find that
TδXs

n − δXs
n = δXα

n + δ
Xβ
n in case 1 where δXα

n =

Ψ(Tδαn )\Ψ(δXs
n ) and δ

Xβ
n = Ψ(Tδβn)\Ψ(δXs

n ), and
that TδXs

n − δXs
n = δXα

n in case 2. Case 2 actually
involves the same type of closed loops as in Lemma 2.
Thus, we take f̃(i ∈ f(α) = Xα ∪Xγ) := f(i) ∪ i to
obtain T̃ δXs

n −δXs
n = Tδαn +δβn = TδSn in case 1 and

T̃ δXs
n − δXs

n = Tδαn in case 2. Note that although S

is known, α and Xβ are unknown. To obtain TδSn ,
we make f̂(α) := f(α) ∪ Xβ . Then case 2 becomes
T̂ δXs

n −δXs
n = Tδαn+Tδβn = TδSn . As a consequence,

cases 1 and 2 both have the formAx = b. Finally, for
the situation where two single closed loops occur, the
same result (T̃ − In×n)δ

Xs
n = TδSn can be obtained

from Lemma 2.
It is clear that a single closed loop can con-

tain more than one bifurcation state. Thus,
for a DFSM A, we use θ to denote all bi-
furcation states that can form a closed loop
in A, and θα for all bifurcation states of the
closed loop in which α is a bifurcation state,
that is, θα :=

{

δin |∃y ∈ WA, xi, α ∈ y ∧ i, j ∈ S
}

(

S = {i ||Ψ(coli(T ))| > 1} , δjn ∼ α
)

.
Lemma 4 For any DFSM M = (X = Δn, E, f, x0)

at ‖T ‖ > 2, if a state set Xs ⊆ X is a single closed
loop, then

(
�

T − In×n)δ
Xs
n = TδSn ∨ (T − In×n)δ

Xs
n = 0,

where
�

T is defined as
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

�

T (i, j) = T (i, j) + 1, if δin = δjn ∈ Ψ(Tδθαn ),
�

T (i, α) = T (i, α) + 1, if δin ∈ Ψ(Tδ
S\θα
n ),

�

T (i, j) = T (i, j), otherwise,

where α ∈ θα.
Proof Lemma 4 is obtained by arbitrarily com-
bining cases 1 and 2 in Lemma 3.
Corollary 1 Given a DFSM M = (X =

Δn, E, f, x0), S = {i ||Ψ(coli(T ))| > 1} can be di-
vided into H = {h |xh ∈ δnS ∧ xh ∈ θα} and L =

{l |xl ∈ δnS ∧ xl /∈ θα} for any α ∈ S.
Note that the key to Lemma 4 is θα. Given

a bifurcation state α that may form a single closed
loop, one way to find θα is given in Algorithm 3. Al-
gorithm 3 has time complexity O(

∑

s∈S\α
|Ψ(Tδsn)|2)

and space complexity O(n2).
From Corollary 1, Lemma 4, and Algorithm 3,

one way to find all single closed loops for any DFSM
is given in Algorithm 4. Algorithm 4 has time com-
plexity O(|S|) and space complexity O(n2).
Remark 1 From Algorithm 4, it is easy to find that
the reason why Definition 2, as the weak version of
Definition 1, is applicable in this paper—we traverse

Algorithm 3 Finding θα for M
Input: T , α, S := {i ||Ψ(coli(T ))| > 1}, D := S\α, θα :=

{α}, L := ∅

Output: θα
1: while θα ∪ L �= S do
2: T ∗ := T

3: Y := Ψ(x)|(T − In×n)x = 0

4: for i ∈ D do
5: for δj

n ∈ Ψ(Tδi
n) do

6: if j /∈ θα then
7: T ∗(:, j) := 0

8: T ∗(α, j) := T ∗(α, j) + 1

9: for δk
n ∈ Ψ(Tδi

n)\δj
n do

10: T ∗(k, j) := T ∗(k, j)− 1

11: end for
12: else
13: T ∗(j, j) := T ∗(j, j) + 1

14: end if
15: end for
16: T ∗(α, α) := T ∗(α, α) + 1

17: if (T ∗ − In×n)x = Tδθα
n has a solution set C and

|{k |k ∈ C ∧ k ∩ Y = ∅}| = |Ψ(Tδi
n)| then

18: BREAK: θα := θα ∪ {xi}
19: else
20: L := L ∪ {xi}
21: end if
22: end for
23: end while
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all bifurcation states and detect the existence of a
single closed loop at each bifurcation state.

3.2 Static approach for a controllable equiva-
lent form

Clearly, for any DFSM, all states in a single
closed loop are mutually controllable. Therefore, we
can combine a single closed loop into a single “aggre-
gate” state without changing the controllability of
the whole DFSM. We give the following definition:
Definition 4 Consider a DFSM M = (X =

Δn, fm, x0). A = (X = Δa, fa, x0) is called a con-
trollable equivalent form of M , if there exists a func-
tion f : Δa → 2Δn , such that

f(fm(x, e)) = fa(f(x), e).

The function f shows the correspondence be-
tween the new state yi ∈ Δa and the original state
xi ∈ Δn, and is called a controllable equivalent func-
tion. We are used to expressing a DFSM in terms of
state transition matrices. One way to obtain a con-
trollable equivalent form in the TM model is stated in
Algorithm 5. Note that Algorithm 5 can be consid-
ered as a proposition for the controllable equivalent
form. Therefore, we present a part of the MAT-
LAB code to emphasize this point. Algorithm 5 has
time complexity O(l) and space complexity O(n2),
where l is the number of single closed loops in the
DFSM. Given a set S 
= ∅ of which the elements are
sets, π(S) is defined as π(S) = (S\xi, xj) ∪ (xi ∪ xj)

Algorithm 4 Finding all single closed loops for M
Input: T , W := ∅, H := ∅, D := ∅, S :=

{i ||Ψ(coli(T ))| > 1}
Output: WM

1: while S �= D ∪H do
2: α ∈ S\H
3: Apply Algorithm 3 to obtain θα
4: if |θα| = 1 then
5: D := D ∪ θα
6: else
7: H := H ∪ θα
8: end if
9: C :=

{
x

∣∣∣∣(�T − In×n)x = TδS
n

}

10: for i ∈ C do
11: if (T i). ∗ i = i ∧ (TTi). ∗ i = i then
12: W := W ∪ {Ψ(i)}
13: end if
14: end for
15: end while
16: C∗ := {Ψ(x)|(T − In×n)x = 0 ∧ (T − In×n)x∗ �= 0

(x∗ ∈ 2x)}
17: W := W ∪ C∗

where xi, xj ∈ S and xi ∩ xj 
= ∅. For a DFSM,
the controllable equivalent form is often not unique.
In practice, we are more concerned with the DFSM
with the fewest states. Thus, we give the following
definition:
Definition 5 Consider a DFSM M = (X =

Δn, fm, x0). A = (X = Δa, fa, x0) is one of the con-
trollable equivalent forms ofM . A is called a minimal
controllable equivalent form for M , if a = n− θ + p

where θ = | ⋃

x∈WM

x| and p = |π(WM )|.

Algorithm 5 Controllable equivalent form of M
Input: T , WM , T ∗ := [ ], T ◦ := [ ]

Output: T ◦ is the TM model of the controllable equiva-
lent form of M ; the controllable equivalent function f is
defined as yi = f (xi) = Ψ(coli(T ∗))

1: for i ∈ WM do
2: a = min

(
find

(
δi
n

))
3: 1n = ones(n,1)
4: b = 1n − δi

n

5: T ∗ = diag(b)
6: T ∗(:, a) = δi

n

7: T ∗(:, all(T ∗ == 0)) = [ ]

8: A = ((T .′) ∗ T ∗)
9: A(:, a) = A(:, a)− δi

n

10: T ◦ = ((A.′) ∗ T ∗)
11: end for

To obtain the minimal controllable equivalent
form, compound closed loops must be processed.
There are two ways to solve the compound closed
loops: the circulation method and the virtual state
method. The circulation method detects a single
closed loop and combines the states therein repeat-
edly. Algorithm 6 is proposed with the circulation
method and has time complexity O(c) and space
complexity O(n2), where c is the maximum number
of single closed loops nested in a compound closed
loop.
Remark 2 Note that Algorithm 6 obtains all
closed loops in a DFSM while obtaining the min-
imal controllable equivalent form. Although its

Algorithm 6 Finding all closed loops and the min-
imal controllable equivalent form for M
Input: T , Tmin := T , W ∗ := ∅

Output: T ◦
min is the TM model of the minimal controllable

equivalent form; W ∗ contains all closed loops in M

1: repeat
2: Tmin := T ◦

min
3: Apply Algorithm 4 to obtain Wmin for Tmin
4: Apply Algorithm 5 to obtain T ◦

min for Tmin
5: W ∗ := W ∗ ∪Wmin
6: until T ◦

min = Tmin
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efficiency decreases with an increase in the number of
compound closed loops, it is still valuable when per-
forming distributed simplification of large networks
of DFSMs.

3.3 Static approach for controllability

In this subsection, we reconsider the issue of
controllability with the help of closed loops.
Lemma 5 Consider DFSM M = (X =

Δn, E, f, x0). If xa ∈ Δn is controllable to xb ∈ Δn,
then there exists a closed loop containing xa and xb

in Mκ, where Mκ is defined as

Mκ(i, j) =

{

1, if i = a ∧ j = b,

T (i, j), otherwise.

Proof By contradiction, assume that there is
no closed loop. We then have that xa and xb are
either unreachable to each other or reachable in one
direction. Note that Mκ(a, b) = 1 implies that xb is
controllable to xa. Hence, xa is not controllable to
xb, and a contradiction holds.

To cope with the problem of repeated matrix
product, we now present a procedure that virtual-
izes a connection from the goal state to the start
state, and uses the idea of closed loops with a virtual
state method. This procedure is called the virtual
connection method and is reported in Algorithm 7.
The so-called virtual state method refers to adding a
virtual state to each closed loop, to destroy the struc-
ture of the closed loops that are nested in compound
closed loops. At this time, the compound closed
loops become single closed loops. More precisely,
given M = (X = Δn, E, f, x0) and Q (Q ⊆ X),
the TM model with the virtual state method for Q,

Algorithm 7 Two-state controllability with the vir-
tual connection method for M = (X = Δn, E, f, x0)
Input: T , goal state xb, start state xa, S :=

{i ||Ψ(coli(T ))| > 1}
1: T (xa, xb) = 1

2: Construct TV (S)

3: Construct
�

T V (S) where α is specified as the start state
xa

4: C :=
{
Ψ(x)

∣∣∣∣(�T V (S) − I(n+|H∗|)×(n+|H∗|))x

= TV (S)δ
S
n+|H∗| ∧ (Tx). ∗x = x∧ (TTx). ∗x = x

}
5: if C �= ∅ then
6: BREAK: xa is controllable to xb

7: else
8: BREAK: xa is not controllable to xb

9: end if

denoted by TV (Q), is defined as

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

TV (Q)(i, j) = 0 ∧ TV (Q)(l, j) = TV (Q)(i, l) = 1,

if i ∈ H∗ ∧ xj ∈ Q ∧ T (i, j) = 1,

TV (Q)(i, j) = 0, if i, j > n,

TV (Q)(i, j) = T (i, j), otherwise,

where H∗ = H ∩ S̄, δnH = Ψ(TδQn ), S̄ =
{

i
∣

∣

∣

∣Ψ(coli(TT))
∣

∣ > 1
}

, the dimension of TV (Q) is
(n+|H∗|)×(n+|H∗|), and l ∈ ΔV (Q) = Δn+|H∗|\Δn

is the corresponding virtual state.

Remark 3 If TV (S) and
�

T V (S) are constructed in
advance, the time complexity of Algorithm 7 can be
reduced to O(1).

4 An illustrative example

Example 1 Consider A = (X,E, f, x0) depicted
in Fig. 1, where X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, x0 =

{1}, E = {a, b}, and transition function f is repre-
sented by labeled arrows.

1. Apply Algorithm 3 to obtain θα where α = 5,
and apply Algorithm 5 to obtain θ.

The TM model of A is as follows:

T = δ10 [2, {3, 7}, {4, 8}, 5, {3, 6}, 10, 5, 9, 10, 10] .

Then we have S = {2, 3, 5}, D = {2, 3}, θα =

{5}, and Y = {10}. For i = 3 ∈ S, T ∗ is constructed
as

T ∗ =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0

0 0 1 −1 0 0 0 −1 0 0

0 0 0 1 −1 0 1 1 0 0

0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 −1 0 0 0

0 0 1 −1 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

By solving (T ∗ − I10×10)x = Tδ
{5}
10 , we

have x1 = {3, 4, 5}, x2 = {3, 5, 8}, x3 =

{3, 4, 5, 10}, and x4 = {3, 5, 8, 10}. Because
|{k |k ∈ C ∧ k ∩ Y = ∅}| = |{x1, x2}| = 2 =
∣

∣Ψ(Tδi=3
n )

∣

∣ where C = {x1, x2, x3, x4}, we obtain
θα = {3, 5}. For i = 2 ∈ S, constructing T ∗ and
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solving (T ∗ − I10×10)x = Tδ
{3,5}
10 , x = {10}. Be-

cause |{k |k ∈ C = {x} ∧ k ∩ Y = ∅}| = 0 
= 2 =
∣

∣Ψ(Tδi=2
n )

∣

∣ , we obtainL = {2}. Note that θ∪L = S.
Thus, the algorithm terminates and θα=5 = {3, 5}.
Moreover, we have θα=5 = θ because H = θ, D = L,
and D ∪H = S, which implies that there is only one
closed loop in A.

1 2 3 4 5 6 10

7

8 9

a a a

a

b

a

b

b

b

a

a a, b

a

Fig. 1 DFSM A

2. Apply Algorithm 6 to obtain the minimal
controllable equivalent form.

According to the above subquestion, we have

θ = {3, 5}. By solving (
�

T − I10×10)x = TδS10, we
have WM = {3, 4, 5}. By applying Algorithm 5, we
obtain

T ◦ = δ8 [2, {3, 5} , {4, 6} , 8, 3, 7, 8, 8] ,
T ∗ = δ10 [1, 2, {3, 4, 5} , 6, 7, 8, 9, 10] .

According to the controllable equivalent func-
tion f (xi) = Ψ(coli(T ∗)) and the notation yi =

f (xi) = x′
i, we have 1′ = {1}, 2′ = {2}, 3′ =

{3, 4, 5}, 4′ = {6}, 5′ = {7}, 6′ = {8}, 7′ = {9},
8′ = {10}. The minimal controllable equivalent form
is shown in Fig. 2.

1′ 2′ 3′ 4′ 8′

5′

6′ 7′

Fig. 2 The minimal controllable equivalent form of A
in the TM model

3. Apply Algorithm 7 to check the two-state
controllability from state 4 to state 9.

We first make T (4, 9) = 1 to virtualize a connec-
tion from state 9 to state 4. Based on T , we have S =

{2, 3, 5}, S̄ = {3, 4, 5, 10}, δ10H = δ10 {3, 4, 6, 7, 8},

δ10H
∗ = δ10 {3, 4}. Because Ψ(Tδ310) ∩ δ10H

∗ =

{δ410} and Ψ(Tδ510) ∩ δ10H
∗ = {δ310}, virtual states

11, 12, and 13 are proposed such that 2 → 3 ⇒
2 → 11 → 3, 3 → 4 ⇒ 3 → 12 → 4, 5 → 3 ⇒
5 → 13 → 3. The modified TM model is shown
in Fig. 3, where the dashed lines refer to the vir-
tual states and the virtual connection. It is easy to
obtain θα=9 = {3, 5, 9} by Algorithm 3. By solv-

ing (
�

T V (S) − I13×13)x = TV (S)δ
S={2,3,5}
13 , we have

x = [0 0 1 1 1 0 0 1 1 0 0 0 1]T ∼ {3, 4, 5, 8, 9, 13}.
Thus, there exists a closed loop between states 4 and
9, which implies that state 4 is controllable to state
9.

1 2 11 3 12 4 10

7

8 9

5 6

13

Fig. 3 The modified TM model of A with the virtual
states

5 Concluding remarks

A matrix-based static approach for detection of
a closed loop has been proposed. Based on the static
view, we propose the definitions of the controllable
equivalent form and minimal controllable equivalent
form. The static approach is then extended for con-
trollability and eliminates the “explosion of complex-
ity” problem inherent in the existing approaches. For
the issues mentioned in this work, the implementa-
tion of our algorithms is much simpler than that
of algorithms designed from the dynamic process
perspective.
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