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Abstract: Line-of-sight (LoS) probability prediction is critical to the performance optimization of wireless commu-
nication systems. However, it is challenging to predict the LoS probability of air-to-ground (A2G) communication
scenarios, because the altitude of unmanned aerial vehicles (UAVs) or other aircraft varies from dozens of meters to
several kilometers. This paper presents an altitude-dependent empirical LoS probability model for A2G scenarios.
Before estimating the model parameters, we design a K-nearest neighbor (KNN) based strategy to classify LoS and
non-LoS (NLoS) paths. Then, a two-layer back propagation neural network (BPNN) based parameter estimation
method is developed to build the relationship between every model parameter and the UAV altitude. Simulation
results show that the results obtained using our proposed model has good consistency with the ray tracing (RT)
data, the measurement data, and the results obtained using the standard models. Our model can also provide wider
applicable altitudes than other LoS probability models, and thus can be applied to different altitudes under various
A2G scenarios.
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1 Introduction

The unmanned aerial vehicle (UAV) technique
is expected to be widely used in sixth-generation
(6G) wireless communication due to its compactness
and flexibility (Zhang XF et al., 2010; Alladi et al.,
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2020; Xiao et al., 2020; You et al., 2021). Differ-
ent from traditional ground base station (BS) com-
munication, air-to-ground (A2G) communication in-
volves three-dimensional random scatterers. There-
fore, UAV altitude information needs to be consid-
ered in A2G scenarios (Fan et al., 2016; Zhu et al.,
2019, 2021b; Vitucci et al., 2021). However, the line-
of-sight (LoS) path, which is the most reliable A2G
link, is time-varying and difficult to predict. There-
fore, constructing altitude-dependent LoS probabil-
ity models is essential for design and optimization of
A2G communication systems.

LoS probability models are generally di-
vided into two classifications, i.e., geometry-based
analytical models and measure-based empirical
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models. The geometry-based analytical models pre-
dict the LoS probability according to the electro-
magnetic wave propagation theory and the geometry
information. The geometry information is usually
obtained from the given digital maps or statistical
properties of environments. Digital maps analyze
the signal propagation in a deterministic way, i.e., via
the ray tracing (RT) (Holis and Pechac, 2008; Zhu
et al., 2022) and point cloud (Järveläinen et al., 2016)
methods, but these methods require an accurate dig-
ital map with detailed material information. Statis-
tical properties describe the built-up environment
using statistical characteristics of buildings (ITU-R,
2003; Liu et al., 2018; Al-Hourani, 2020; Cui et al.,
2020; Gapeyenko et al., 2021). For example, ITU-R
(2003) used three parameters to describe the geomet-
rical statistics of urban areas. However, it is complex
and difficult for the analytical methods to reflect the
impact of the scenarios accurately.

Measure-based standard empirical models, e.g.,
the Third Generation Partnership Project (3GPP)
TR 38.901 (3GPP, 2016b), 5G Channel Model
(5GCM) (3GPP, 2016a), and WINNER II (WIN-
NER, 2008), are usually established based on the
measurement data. Since field measurement is com-
plex and costly, many researchers use RT simula-
tion data for channel modeling (Holis and Pechac,
2008; Samimi et al., 2015; Khawaja et al., 2018; Lee
et al., 2018; Mao et al., 2020; Zhu et al., 2021b).
Specifically, by analyzing the RT simulation data
of New York City, Samimi et al. (2015) proposed
an RT-based empirical model, where the square in-
dex was added to improve the descent speed. Lee
et al. (2018) proposed a model that had a low mean
square error in the high-rise urban scenario. Holis
and Pechac (2008) built an empirical prediction LoS
probability model with respect to the elevation angle
for scenarios with altitudes of platforms more than
10 km. However, these models cannot be employed
in UAV communication scenarios, because they are
applicable only for scenarios where altitudes of the
platforms are below dozens of meters or over several
kilometers.

The aforementioned empirical methods are de-
signed based on traditional parameter estimation
methods, e.g., the minimum mean square error
(MMSE) and least square (LS) (Lin et al., 2018).
These traditional methods usually require specific
functional relationships between variables. There-

fore, they are ineffective when the relationship is
uncertain. Recently, machine learning (ML) based
parameter estimation methods have received a lot
of attention. This is because they can accurately
determine the internal connection between parame-
ters (Li et al., 2019; Yang WF et al., 2019; Huang
C et al., 2020; Huang J et al., 2020; Zheng et al.,
2020; Yang M et al., 2021). Moreover, as the first
step of parameter estimation, the LoS and non-LoS
(NLoS) classifications of channel data were studied
in Huang C et al. (2020) and Zheng et al. (2020).
Huang C et al. (2020) used the support vector ma-
chine (SVM) and artificial neural network (ANN) to
perform LoS/NLoS recognition on vehicle-to-vehicle
network measurement data. In Zheng et al. (2020),
a new LoS/NLoS identification method based on the
convolutional neural network (CNN) was proposed,
achieving an error rate below 1%. Some researchers
focused on using ML to predict the LoS probabil-
ity directly. For example, Yang WF et al. (2019)
used ANN, K-nearest neighbor (KNN), and gradient
boosting decision tree (GBDT) methods to predict
the LoS probability directly under indoor scenarios.
However, none of these prediction models can be ap-
plied to different scenarios without modification.

In this paper, a new altitude-dependent empiri-
cal LoS probability model is presented for A2G com-
munication scenarios. The main contributions are
summarized as follows:

1. We propose a new altitude-dependent em-
pirical LoS probability model based on massive RT
simulation data for A2G communications. Consid-
ering the scenario effects, distance effects, and the
altitude factor, this model is more suitable for A2G
scenarios than other models.

2. We design an ML-based parameter estima-
tion algorithm that introduces the altitude factor to
every model parameter. We establish virtual city
scenarios based on the statistical characteristics of
buildings, and perform numerous RT simulations on
the virtual scenarios to obtain the training data for
the parameter estimation algorithm.

3. We propose a KNN-based LoS/NLoS identi-
fication solution to recognize the LoS path and cal-
culate the LoS probability. We also construct a two-
layer back propagation neural network (BPNN) for
model parameter estimation. As a result, the adapt-
ability and accuracy of the proposed empirical LoS
probability model can be further improved.
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2 New empirical model for the LoS
probability

2.1 Background

The LoS probability is defined as the probabil-
ity that the signal propagating from the transmitter
to the receiver along the geometrically shortest route
is not blocked by any object available in the prop-
agation environment. The LoS probability is typi-
cally modeled as an exponential function against the
distance with two undetermined parameters (Holis
and Pechac, 2008; 3GPP, 2016b; Zhu et al., 2021a).
Specifically, the 3GPP LoS probability model can be
expressed as

P 3GPP
LoS (dTR) =min

(
D1

dTR
, 1

)[
1− exp

(
−dTR

D2

)]

+ exp

(
−dTR

D2

)
,

(1)
where dTR is the distance between the transmitter
and the receiver, D1 = 18 m is the breakpoint dis-
tance where the LoS probability is no longer equal
to 1, and D2 = 36 m is a decay parameter that con-
trols the decreasing rate of the LoS probability with
distance. Based on Eq. (1), Samimi et al. (2015) pro-
posed the New York University (NYU) LoS proba-
bility model and improved the accuracy of the model
by squaring the above formula as a whole. In partic-
ular, this model was constructed using a higher res-
olution intersection test, compared with the 3GPP
model based on the real database of New York City.
The NYU LoS probability model can be expressed
as Eq. (2) (see the bottom of this page), where D1

and D2 are 27 m and 71 m, respectively.

2.2 New multi-height LoS probability model

In this subsection, we propose an altitude-
dependent empirical LoS probability model with
three parameters. Current LoS probability models
fit only the measurement data well when the alti-
tude of the platform is about 10 m. Thus, the scope
of application of these models is limited. The ex-

pression of our model is given by Eq. (3) (see the
bottom of this page), where hTR is the height from
the transmitter to the receiver, and D3 is a new aux-
iliary parameter that balances the influence of D1

and D2. Considering the flexible model architecture
and extensive data, ML is employed in this study for
LoS probability prediction because it shows excel-
lent ability to improve the performance on parame-
ter estimation (Li et al., 2019; Yang WF et al., 2019;
Huang C et al., 2020; Huang J et al., 2020; Zheng
et al., 2020; Yang M et al., 2021). In our method,
we introduce the altitude factor to the parameters of
the LoS probability model.

The process of our proposed ML-based param-
eter estimation is shown in Fig. 1. Since field mea-
surements for A2G channels are difficult and costly,
the RT simulation data is adopted as the training
data. We first carry out scenario reconstruction and
RT simulation for four typical urban scenarios to
obtain the required data for parameter estimation.
Then, we classify the simulated or measured input
data as LoS and NLoS data. Note that in this study,
we develop a modified KNN algorithm to perform
LoS/NLoS classification. The ratio of the LoS path
number to the total path number with respect to the
nth height andmth distance is Pm,n

LoS . The LoS proba-
bility at a specific height with different distances can
be denoted as (Pm

LoS; d
m
TR),m = 1, 2, · · · , 40. More-

over, the LS method is adopted to fitD1, D2, andD3

at n different heights (hnTR) (n = 1, 2, · · · , 50) as the
BPNN training data sets (Dn

1 ;h
n
TR), (D

n
2 ;h

n
TR), and

(Dn
3 ;h

n
TR). Finally, a part of the data sets is used

to perform BPNN training and obtain the parame-
ters of D1(hTR), D2(hTR), and D3(hTR), which are
altitude dependent.

3 ML-based estimation for model pa-
rameters

3.1 RT-based channel data

The RT technique has been widely used in
channel modeling and verification to deal with the

PNYU
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Fig. 1 A flowchart of parameter estimation

inconvenience and high cost of field measurement
(Holis and Pechac, 2008; Samimi et al., 2015;
Khawaja et al., 2018; Lee et al., 2018; Mao et al.,
2020; Zhu et al., 2021b). In RT simulations, the
electromagnetic wave radiating from the source is
considered as a bunch of rays using a ray-optic ap-
proximation, and thus a geometric solution can be
obtained based on the uniform theory of diffraction
and geometric optics. By tracking all rays with the
forward or reverse technique, the propagation pa-
rameters can be calculated.

When the RT technique is applied, accurate
and detailed geometric and electromagnetic descrip-
tions of the scattering environment are required. In
this study, we reconstruct four typical urban sce-
narios according to the statistical characteristics of
buildings (ITU-R, 2003). The locations of build-
ings and streets follow a uniform distribution and
the heights of buildings follow a Rayleigh distribu-
tion. The environment-dependent statistical param-
eters are shown in Table 1, where α is the percentage

Table 1 Environment-dependent parameters of four
scenarios

Scenario α β γ W S

Suburban 0.1 750 8 11.55 24.97
Urban 0.3 500 15 24.49 20.23
Dense urban 0.5 300 20 40.82 16.91
High-rise urban 0.5 300 50 40.82 16.91

of the land area covered by buildings, β represents
the mean number of buildings in the unit area, γ
is a random variable denoting the random building
height with the probability density function (PDF)
as

P (h) =
h

γ2
exp

(
− h2

2γ2

)
, (4)

W is the width of the building, and S is the width of
the street (ITU-R, 2003; Holis and Pechac, 2008; Al-
Hourani et al., 2014). Fig. 2 shows the four typical
reconstructed scenarios, i.e., suburban, urban, dense
urban, and high-rise urban, and the area of each
scenario is 4 km2.

(a) (b) 

(c)  (d) 

Fig. 2 An illustration of the reconstructed scenarios:
(a) suburban; (b) urban; (c) dense urban; (d) high-
rise urban
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We perform the RT technique on the recon-
structed scenarios and obtain the characteristic pa-
rameters, including the path loss (PL), delay, angle
of arrival (AoA), and angle of departure (AoD). The
simulation scenario setting is illustrated in Fig. 3.
The blue squares represent the locations of trans-
mitters, whose heights are from 5 to 1005 m with an
interval of 20 m. The red points are the positions
of receivers distributed in concentric circles with the
transmitter as the center. The radii of concentric
circles are from 5 to 1000 m with an interval of 25 m,
and the number of receivers on each concentric cir-
cle is around 200. To avoid contingency, we repeat
the simulation five times and calculate the average
values of the four characteristic parameters. The to-
tal number in the data set is about 10 000, and the
simulation parameters are shown in Table 2.

3.2 KNN-based LoS/NLoS classification

To calculate the LoS probability, we develop
a KNN-based LoS/NLoS classifier to carry out the
classification of the massive data obtained from the
RT simulation. Based on the raw data set of PL,
delay, AoA, and AoD, the classifier can identify the
new input data as the LoS or NLoS condition.

Rx
Tx

Fig. 3 An illustration of data acquisition setup (Ref-
erences to color refer to the online version of this
figure)

Table 2 Simulation parameters

Parameter Value

Carrier frequency 28 GHz
Tx height (interval) 5–1005 m (20 m)
Rx height 2 m
Rx distance 0–1000 m
Bandwidth 500 MHz
Antenna type Omnidirectional

In the KNN algorithm, the distance refers to the
difference between two samples. Typical distance
metrics include the Euclidean distance, Minkowski
distance, Manhattan distance, and Chebyshev dis-
tance (Zhang Y et al., 2018; Yang GS et al., 2019).
The KNN-based classifier in this study is based on
the Euclidean distance. As shown in Fig. 4, Xu de-
notes the new input data with four characteristic
elements, the red dots represent the pre-labeled LoS
data set, and the blue dots represent the pre-labeled
NLoS data set. The KNN network obtains the LoS
or NLoS status of the five points closest to Xu by
calculating the Euclidean distance between Xu and
the pre-labeled data. If the proportion of the LoS
status in the five points is larger than that of the
NLoS status, the new input data will be judged as
LoS, and vice versa.

When we calculate the Euclidean distance, there
is a problem that different characteristic elements
have significantly different orders of magnitude. For
fairness, the samples are normalized before model
training. In this study, the linear normalization
method is adopted for sample normalization, given
by

x′ =
x−min(x)

max(x) −min(x)
, (5)

where x is the input value of each feature and x′ is the
normalized value. The distance calculation formula
can be expressed as Eq. (6) (see the bottom of the
next page), where PLu, τu, (AoA)u, and (AoD)u
∈ Xu are the four characteristic element values of the
new input data, and PLv, τv, (AoA)v, and (AoD)v
are the four characteristic element values of the vth

labeled data in the KNN network.

50 m

100 m

1000 m

NLoS set LoS set

4 red points 1 blue point 
LoS 

Tx

5 close points

Xu
(PLu, τu, (AoA)u, (AoD)u)

Fig. 4 Diagram of the KNN network (References to
color refer to the online version of this figure)
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In this study, 740 sets of simulation data at dif-
ferent heights and distances are used to train the
KNN network. Note that there exists a data matrix
for each height with a certain distance, and there
are 200–700 collections of four different character-
istic elements in each data matrix. Subsequently,
80% of the characteristic elements in each matrix
are randomly selected as the training set, whereas
the remaining 20% are selected as the validation set.

To evaluate the network performance on classi-
fication, we can obtain the judgement error as

Aerror=Ni/Ni
′, (7)

where Ni is the number of data points with incorrect
judgments in the validation set, and Ni

′ is the total
data point number in the validation set.

After using the KNN classifier to identify the
new input data, we can obtain the LoS probability
Pm,n
LoS corresponding to a specific height and distance,

denoted as (Pm,n
LoS ; dmTR, h

n
TR).

3.3 BPNN-based parameter estimation

BPNN is developed in this study to perform
parameter estimation based on the RT data. Note
that we use 2000 sets of simulation data at different
heights and distances to train the BPNN network.
We first keep the altitude variable unchanged and
analyze the data set (Pm

LoS; d
m
TR),m = 1, 2, · · · , 40.

At each specific height, the data set (Pm
LoS; d

m
TR)

and Eq. (8) (see the bottom of this page) are used
to perform LS fitting, and then we can obtain the
data sets (Dn

1 ;h
n
TR), (D

n
2 ;h

n
TR), and (Dn

3 ;h
n
TR), n =

1, 2, · · · , 50. The data set is divided into two parts by
a proportion of 8:2 randomly, where 80% of the data
is used for training while the rest for validation. The
proposed BPNN-based training framework is given
in Fig. 5. The neural network, middle part of the
BPNN, consists of an input layer, two hidden layers,

and an output layer. The data set (hnTR) is the in-
put layer, and the data sets (Dn

1 ), (Dn
2 ), and (Dn

3 )

make up the output layer. Moreover, the neural
network uses two hidden layers, each of which has
four neurons, significantly improving the estimation
accuracy.

To improve the accuracy of the training pro-
cess, Eq. (4) is used to normalize the data sets
(Dn

1 ;h
n
TR), (Dn

2 ;h
n
TR), and (Dn

3 ;h
n
TR). After in-

putting the data sets into BPNN, the altitude-
dependent model parameters D1(hTR), D2(hTR),
and D3(hTR) can be expressed as Eq. (9) (see the
bottom of this page), where j is the number of neu-
rons in the first hidden layer, i is the number of
neurons in the second hidden layer, k is the number
of neurons in the output layer, w(q)

ji is the weight
between the ith neuron in the qth layer and the jth

neuron in the former layer, b(q)p is the bias of the
pth neuron in the qth layer, and ε(q)p is the activation
function of the pth neuron in the qth layer. Here, p =
1, 2, 3, 4, and q = 1, 2, 3. In this study, the activa-
tion sigmoid function is introduced into the hidden
layers of BPNN, expressed as

εsig (x) =
1

1 + e−x
. (10)

The output loss function is important in BPNN.
When the network parameters are adjusted to mini-
mize the value of the loss function, we can obtain the
best fitting result. The loss function is expressed as

LF =

√
√
√
√ 1

N

N∑

n=1

(Dk (h
n
TR)−Dn

k )
2. (11)

The learning rate used by the algorithm is 0.1,
the momentum parameter is 0.9, and the number of
training times is 40 000. After training and improve-
ment, the neuron weights for four scenarios can be
found in the supplementary materials (Tables S1–
S4).

ρ=

√
(PLu − PLv)

2
+(τu − τv)

2
+[(AoA)u − (AoA)v]

2
+[(AoD)u − (AoD)v]

2
. (6)

PLoS(dTR, hTR=hn
TR) =

{

min

(
D1(hTR)

dTR
, 1

)[

1− exp

(

− dTR

D2(hTR)

)]

+ exp

(

− dTR

D2(hTR)

)}D3(hTR)

, n = 1, 2, ..., 50.

(8)

Dk (hTR;w, b, ε) = ε
(3)
k

{
4∑

i=1

w
(3)
ik ε

(2)
i

[
4∑

j=1

w
(2)
ji ε

(1)
j

(

w
(1)
1j hTR + b

(1)
j

)

+ b
(2)
i

]

+ b
(3)
k

}

, k = 1, 2, 3. (9)
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Fig. 5 An illustration of the BPNN-based framework

Most urban scenarios can be approximately rep-
resented by one of these four typical scenarios, so
the trained parameters in Tables S1–S4 can be used
directly for prediction. For the high-precision appli-
cation, we can calculate ψ ∈ {α, β, γ}, W , and S of
the new scenario, and retrain the neuron parameters
using the BPNN-based estimation method.

4 Simulations and validation

4.1 Path classification validation

Taking the dense urban scenario as an example,
we perform numerical simulations and comparisons
to verify the proposed classifier. For the UAV alti-
tudes of 200 m and 400 m, we can obtain the commu-
nication statuses between the receiver and the trans-
mitter at different distances. As shown in Fig. 6, the
red points are the LoS paths, and the blue points
are NLoS paths. We can see that the number of LoS
paths decreases as the distance increases, while the
number of LoS paths increases when the UAV alti-
tude increases. Note that some square areas close to
the center are still NLoS, because they are blocked
by buildings in the scenario. Fig. 6 also demonstrates
the scientific nature of the KNN-based classification
method.

The judgment error calculated using Eq. (7) is

shown in Fig. 7a. As we can see, the judgment er-
ror of the KNN-based classifier is below 0.0005. In
other words, the accuracy of LoS/NLOS classifica-
tion is over 0.995, which is practical for further pro-
cessing, and the accuracy of our classifier is higher
than that of the classification method in Huang C
et al. (2020). In addition, we use other ML classifi-
cation methods, such as decision trees (DT), to build
classifiers. Specifically, we use the classification and
regression tree (CART) method, in which the Gini
index is adopted to select the optimal division point
of the optimal feature, each feature is divided re-
cursively, and the feature space is divided into finite
units. The error of the DT method is shown in Fig.
7b. Comparing the error results in Fig. 7, it can be
seen that the performance of the KNN-based classi-
fication method is better than that of the DT-based
method. This is because the KNN-based classifica-
tion method can best reveal the data characteristics
and balance the weight of each element.

4.2 Parameter estimation validation

To evaluate the BPNN-based parameter estima-
tion method, the training results of the training set
and validation set on the three parameters are shown
in Fig. 8. It can be seen that parameter D1 in-
creases as the height increases. This means that the
distance range continues to increase when the LoS
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Fig. 6 Judgment results under the dense urban scenario: (a) hTR = 200 m; (b) hTR = 400 m (References to
color refer to the online version of this figure)
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Fig. 7 Judgment errors at different heights and distances under the dense urban scenario: (a) KNN; (b) DT

probability is 1. Since the two parameters D2 and
D3 jointly control the variation curve trend, they
present a state of undulations within a certain range.
Note that the results are in line with the theoretical
derivation and objective laws. As shown in Fig. 8,
the neural network is well trained and the prediction
values are in good agreement with the original values
in the validation set. It also demonstrates that the
prediction framework has good performance and de-
scribes the relationship between each parameter and
UAV height.

We also use other ML methods for parameter
estimation, and the mean square errors (MSEs) of
altitude-dependent parameters in the prediction set
and validation set are used to evaluate the train-
ing performance. Fig. 9 shows the MSEs of DT,
BPNN, support vector regression (SVR), and Gaus-
sian process regression (GPR). Among them, DT

and BPNN have good performance on parameter es-
timation. For the DT method, the MSEs under the
high-rise urban and suburban scenarios are larger
than those under other scenarios, showing poor ro-
bustness in our application. The BPNN method
achieves low MSE under each scenario and shows
good robustness. For the SVR and GPR algorithms,
due to the complex network parameters, it is diffi-
cult to achieve a good fitting state in a short period
of time. When the DT method is used for regres-
sion, only one factor can be considered at each node,
and the contribution of each element cannot be bal-
anced according to the weight of multiple elements.
Considering performance and robustness, we choose
the BPNN method to estimate the model parameters
in this study. Note that it is convenient for BPNN
to further modify the network parameters with new
data sets from measurement and simulation.



1386 Pang et al. / Front Inform Technol Electron Eng 2022 23(9):1378-1389

hTR (m)

D
1

D
2

D
3

(a)

Generated values Training set Validation set

Generated values Training set Validation set

Generated values Training set Validation set

200

100

0

50

0

0  100  200  300  400  500  600  700  800  900  1000

1.0

0.5

0

(b)

Generated values Training set Validation set

Generated values Training set Validation set

Generated values Training set Validation set

hTR (m)

D
1

D
2

D
3

200

100

0

50

0

2

1

0 0  100  200  300  400  500  600  700  800  900  1000

(c)

Generated values Training set Validation set

Generated values Training set Validation set

Generated values Training set Validation set

hTR (m)

D
1

D
2

D
3

200

100

0

2

1

0

100

50

0

0  100  200  300  400  500  600  700  800  900  1000

(d)

Generated values Training set Validation set

Generated values Training set Validation set

Generated values Training set Validation set

hTR (m)

D
1

D
2

D
3

200

100

0

100

50

0

0  100  200  300  400  500  600  700  800  900  1000

2

1

0

Fig. 8 Training results for height-dependent parameters under different scenaries: (a) suburban; (b) urban;
(c) dense urban; (d) high-rise urban
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4.3 Prediction results and analysis

Different scenarios and UAV height factors have
a great influence on the LoS probability. Fig. 10
shows the LoS probability when the UAV altitudes
range from 0 to 1000 m and the communication dis-
tance is 150 m. It can be seen that the LoS probabil-
ity varies greatly at a certain height under different
scenarios. The LoS probability decreases as the den-
sity of urban buildings increases, which conforms to
the objective laws.

To demonstrate the accuracy of the proposed
LoS probability model, we take the urban scenario
as an example, and compare the results obtained us-
ing our proposed ML-based empirical model (3) with
those obtained using representative models, the RT
simulation data, and the measurement data. For the
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Fig. 10 LoS probability vs. height in different sce-
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low-altitude cases (Fig. 11a), we set the communi-
cation height as 40 m. We can see that the perfor-
mances of the proposed model and the RT simulation
data are very similar to those of other representa-
tive standard models (Samimi et al., 2015; 3GPP,
2016a, 2016b). The prediction results of our model
also agree with the measurement data in Sun et al.
(2015). Moreover, when the communication altitude
is high, the standard models are no longer suitable
for LoS probability prediction. As shown in Fig. 11b,
the standard models deviate and cannot describe the
real situation at the altitude of 600 m. Our proposed
model is in agreement with the analytical model in
Al-Hourani (2020). Moreover, the RT data agrees
with the prediction results. Our model can achieve
good prediction at both low and high altitudes.

5 Conclusions

In this paper, we have proposed the altitude-
dependent empirical LoS probability model based on
ML for A2G scenarios. First, we have applied the
KNN to classify the LoS and NLoS paths accord-
ing to the RT simulation data with the recognition
accuracy rate as high as 0.995. Then, to introduce
the factor of height to the LoS probability, we have
developed a two-layer BPNN to estimate the param-
eters of the proposed LoS probability model, which
has better performance than other regression algo-
rithms. Simulation results have demonstrated that
the prediction results of our proposed LoS proba-
bility model can achieve good versatility at both low
and high altitudes and have good agreement with RT
simulation and measurement data. In future work,
we will improve the accuracy of LoS probability pre-
diction by more measurement data and expand the
model to various scenarios.
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