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Abstract: Observability ensures that any two distinct initial states can be uniquely determined by their outputs, so
the stream ciphers can avoid unobservable nonlinear feedback shift registers (NFSRs) to prevent the occurrence of
equivalent keys. This paper discusses the observability of Galois NFSRs over finite fields. Galois NFSRs are treated
as logical networks using the semi-tensor product. The vector form of the state transition matrix is introduced, by
which a necessary and sufficient condition is proposed, as well as an algorithm for determining the observability of
general Galois NFSRs. Moreover, a new observability matrix is defined, which can derive a matrix method with lower
computation complexity. Furthermore, the observability of two special types of Galois NFSRs, a full-length Galois
NFSR and a nonsingular Galois NFSR, is investigated. Two methods are proposed to determine the observability of
these two special types of NFSRs, and some numerical examples are provided to support these results.
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1 Introduction

As a pseudo-random sequence generator, feed-
back shift registers (FSRs) are widely used in many
scenarios, such as classical stream ciphers, crypto-
graphic systems, secure communication, delay mea-
surement, and spread spectrum communication gen-
erators (Golomb, 1967; Hellebrand et al., 1995). In
recent years, many studies have focused on FSRs, es-
pecially after the eSTREAM project in Europe (Au-
masson et al., 2009; Deepthi and Sathidevi, 2009).
From the perspective of feedback functions, FSRs
can be divided into linear FSRs (LFSRs) and non-
linear FSRs (NFSRs). Originally, LFSRs have be-
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come the major block of several classical stream ci-
phers, error detection, and correction codes owing
to their efficient implementation and outstanding
cryptographic properties. However, due to the lin-
ear constraint among LFSR output signals (Meier
and Staffelbach, 1989), at present NFSR design has
gradually developed into an important stream cipher
design method (Massey, 1969; Lai, 1987). From a
structural point of view, NFSRs can be divided into
Fibonacci NFSRs and Galois NFSRs. The feedback
of Fibonacci NFSRs is applied only to the last bit,
while the feedback of Galois NFSRs is applied to ev-
ery bit. Due to the advantages of shorter propagation
time and higher throughput (Dubrova, 2009), Galois
NFSRs have been widely used and studied (Dubrova,
2010; Wang XJ et al., 2022). However, due to re-
search tool limitation and complexity, the theory of
Galois NFSRs has not been well established.

Observability is a fundamental property in
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control theory, which can ensure that any two dis-
tinct initial states can be uniquely determined by
their outputs. That is, starting from two distinct
initial states, the NFSR does not produce two identi-
cal outputs. Limniotis et al. (2006, 2008) introduced
the concept of observability into the research of se-
quence generators for the first time, and studied the
linear complexity and the de Brujin generator prob-
lem accordingly. Zhao et al. (2021) investigated the
equivalence transformation between Galois NFSRs
and Fibonacci NFSRs based on observability. Ac-
cording to the definition of sequence generator ob-
servability, NFSR-based stream ciphers should avoid
unobservable Galois NFSRs from the security view-
point and select observable ones (Kong et al., 2022).
Kong et al. (2022) investigated the observability of
binary Galois NFSRs using a new observability ma-
trix, but it cannot be applied directly to finite fields.

In recent years, a mathematical tool called the
semi-tensor product of matrices has been developed,
which can multiply two matrices with any dimen-
sions (Cheng et al., 2011, 2012). As soon as the semi-
tensor product of matrices came out, it was quickly
applied to the study of Boolean networks (Wang B
and Feng, 2019; Li YF and Zhu, 2020; Zheng and
Feng, 2020; Zhong J et al., 2020; Shen et al., 2021;
Yu et al., 2021; Zhang et al., 2021; Huang et al.,
2022). A Boolean network is a finite state automa-
ton that evolves through Boolean functions. Many
recent works have treated an NFSR as a Boolean
network because both are modeled as finite state au-
tomata, which is undoubtedly a good solution to the
lack of research tools for NFSRs. For instance, NF-
SRs have been regarded as Boolean networks and
many issues about NFSRs have been studied such
as linearization representation (Zhong JH and Lin,
2015), stability (Zhong JH and Lin, 2016b), driven
stability (Zhong JH and Lin, 2016a), the minimum
period problem (Zhong JH and Lin, 2018), decom-
position (Zhong JH and Lin, 2019a), and equivalence
analysis (Zhong JH and Lin, 2019b). Lu and his team
used the semi-tensor product method to study trans-
formation between Galois NFSRs and Fibonacci NF-
SRs (Lu et al., 2018a), nonsingularity, reliability (Lu
et al., 2018b, 2021), and other NFSR issues. Fur-
thermore, in modern stream cipher algorithms, to
consider software implementation, some research is
now based on finite fields (Wang QY and Jin, 2013;
Wang HY et al., 2017), which motivates us to study

NFSRs over finite fields. On the other hand, a logical
network, as an extension of a Boolean network that
replaces the original binary values in the Boolean
network with multi-values, is certainly a good re-
search tool for studying NFSRs over finite fields.

In this work, we study the observability of Galois
NFSRs over Fp. Galois NFSRs are treated as logical
networks using the semi-tensor product of matrices.
We discuss the observability of general Galois NFSRs
using two methods that are based on the state pair
trajectory and a new observability matrix. Then we
study two special types of Galois NFSRs, full-length
Galois NFSRs and nonsingular Galois NFSRs. The
main contributions can be summarized as follows:

1. For general Galois NFSRs, a vector form of
the state transition matrix is introduced. An algo-
rithm based on the vector form is proposed to draw
the state pair trajectory table, by which a necessary
and sufficient condition for the observability of this
type of NFSR is obtained.

2. For general Galois NFSRs, another matrix
method is proposed. Inspired by the work of Li R
et al. (2014), a new observability matrix is defined,
by which a necessary and sufficient condition with a
lower computation complexity is derived.

3. For full-length Galois NFSRs, a simpler
method is proposed to judge the observability ac-
cording to the characteristic that the state transition
graph has only one cycle, which can greatly narrow
the scope of the research subjects for the first method
in this paper. For nonsingular Galois NFSRs, a state
pair transition diagram is defined to judge whether
a nonsingular Galois NFSR is observable or not.

The notations used in this paper are shown in
Table 1.

2 Preliminaries

In this section, some necessary information is
introduced, including the definition and properties of
the semi-tensor product and the algebraic expression
of Galois NFSRs over finite fields.

2.1 Semi-tensor product of matrices

This subsection provides the definition and some
properties of the semi-tensor product and the alge-
braic expression of logical networks.
Definition 1 (Roger and Johnson, 1991) Let
A ∈ R

m×n and B ∈ R
p×q. The Kronecker product
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Table 1 Notations used in this paper

Notation Definition

N Set of all nonnegative integers
N
+ Set of all positive integers

R
m×n Set of m× n real matrices

Fp Galois field of p elements
F
n
p Set of all n-dimensional vectors over Fp

In Identity matrix of dimension n

δi
n The ith column of In

Δp {δi
p|i = 1, 2, · · · , p}

Δn
p Set of all n-dimensional vectors over Δp

Ln×r Set of n× r logical matrices
mod Modulo q division
Coli(M) The ith column of matrix M

Rowi(M) The ith row of matrix M

M(i,j) Element of the ith row and jth column
of matrix M

Cm
n Number of ways to select m numbers

from n numbers
min{a, b} The minimum between a and b

of matrices A and B is defined as

A⊗B =

⎡
⎢⎢⎢⎣

A(1,1)B A(1,2)B · · · A(1,n)B

A(2,1)B A(2,2)B · · · A(2,n)B
...

...
...

A(m,1)B A(m,2)B · · · A(m,n)B

⎤
⎥⎥⎥⎦ .

Definition 2 (Cheng et al., 2011) Let A ∈ R
m×n

and B ∈ R
p×q. The semi-tensor product of matrices

A and B is defined as

A�B := (A⊗ Is/n)(B ⊗ Is/p), (1)

where s is the least common multiple of n and p.
Without loss of generality, we usually omit “�”

in the following for simplicity.
Definition 3 (Ljung and Sèoderstrèom,
1983) Let A ∈ R

m×n and B ∈ R
p×n. The

Khatri–Rao product of A and B is defined as an
mp× n-dimensional matrix, given by

A ∗B =[Col1(A) ⊗ Col1(B) Col2(A)⊗ Col2(B)

· · · Coln(A)⊗ Coln(B)].

(2)

Lemma 1 (Cheng et al., 2011) Using the semi-
tensor product of matrices, any logical function
f(X1, X2, · · · , Xn) with Xi ∈ Fq, i = 1, 2, · · · , n,
can be expressed in an equivalent form as

y = f(x1,x2, . . . ,xn) = Mf �
n
i=1 xi, (3)

where xi, y ∈ Δq, and Mf ∈ Lq×qn is unique and is
called the structural matrix of f .

A logical network with n nodes and m outputs
over Δq can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t+ 1) = g1(x1(t),x2(t), · · · ,xn(t)),

x2(t+ 1) = g2(x1(t),x2(t), · · · ,xn(t)),
...

xn(t+ 1) = gn(x1(t),x2(t), · · · ,xn(t)),

yj(t) = hj(x1(t),x2(t), · · · ,xn(t)),

(4)

with xi(t) ∈ Δq (i = 1, 2, · · · , n), yj(t) ∈ Δq (j =

1, 2, · · · ,m), gi : Δn
q → Δq, and hj : Δ

m
q → Δq. Let

Gi and Hj be the structural matrices of gi and hj ,
respectively. Denote x(t) = �

n
i=1xi(t) and y(t) =

�
m
j=1yj(t). Then we have xi(t + 1) = Gix(t) by

Lemma 1. We can obtain an equivalent linear form
(Cheng et al., 2012) as

x(t+ 1) = Fx(t),

y(t) = Hx(t),

with

F = G1 ∗G2 ∗ · · · ∗Gn ∈ Lqn×qn

being the state transition matrix.

2.2 Algebraic expression of Galois NFSRs

In an n-stage Galois NFSR over Fp, there are n

storage devices represented by small square nodes
in Fig. 1. The content of node i at time t is
denoted as Xi(t), i = 1, 2, · · · , n. The state of
the Galois NFSR at time t is denoted by X(t) =

(X1(t), X2(t), · · · , Xn(t))
T. Each node i is subject

to a feedback function fi : F
n
p → Fp. The feed-

back function of the Galois NFSR is denoted by
f = (f1, f2, · · · , fn)T. Then the state updating

X1(t) X2(t) Xn(t)...

fn(X1(t), X2(t), …, Xn(t))

f2(X1(t), X2(t), …, Xn(t))

f1(X1(t), X2(t), …, Xn(t))

…

Fig. 1 Diagram of an n-stage Galois nonlinear feed-
back shift register (NFSR)
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transformation from X(t) to X(t + 1) can be ex-
pressed as a nonlinear system:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X1(t+ 1) = f1(X1(t), X2(t), · · · , Xn(t)),

X2(t+ 1) = f2(X1(t), X2(t), · · · , Xn(t)),
...

Xn(t+ 1) = fn(X1(t), X2(t), · · · , Xn(t)).

(5)

Let p − i ∼ δip, where p − i ∈ Fp and δip ∈ Δp,
i = 1, 2, . . . , p; for example, 0 ∼ δpp and 1 ∼ δp−1

p .
In the following, we say a variable X ∈ Fp is in
a scalar form, and say the corresponding variable
x ∈ Δp is in a vector form. For instance, the vector
form of Xi(t) is xi(t). Using the vector form, logical
function fi is changed to fi : Δn

p → Δp. Then
Eq. (5) can be regarded as a logical network and can
be equivalently expressed as a linear form using the
semi-tensor product:

x(t+ 1) = Lx(t), (6)

where x(t) = �
n
i=1xi(t) ∈ Δpn , and L ∈ Lpn×pn

is called the state transition matrix of the Galois
NFSR.

The state x(0) from which the Galois NFSR
starts its work is called the initial state. The output
at each moment is y(t) = x1(t). Hence, the output
sequence generated by an n-stage Galois NFSR is
x1(0),x1(1),x1(2), · · · . Due to the output charac-
teristics of the Galois NFSR, the form of the output
matrix can be obtained:

H = δp[1 · · · 1︸ ︷︷ ︸
pn−1

2 · · · 2︸ ︷︷ ︸
pn−1

· · · p · · · p︸ ︷︷ ︸
pn−1

].

Definition 4 A directed graph consisting of pn

nodes and pn directed edges is called the state tran-
sition diagram (ST-diagram) of an n-stage NFSR, if
each of its nodes corresponds to a state of the NFSR,
and each edge from state X to state Y means that
X is shifted to Y .

Simultaneously, X is called a predecessor of Y ,
and Y is called the successor of X . Every state has a
unique successor, but may have only one predecessor,
several predecessors, or even no predecessor. A state
without predecessors is called a starting state. A
series of consecutive distinct states x1,x2, · · · ,xq is
called a cycle of length q if x1 is the successor of
xq. Simultaneously, a series of consecutive distinct
states x1,x2, · · · ,xq is called a branch of length q if

it satisfies the following three conditions: (1) none
lies on a cycle, (2) x1 is a starting state, and (3) the
successor of xq is on a cycle.

3 Observability criteria for Galois NF-
SRs over finite fields

3.1 Observability determining for general Ga-
lois NFSRs via a trajectory table method

Observability means that the initial state can
be uniquely determined by the output sequence.
From another point of view, observability can also
be defined as the distinguishability of the output se-
quences. The relevant definition is as follows:
Definition 5 (1) Two initial states x0,x

′
0 ∈ Δpn

(x0 �= x′
0) are said to be indistinguishable if their

corresponding output sequences are equal (Fornasini
and Valcher, 2013). Otherwise, the two distinct ini-
tial states are said to be distinguishable.

(2) A Galois NFSR is said to be observable if
every two distinct initial states are distinguishable.

Consider an n-stage Galois NFSR over Fp. Let
L be the state transition matrix of this Galois NFSR,
denoted by

L = δpn [α1 α2 · · ·αpn ] ∈ Lpn×pn ,

αi ∈ {1, 2, · · · , pn}, i = 1, 2, · · · , pn.
Define a new matrix based on L, called the vector
form of matrix L, as

VL = [α1 α2 · · ·αpn ]. (7)

A Galois NFSR can be determined uniquely by
its state transition matrix L, and naturally, it can
also be uniquely determined by its vector form VL.
Coli(VL) = αi means that the successor of state δipn

is δαi
pn . This process can be expressed by a mapping

ϕ : {1, 2, · · · , pn} → {1, 2, · · · , pn}, specifically, 1 →
α1, 2 → α2, · · · , pn → αpn .

We define some sets that will be used later as
follows:

(1) The set of all distinct state pairs of an n-
stage Galois NFSR over Fp is denoted by

Φ = {(δipn , δ
j
pn)|1 ≤ i < j ≤ pn}. (8)

(2) The set of all indistinguishable initial state
pairs is denoted by

Ω ={(δipn , δ
j
pn)|(k − 1)pn−1 + 1 ≤ i < j ≤ kpn−1,

k = 1, 2, · · · , p}.
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(3) The set of all distinguishable initial state
pairs is denoted by Φ\Ω, whose elements are in Φ

but not in Ω.
Because the number of states of an FSR is finite,

the number of state pairs composed of distinct states
is also finite. The set Φ contains all distinct state
pairs of an n-stage Galois NFSR, where the order of
the states in each state pair is not considered; that is,
(a, b) and (b, a) are counted as the same state pairs.
Obviously, the number of elements in Φ is

|Φ| = C2
pn =

p2n − pn

2
.

On the other hand, Ω is derived from the
properties of the output matrix H . We can
easily see from H that the outputs correspond-
ing to states δ1pn , δ2pn , · · · , δpn−1

pn are the same.
Similarly, the outputs corresponding to states
δp

n−1+1
pn , δp

n−1+2
pn , · · · , δ2pn−1

pn are the same, and the
latter states are also like this. As a result, the num-
ber of elements in Ω is

|Ω| = p · C2
pn−1 =

p2n−1 − pn

2
.

Clearly, we need only to consider whether the
elements in Ω can reach Φ\Ω in finite steps. Accord-
ingly, we can design an algorithm to judge whether
the indistinguishable initial state pair can be distin-
guished after finite steps. The output of the algo-
rithm is a state pair trajectory table, the first line
of which contains all indistinguishable initial state
pairs, and each successive line below is the state
reached after each step of state transition.

In Algorithm 1, as the steps proceed, all state
pairs in Ω may eventually enter two situations. One
is to enter a cycle and never enter Φ\Ω, which means
that these state pairs will never be distinguished.
The other is to enter set Φ\Ω, which means that
these indistinguishable initial state pairs can be dis-
tinguished after finite steps. The fourth and sixth
steps correspond to the above two scenarios, which
are shown in the state pair trajectory table by end-
ing with an asterisk and a checkmark, respectively.
Hence, the inner “while” loop statement will stop
after at most |Ω| − 1 steps. Hence, the compu-
tation complexity of determining the observability
for an n-stage Galois NFSR over Fp using Algo-
rithm 1 is O(|Ω|(|Ω| − 1)) in the worst case, where
|Ω| = p2n−1−pn

2 .

Algorithm 1 Observability judgment of an n-stage
Galois NFSR over Fp

Require: the vector form of the state transition matrix of
the Galois NFSR and its indistinguishable initial state
set Ω

Ensure: a state pair trajectory table
1: k = 1

2: for all (δi
pn , δ

j
pn ) ∈ Ω do

3: while k �= 0 do
4: if (ϕ(i), ϕ(j)) = (i, j) then
5: Rk = ∗, k = 0

6: else if (ϕ(i), ϕ(j)) ∈ Φ\Ω then
7: Rk =

√
, k = 0

8: else
9: k = k + 1, (i, j) = (ϕ(i), ϕ(j))

10: end if
11: end while
12: end for

Theorem 1 An n-stage Galois NFSR is observ-
able if and only if each column of the state pair tra-
jectory table constructed by Algorithm 1 can reach
Φ\Ω.
Proof Because set Ω contains all indistinguishable
initial state pairs, if all state pairs in Ω can reach
the state pairs in Φ\Ω after finite steps, then all
state pairs are distinguishable after finite steps. That
is to say, the Galois NFSR is observable. On the
other hand, if the Galois NFSR is observable, then
all state pairs are distinguishable after finite steps.
This means that all state pairs in Ω will reach Φ\Ω,
which demonstrates that each column of the state
pair table constructed by Algorithm 1 ends with a
checkmark.

Next, an example is presented to illustrate the
effectiveness of Algorithm 1 as well as Theorem 1.
Example 1 Consider a two-stage Galois NFSR
over F3 with the state transition matrix

L = δ9[2 3 4 5 7 9 1 2 3]

and output matrix

H = δ3[1 1 1 2 2 2 3 3 3].

The vector form of L and the corresponding
mapping are

VL = [2 3 4 5 7 9 1 2 3],

ϕ(1) = 2, ϕ(2) = 3, ϕ(3) = 4, ϕ(4) = 5,

ϕ(5) = 7, ϕ(6) = 9, ϕ(7) = 1, ϕ(8) = 2, ϕ(9) = 3.
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By the features of H , the indistinguishable ini-
tial set is

Ω ={(δ19 , δ29), (δ19 , δ39), (δ29 , δ39), (δ49 , δ59), (δ49 , δ69),
(δ59 , δ

6
9), (δ

7
9 , δ

8
9), (δ

7
9 , δ

9
9), (δ

8
9 , δ

9
9)}.

Using the above information, we can draw
the state pair trajectory table constructed by
Algorithm 1 in Table 2. As we can see from Ta-
ble 2, each column ends with a checkmark, which
implies that each column of the state pair trajectory
table constructed by Algorithm 1 can reach Φ\Ω.
Consequently, this Galois NFSR is observable by
Theorem 1.

Table 2 State pair trajectory table of Galois NFSR
in Example 1

Step
Indistinguishable initial state pair

(1,2) (1,3) (2,3) (4,5) (4,6) (5,6) (7,8) (7,9) (8,9)

R1 (2,3)
√ √ √ √

(7,9) (1,2) (1,3) (2,3)
R2

√
(1,3) (2,3)

√ √
R3

√ √

Next, we analyze the method in Kong et al.
(2022) to illustrate the simplicity of our method. If
we use the observability matrix method in Kong et al.
(2022), we first need to calculate

HL = δ3[1 1 2 2 3 3 1 1 1],

HL2 = δ3[1 2 2 3 1 1 1 1 2],

HL3 = δ3[2 2 3 1 1 2 1 2 2],

to obtain the observability matrix:

O4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 1 0 0 0 0 1 1 1

0 0 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0

1 0 0 0 1 1 1 1 0

0 1 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 1 0 0

1 1 0 0 0 1 0 1 1

0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then we need to verify that each column of O4

is different in pairs. Intuitively, our approach is sim-
pler than the observability matrix method in Kong

et al. (2022). Moreover, Kong et al. (2022) proposed
a matrix O�

N formed by the odd rows of the observ-
ability matrix ON and another new observability
matrix by exchanging the order of the columns of
matrix O�

N . However, these two methods cannot be
applied directly to Galois NFSRs over finite fields.

3.2 Observability determining for general Ga-
lois NFSRs via a matrix method

This subsection presents another method, called
the matrix method, for determining the observabil-
ity for general Galois NFSRs over a finite field. This
method is inspired by the work of Li R et al. (2014),
and we improve it significantly by reducing the com-
putation complexity. First, we give a lemma that
will be used later:
Lemma 2 For any integers ai, bi ∈ {1, 2, · · · , p},
i = 0, 1, · · · , k, we have

a0+pa1+p2a2+· · ·+pkak = b0+pb1+· · ·+pkbk, (9)

if and only if

(a0, a1, · · · , ak) = (b0, b1, · · · , bk).
Proof We prove only the necessity because the
sufficiency is obvious. Performing the modulo oper-
ation on both sides of Eq. (9) at the same time, we
have

(a0 + pa1 + p2a2 + · · ·+ pkak) mod p

=(b0 + pb1 + p2b2 + · · ·+ pkbk) mod p, (10)

and we can obtain a0 = b0. Then Eq. (9) can be
simplified to

a1 + pa2 + p2a3 · · ·+ pk−1ak

=b1 + pb2 + p2b3 · · ·+ pk−1bk. (11)

Continue to perform the same modulo operation on
Eq. (11), and we can find that ai = bi holds for all
i = 0, 1, · · · , k.

Denote the state transition matrix and the out-
put matrix of the n-stage Galois NFSR as

L = δpn [α1 α2 . . . αpn ],

H = δp[1 · · · 1︸ ︷︷ ︸
pn−1

2 · · · 2︸ ︷︷ ︸
pn−1

· · · p · · · p︸ ︷︷ ︸
pn−1

],

where αi ∈ {1, 2, · · · , pn}. Define

M0 = [1 · · · 1︸ ︷︷ ︸
pn−1

2 · · · 2︸ ︷︷ ︸
pn−1

· · · p · · · p︸ ︷︷ ︸
pn−1

]T,
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and

Mk+1=[Rowα1(Mk)Rowα2(Mk) · · · Rowαpn
(Mk)]

T,

where k > 0. It is easy to see that Rowi(Mk) repre-
sents the output of state δipn at the kth step.

Define

Ql =

l∑
k=0

pkMk, l = 0, 1, 2, · · · ,

which is called the new observability matrix. Note
that Ql is a pn-dimensional column vector and the
element of each row is an integer. The ith row rep-
resents the integration of the output sequence of the
first l steps of state δipn . Through the above analysis,
we can draw the following conclusion:
Theorem 2 An n-stage Galois NFSR is ob-
servable if and only if there exists an integer l ∈ N

such that the corresponding new observability ma-
trix Ql has pn distinct rows. Moreover, if such an
l exists, and the smallest l is denoted as l∗, then
l∗ ≤ min{pn − p, p2n−1−pn

2 } must hold.
Proof We abbreviate Rowi(Mk) as rik. According
to the previous analysis, the ith row and the jth row
of Ql are ri0 + pri1 + p2ri2 + · · ·+ plril and rj0 + prj1 +

p2rj2 + · · ·+ plrjl , respectively.
First, we assume that there exists an integer

l ∈ N such that Ql has pn distinct rows. That is, for
any distinct i, j ∈ {1, 2, · · · , pn}, we have

ri0 + pri1 + p2ri2 + · · ·+ plril

�=rj0 + prj1 + p2rj2 + · · ·+ plrjl .

By the inverse negation of Lemma 2,

(ri0, r
i
1, · · · , ril) �= (rj0, r

j
1, · · · , rjl )

holds for any distinct i, j ∈ {1, 2, · · · , pn}. There-
fore, for any distinct initial states δipn , δjpn , the
corresponding output sequences are different after
l steps, which implies that this n-stage Galois NFSR
is observable.

Next, we assume that the n-stage Galois NFSR
is observable. Any distinct initial states δipn , δjpn can
be distinguished after finite steps. Assume that the
finite step number is l. Then the output sequences
corresponding to distinct initial states are different
after l steps. Hence, Ql has pn distinct rows.

Moreover, we assume that integer l∗ ∈ N is the
smallest integer such that the corresponding new ob-
servability matrix Ql∗ has pn distinct rows. Because

any two distinct initial states can be distinguished
within |Ω|− 1 steps or never be distinguished, where
|Ω| = p2n−1−pn

2 , it is obvious that l∗ ≤ p2n−1−pn

2

holds. Next, we prove l∗ ≤ pn − p. If two states x1

and x2 are indistinguishable in k steps, we denote
this as an equivalent relation x1 ∼k x2. The equiv-
alent relation “∼k” can partition Δpn into disjoint
classes. Let Λ̃k be the set of such equivalent classes.
It is obvious that these sets satisfy the following three
conditions:

(1) |Λ̃0| = p;
(2) |Λ̃0| ≤ |Λ̃1| ≤ |Λ̃2| ≤ · · · ;
(3) if for some k ∈ N

+, |Λ̃k| = |Λ̃k+1|, then
Λ̃k = Λ̃k+1 and Λ̃k = Λ̃k+l hold for any l ∈ N

+.
From the above conditions, it can be known that

if Λ̃k is strictly increasing as k increases, then |Λ̃k| ≥
k + p. However, |Λ̃k| ≤ pn must hold. That deduces
k + p ≤ pn, i.e., k ≤ pn − p, which guarantees that
|Λ̃pn−p| = |Λ̃pn−p+1|. This means that if two states
are indistinguishable in pn − p steps, then they will
never be indistinguishable. This corresponds to the
condition in the theorem that l∗ ≤ pn − p.

The current matrix method is a great improve-
ment on the method in Li R et al. (2014). We need
only to compare pn integers, avoiding the discus-
sion of the pairwise distinctness among rows of a
pn × (l+ 1)-dimensional matrix, whose elements are
coefficients of polynomials. In addition, this matrix
method has a lower computation complexity than
that of the trajectory table method in Section 3.1.
Specifically, Theorem 2 has found an upper bound for
l∗, and l∗ takes min{pn − p, p2n−1−pn

2 } in the worst
case. Ql∗ has pn rows and the element of each row
is an integer. Thus, taking the iteration of the ma-
trix into account, the computation complexity of de-
termining observability for an n-stage Galois NFSR
over Fp using the new observability matrix is O(pnl∗)
in the worst case, where l∗ = min{pn− p, p

2n−1−pn

2 }.
Next, we illustrate this with the previous example.
Example 2 Continue to consider the Galois
NFSR in Example 1. According to the analysis in
this subsection, we calculate

M0 =
[
1 1 1 2 2 2 3 3 3

]T
,

M1 =
[
1 1 2 2 3 3 1 1 1

]T
,

M2 =
[
1 2 2 3 1 1 1 1 2

]T
,

M3 =
[
2 2 3 1 1 2 1 2 2

]T
.
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Hence, we have

Q4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 3× 1 + 9× 1 + 27× 2

1 + 3× 1 + 9× 2 + 27× 2

1 + 3× 2 + 9× 2 + 27× 3

2 + 3× 2 + 9× 3 + 27× 1

2 + 3× 3 + 9× 1 + 27× 1

2 + 3× 3 + 9× 1 + 27× 2

3 + 3× 1 + 9× 1 + 27× 1

3 + 3× 1 + 9× 1 + 27× 2

3 + 3× 1 + 9× 2 + 27× 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [67 76 106 62 47 74 42 69 78]T. (12)

As we can see, Q4 has nine distinct rows. By
Theorem 2, this Galois NFSR is observable. This
method is simpler than the method in Example 1,
whereas the advantage of Example 1 is that the tra-
jectory table method looks more intuitive and is eas-
ier to understand.

3.3 Observability determining for two special
types of Galois NFSRs

The methods in the previous subsections ob-
viously can be used to determine the observability
of full-length Galois NFSRs and nonsingular Galois
NFSRs because they are two special types of general
Galois NFSRs, but there exist simpler methods for
these two special types. This subsection will consider
simpler methods for determining the observability
of full-length Galois NFSRs and nonsingular Galois
NFSRs.

3.3.1 Full-length Galois NFSRs

First, we introduce the definition of a full-length
Galois NFSR:
Definition 6 An n-stage Galois NFSR over Fp

is called a full-length Galois NFSR if its ST-diagram
consists only of a cycle of length pn.

To make the method simpler, a set is defined as

Pi=
{
(δipn ,Lδipn),(δipn ,L2δipn),· · · ,(δipn ,L� pn

2 �δipn)
}
,

(13)

where 
pn

2 � represents the largest integer no larger
than pn

2 . Then the following result can be obtained:
Theorem 3 For an n-stage full-length Galois
NFSR over Fp, L is the state transition matrix of this
Galois NFSR. Then the Galois NFSR is observable if
and only if there exists i ∈ {1, 2, · · · , pn}, such that
the state pairs in Pi ∩Ω can be distinguished.

Proof (Necessity) If the Galois NFSR is ob-
servable, then all state pairs are distinguishable.
Obviously, the state pairs in Pi ∩ Ω can also be
distinguished.

(Sufficiency) First we consider the case where
pn is even. The fact that (δipn ,Lδipn) is dis-
tinguishable implies that (Lδipn ,L2δipn), (L2δipn ,

L3δipn), · · · , (Lpn−1δipn , δipn) are all distinguishable.
This is because the ST-diagram of the NFSR has only
one cycle, and these state pairs will reach (δipn ,Lδipn)

after an appropriate number of steps, i.e.,
(
δipn ,Lδipn

) → (
Lδipn ,L2δipn

) → (
L2δipn ,L3δipn

)

→· · · →
(
Lpn−1δipn , δipn

)
→ (

δipn ,Lδipn

)
.

At this point, we have verified that there are pn dis-
tinct state pairs that are distinguishable. Similarly,
for any j = 1, 2, · · · , pn

2 −1, the fact that (δipn ,Ljδipn)

is distinguishable can show that pn distinct state
pairs are distinguishable, which confirms that there
are a total of pn(p

n

2 − 1) state pairs that are distin-
guishable. Moreover, The fact that (δipn ,L

pn

2 δipn)

is distinguishable can show that (Lδipn , L
pn

2 +1δipn),

(L2δipn ,L
pn

2 +2δipn), · · · , (L pn

2 −1δipn ,Lpn−1δipn) can
be distinguished, because

(δipn ,L
pn

2 δipn) → (Lδipn ,L
pn

2 +1δipn) → · · ·
→(L

pn

2 −1δipn ,Lpn−1δipn) → (L
pn

2 δipn , δipn)

without considering the order of two states in a state
pair, and the number of these state pairs is pn

2 . We
have shown that the number of state pairs that can
be distinguished is

pn
(
pn

2
− 1

)
+

pn

2
=

p2n − pn

2
.

Due to the characteristics of the full-length Galois
NFSR, these p2n−pn

2 state pairs are indeed different,
and they are exactly all the state pairs in set Φ. Thus,
by the definition of observability, this Galois NFSR
is observable.

When pn is odd, 
pn

2 � = pn−1
2 . Similarly, the

fact that (δipn ,Lδipn) is distinguishable implies that
(Lδipn ,L2δipn), (L2δipn ,L3δipn), · · · , (Lpn−1δipn , δipn)

are all distinguishable. Actually, for any j =

1, 2, · · · , pn−1
2 , the fact that (δipn ,Ljδipn) is distin-

guishable illustrates that pn distinct state pairs are
distinguishable. pn

(
pn−1

2

)
= p2n−pn

2 confirms that
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there are a total of p2n−pn

2 state pairs that are distin-
guishable. Thus, by the definition of observability,
this Galois NFSR is observable.

Theorem 3 actually narrows down the number of
state pairs that we need to consider. In Section 3.1,
we need to examine whether all state pairs in set Ω

are distinguishable, and for full-length Galois NF-
SRs, Theorem 3 shows that we need only to judge
whether all state pairs in set Pi ∩Ω are distinguish-
able. As for how to judge whether a state pair is dis-
tinguishable, we still use the method of Algorithm 1
in Section 3.1. Below we illustrate this with an
example:
Example 3 Consider a three-stage Galois NFSR
over F3 with state transition matrix

L = δ27[2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27 1],

and the corresponding vector form of L is

VL =[2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 1].

The output matrix is

H = δ3[1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

2 2 3 3 3 3 3 3 3 3 3].

According to the state transition matrix, we can ob-
tain the ST-diagram of this Galois NFSR in Fig. 2
(for convenience, we abbreviate state δi27 as i in the
figure). Through the ST-diagram, we know that this
Galois NFSR is full-length because there is only a
cycle with length 27.

By the analysis in the previous subsection, the
set of indistinguishable initial state pairs is

Ω = {(δi27, δj27)|9(k−1)+1≤ i<j≤9k, k=1, 2, 3},
(14)

and the number of elements in Ω is

|Ω| = 3× C2
9 = 108. (15)

1

2 3 4

252627

Fig. 2 ST-diagram of the Galois NFSR in Example 3

If we analyze the observability according to the
method in the previous subsection, then we need
to examine whether the 108 state pairs can be dis-
tinguished. However, because this is a full-length
Galois NFSR, we can use Theorem 3. Considering

 33

2 � = 13, and

P1 =
{
(δ127,Lδ127), (δ

1
27,L

2δ127), · · · , (δ127,L13δ127)
}

=
{
(δ127, δ

2
27), (δ

1
27, δ

3
27), · · · , (δ127, δ1427)

}
,

we have

P1 ∩Ω =
{
(δ127, δ

2
27), (δ

1
27, δ

3
27), · · · , (δ127, δ927)

}
.

(16)
We need only to check whether these eight state pairs
in P1 ∩Ω can be distinguished.

Using Algorithm 1, we can construct Table 3,
each column of which ends with a checkmark√

. Hence, this Galois NFSR is observable by
Theorem 3. The fact that these eight state pairs
in Pi ∩ Ω can be distinguished implies the following
facts:

(1) The fact that (δ127, δ227) can be distinguished
means that (δ227, δ

3
27), (δ327, δ

4
27), · · · , (δ2627 , δ

27
27),

(δ2727 , δ
1
27) can all be distinguished;

(2) The fact that (δ127, δ327) can be distinguished
means that (δ227, δ

4
27), (δ327, δ

5
27), · · · , (δ2627 , δ127),

(δ2727 , δ
2
27) can all be distinguished;

...
(8) The fact that (δ127, δ927) can be distinguished

means that (δ227, δ
10
27), (δ327, δ

11
27), · · · , (δ2627 , δ727),

(δ2727 , δ
8
27) can all be distinguished;

(9) The fact that (δ127, δ1027) can be distinguished
means that (δ227, δ

11
27), (δ327, δ

12
27), · · · , (δ2627 , δ827),

(δ2727 , δ
9
27) can all be distinguished;

...
(13) The fact that (δ127, δ

14
27) can

be distinguished means that (δ227, δ
15
27),

Table 3 State pair trajectory table in Example 3

Step
Indistinguishable initial state pair

(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9)

R1 (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9)
√

R2 (3,4) (3,5) (3,6) (3,7) (3,8) (3,9)
√

R3 (4,5) (4,6) (4,7) (4,8) (4,9)
√

R4 (5,6) (5,7) (5,8) (5,9)
√

R5 (6,7) (6,8) (6,9)
√

R6 (7,8) (7,9)
√

R6 (8,9)
√

R7
√
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(δ327, δ
16
27), · · · , (δ2627 , δ1227), (δ2727 , δ

13
27) can all be

distinguished.
The last five facts hold because

(δ127, δ
10
27), (δ

1
27, δ

11
27), · · · , (δ127, δ1427) are initially

distinguishable. The above 13 facts can prove that a
total of 13×27 = 351 state pairs are distinguishable,
and the Galois NFSR has only 351 distinct state
pairs. So, the system is observable.
Remark 1 In Example 3, we choose P1 for
investigation. In fact, for Pi, no matter which i is
chosen, the final results will not be affected, because
as long as there is an i such that the state pairs in
Pi ∩ Ω can be distinguished, then for all i’s, Pi ∩ Ω

can be distinguished. Therefore, the choice of Pi

does not affect the subsequent analysis.

3.3.2 Nonsingular Galois NFSRs

Next, we consider nonsingular Galois NFSRs.
An NFSR is said to be nonsingular if its ST-diagram
contains only cycles. Nonsingularity is a significant
property in stream cipher design, and is a funda-
mental demand to guarantee that NFSRs avoid gen-
erating equivalent keys. To analyze whether a non-
singular Galois NFSR is observable, the definition
of a state pair transition diagram (SPT-diagram) is
introduced:
Definition 7 A directed graph consisting of
p2n−pn

2 nodes and p2n−pn

2 directed edges is called
the SPT-diagram of an n-stage FSR over Fp, if each
node of it is an element in set Φ = {(δipn , δ

j
pn)|1 ≤

i < j ≤ pn}, and an edge from node (δapn , δbpn) to
node (δαpn , δ

β
pn) means Lδapn = δαpn , Lδbpn = δβpn or

Lδapn = δβpn , Lδbpn = δαpn .
According to the above definition, a certain rela-

tionship between the ST-diagram and SPT-diagram
can be obtained:
Proposition 1 The ST-diagram contains only
cycles if and only if the SPT-diagram contains only
cycles.
Proof (Necessity) First we assume that the ST-
diagram contains only cycles and that states x1 and
x2 are on the same cycle. Denote the length of this
cycle as c, so we have Lcx1 = x1 and Lcx2 = x2.
Then

(x1,x2)→(Lx1,Lx2)→· · ·→(Lc−1x1,L
c−1x2)

→(x1,x2)

forms a cycle. Next, suppose that states x1 and x2

are on two different cycles. Denote the lengths of
these two cycles as c1 and c2. Then

(x1,x2)→(Lx1,Lx2)→· · ·→ (Lc∗−1x1,L
c∗−1x2)

→(x1,x2)

forms a cycle, where c∗ is the least common multiple
of c1 and c2. However, any two states are either on
the same cycle or on two different cycles, and only
these two cases are possible. Thus, all state pairs are
on cycles.

(Sufficiency) Assume that the ST-diagram con-
tains other things besides cycles. In this case, the
ST-diagram may also contain branches connected
with cycles. Assume that y1 is the starting state
of a branch and y is an arbitrary state different from
y1. Then state pair (y1,y) will never be reached. In
other words, (y1,y) is a starting node in the SPT-
diagram, which contradicts the SPT-diagram con-
taining only cycles. It is easy to know that the SPT-
diagram of a nonsingular FSR contains only cycles.
Next, we naturally have a necessary and sufficient
condition for the observability of nonsingular Galois
NFSRs according to the SPT-diagram:
Theorem 4 An n-stage nonsingular Galois
NFSR over Fp is observable if and only if each cycle
of the SPT-diagram contains a state pair in set Φ\Ω.
Proof The elements in set Φ\Ω are all states that
can be distinguished initially. If each cycle of the
SPT-diagram contains a state pair in set Φ\Ω, then
all state pairs on this cycle can reach this state pair
after a suitable number of steps. In other words, all
state pairs of this Galois NFSR can reach the state
pairs in set Φ\Ω eventually. Hence, the Galois NFSR
is observable.

Conversely, if there exists a cycle in the SPT-
diagram on which no state pair belongs to set Φ\Ω,
then all state pairs on this cycle can never reach the
state pairs that can be distinguished; i.e., they can
never be distinguished. That is to say, the Galois
NFSR is unobservable.

An example is offered to demonstrate the effec-
tiveness of the above results:
Example 4 Consider a two-stage Galois NFSR
over F3 with the state transition matrix L = δ9[4 3

7 5 9 6 2 1 8], output matrix H = δ3[1 1 1 2 2 2 3

3 3], and the corresponding vector form VL = [4 3

7 5 9 6 2 1 8].

According to VL, we can obtain the SPT-
diagram and the ST-diagram of this Galois matrix
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in Figs. 3 and 4, respectively (for convenience, we
abbreviate state δi9 as i in the figures).

As we can see, the ST-diagram and the SPT-
diagram contain only cycles, so this Galois NFSR is
nonsingular.

Set Ω = {(δ19 , δ29), (δ19 , δ39), (δ29 , δ39), (δ49 , δ59),
(δ49 , δ

6
9), (δ

5
9 , δ

6
9), (δ

7
9 , δ

8
9), (δ

7
9 , δ

9
9), (δ

8
9 , δ

9
9)}. Actu-

ally, in the SPT-diagram, (δ19 , δ59), (δ39 , δ79), (δ29 , δ69),
(δ19 , δ

4
9), (δ49 , δ39) belong to set Φ\Ω. By Theorem 4,

each cycle of the SPT-diagram contains a state pair
in set Φ\Ω. Hence, this Galois NFSR is observable.

This method can also be applied to general
Galois NFSRs. Here we give a necessary and suf-
ficient condition that a general Galois NFSR is
unobservable:
Corollary 1 An n-stage Galois NFSR over Fp

is unobservable if and only if there exists a cycle in
the SPT-diagram on which all state pairs belong to
set Ω.
Proof If there exists a cycle in the SPT-diagram
on which all state pairs belong to set Ω, then all state
pairs on this cycle can never be distinguished, which
means that this Galois NFSR is unobservable.

On the contrary, assume that this Galois NFSR
is unobservable. Then there exists a state pair that
can never be distinguished. If this state pair is on a
cycle, then all state pairs on this cycle must belong
to set Ω; otherwise, the state pair will be distin-
guishable after finite steps. If this state pair is on a
branch, then all state pairs on the cycle connected
with this branch must belong to set Ω.

In addition, it should be noted that the matrix
method in Section 3.2 can be applied directly to these
two special types of Galois NFSRs. l in Ql of these
two special types will be smaller than that of general
Galois NFSRs, and it is often necessary to compare

the output sequence of no more than |Ω|− 1 steps to
distinguish it because the ST-diagram contains only
cycles. The specific operation is similar to that in
Example 2, so it is omitted here.

4 Conclusions

In this paper, the observability of Galois NFSRs
over finite fields was investigated. First, we intro-
duced a simpler representation of a state transition
matrix called the vector form. Using this form, we
researched the observability of general Galois NF-
SRs and gave a necessary and sufficient condition
for determining the observability. Then we proposed
another matrix method with a lower computation
complexity to determine the observability of general
Galois NFSRs over finite fields. Finally, we studied
two special types of Galois NFSRs, full-length Ga-
lois NFSRs and nonsingular Galois NFSRs. For each
type of NFSRs, we proposed one simpler method to
study the observability. Meanwhile, some numeri-
cal examples were delivered to support the results
in this paper. In the future, the observability of Ga-
lois NFSRs with inputs will be studied, and reducing
computation complexity will be explored.
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