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Abstract: To improve the accuracy of modulated signal recognition in variable environments and reduce the impact of factors 

such as lack of priori knowledge on recognition results, researchers have gradually adopted deep learning techniques to replace 

traditional modulated signal processing techniques. To address the problem of low recognition accuracy of the modulated signal at 

low signal-to-noise ratios, we have designed a novel network based on multi-scale analysis of deep threshold noise elimination to 

recognize the actual collected modulated signals under the action of a symmetric cross-entropy function of label smoothing. The 

network consists of a denoising encoder with deep adaptive threshold learning and a decoder with multi-scale feature fusion. The 

two modules are skip-connected to work together to improve the robustness of the overall network. Experimental results show that 

this method has better recognition at low signal-to-noise ratios than previous methods. The network demonstrates a flexible 

self-learning capability for noise thresholds and the effectiveness of the designed feature fusion module for multi-scale feature 

acquisition for various modulated types. 
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1  Introduction 

 

Signal modulation identification is widely used 

in intelligent communication systems, electronic 

warfare, spectrum resource monitoring, and other 

fields (Liu et al., 2020). In the field of intelligent 

communication systems, with the substantial increase 

in the number of end-users, effective identification 

methods are needed to distinguish between multiple 

modulation techniques for data transmission to 

achieve efficient transmission and thus ensure stable 

and reliable communication systems. In electronic 

warfare, modulation identification can help the re-

ceiver identify the signal type accurately. Modulation 

identification helps estimate the carrier frequency and 

bandwidth of the signal to carry out subsequent work 

such as demodulation and decoding effectively. In 

spectrum resource monitoring, the radio resource 

management department needs to use modulation 

identification technology to detect and manage radio 

resources to guarantee legitimate users' regular 

communication and prevent resource abuse (Peng et 

al., 2021). 
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The current automatic modulation classification 

techniques fall into three main categories: decision 

theory-based, feature-based, and deep learning-based 

approaches (Han et al., 2021). 

The decision theory-based modulation identifi-

cation method aims to construct likelihood probabil-

ity models for multiple hypothesis testing of catego-

ries based on the calculated probabilities of different 

modulation types. Therefore, this method is also 

known as the likelihood ratio judgment-based algo-

rithm. Although modulation identification methods 

based on decision theory have matured (Huang et al., 

2017; Phukan and Bora, 2018; Salam et al., 2019), 

they still have some shortcomings. Firstly, the like-

lihood function model to be selected is becoming 

more and more complex, requiring much more prior 

knowledge. Secondly, the model is often only for a 

specific single scene, the generalization ability is poor, 

and the universality is low.  

The feature-based recognition method performs 

feature extraction from individual signals, and its 

overall process is divided into signal pre-processing, 

feature extraction, and classification of modulation 

categories based on feature parameters. Feature ex-

traction techniques have been based on signal high-

er-order moments, singular value decomposition, 

cyclostationarity, etc.(Tayakout et al., 2018; Eltaieb et 

al., 2020; Serbes et al., 2020). In addition to extracting 

different signal features, classifier design can also be 

studied. Classifier designs have been based on deci-

sion trees (Dahap and Liao, 2015), support vector 

machines (Wei et al., 2019), and random forests (Li et 

al., 2020). Existing feature modulation recognition is 

usually based on specific signal samples and thus has 

limited recognition performance in noisy environ-

ments. The overly complex extraction methods in-

troduce many parameters and increase the computa-

tional cost of the modulation recognition system, and 

the method for processing artificially selected fea-

tures lacks universality.  

In response to the above problems, methods 

based on deep learning are gradually being applied in 

signal modulation recognition. Deep learning is a 

method that uses multilayer neural networks for 

massive data processing. It easily analyzes the fea-

tures of different data dimensions with the powerful 

feature extraction capabilities of neural networks such 

as local connectivity, parameter sharing, and isovar-

iant representation. It can obtain the implicit mapping 

relationship between input and output, eliminating the 

complicated step of manual feature selection 

(Schmidhuber, 2015). A neural network can ap-

proximately fit any function. An end-to-end convolu-

tional automatic modulation recognition neural net-

work has been proposed (Meng et al., 2018) that 

outperforms feature-based methods. The method 

proposed by Zhang et al. fuses the handcrafted fea-

tures of different images and signals and uses a con-

volutional neural network to design a multimodal 

feature fusion model for automatic modulation 

recognition (Zhang et al., 2019). Xu et al. designed a 

model with multichannel input using 1D convolution, 

2D convolution, and long-short-time memory layers 

for extracting features from multiple channels for 

classification (Xu et al., 2020). Zhu et al. proposed a 

multi-label complex signal modulation identification 

framework for identifying different types of complex 

signals (Zhu et al., 2020). A capsule network was 

designed by Li et al. to perform automatic modulation 

recognition with fewer training samples (Li et al., 

2021). A low-latency automatic modulation identifi-

cation method applying a temporal convolutional 

network has been proposed to meet the real-time 

requirements of communication services (Xu et al., 

2022). Li et al. proposed a deep-learning hopping 

capture model, which uses a bidirectional long 

short-term memory model to identify hopping fea-

tures, and performs wireless communication signal 

classification under short data (Li et al., 2022). The 

method of An et al. identifies the modulation type of 

multiple input multiple output-orthogonal frequency 

division multiplexing (MIMO-OFDM) subcarriers 

using a series-constellation multi-modal feature net-

work to achieve modulation identification in realistic 

non-cooperative cognitive communication scenarios 

(An et al., 2022). Doan et al. used a deep learning 

network for automatic modulation identification and 

direction of arrival (DOA) estimation, enabling joint 

multi-task learning of the same network (Doan et al., 

2022). The deep learning-based method learns the 

differences between different modulation signals 

autonomously through repeated training of radio data, 

thereby increasing modulation recognition accuracy 

and making up for the shortcomings of likelihood 

ratio judgment-based and feature-based modulation 

recognition methods. Although deep learning tech-
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niques have been investigated in modulation recog-

nition, most algorithms have low recognition rates at 

low signal-to-noise ratios (SNRs) and have complex 

data pre-processing. 

To address these issues, we first use software 

radio equipment to acquire the in-phase and quadra-

ture components of multiple modulated signals in a 

natural environment and pre-process them by wavelet 

transform. We use a deep adaptive threshold de-

noising network as the encoder, and a threshold 

self-selection module is designed to denoise the sig-

nal and extract the input data features simultaneously. 

We use a module with up sampling as a decoder to 

restore data, layer by layer, for classification. The 

proposed modulation recognition scheme uses not 

only the idea of encoding and decoding, but also of 

deep multi-scale feature fusion. It uses skip connec-

tion to connect denoised encoded features with de-

coded features output from multi-scale analysis and 

up sampling to learn the differences between different 

kinds of signals. 

 

 

2  Modulation signal 

 

The modulation signal dataset is produced 

through two stages: signal acquisition and signal 

pre-processing. 

2.1  Signal acquisition 

Most modulation identification research is still 

based on simulation datasets generated by mathe-

matical software. This approach lacks consideration 

of the influence of the signal in the transceiver envi-

ronment. In the actual sending and receiving process, 

the signal may experience attenuation and distortion 

caused by space propagation loss, and interference by 

atmospheric noise such as thunderstorms and light-

ning, and may also appear as intermittent signals 

caused by unstable sending and receiving equipment. 

In our study, we built a signal transceiver system 

comprising a Universal Software Radio Peripheral 

(USRP), antenna, and software radio platform in a 

natural environment. USRP N210 was selected as the 

hardware device for signal transmission and reception. 

The software radio platform is used to generate, store, 

and analyze the actual modulated signals. Fig. 1 

shows the architecture of the signal transceiver sys-

tem. 

 

 
Fig. 1  The architecture of the signal transceiver system 
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Flow graphs were constructed using GNU radio 

companion and a file source module was used to read 

the set signal data flow from the PC. The data in the 

file source were pre-designed data of multiple mod-

ulation types. The modulation categories selected for 

this study were based on those previously used for 

radio datasets in modulation identification (OôShea 

and West, 2016). Modulation types are divided into 

analog modulation and digital modulation. Analog 

modulation includes Double Side Band Modulation 

(DSB), Simple Side Band Modulation (SSB), Fre-

quency Modulation (FM). Digital modulation in-

cludes 8 Phase Shift Keying (8PSK), Binary Phase 

Shift Keying (BPSK), Continuous Phase Frequency 

Shift Keying (CPFSK), Gauss Frequency Shift Key-

ing (GFSK), Pulse Amplitude Modulation 4 (PAM4), 

16 Quadrature Amplitude Modulation (16QAM), 64 

Quadrature Amplitude Modulation (64QAM), and 

Quadrature Phase Shift Keying (QPSK). After sam-

pling the modulated signal, it can be expressed as: 

 () () () ()( )cos 2́ ,x k A k f k k kq= +  (1) 

where, ()A k  is the instantaneous amplitude of the 

signal, ()f k  is the instantaneous frequency, and 

()kq  is the instantaneous nonlinear phase. Using the 

trigonometric formula, we obtain: 
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Q k f k k
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           +
 (2) 

and 
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where, ()I k  is the in-phase component, and ()Q k  

is the quadrature component of the complex signal. 

Noise was added at different intensities for different 

kinds of modulated design signals. The SNR was 

increased from ī10 to 10 dB in 2-dB increments. The 

noised signal is as follows: 

 () () ()
~

,x k x k n k= +  (4) 

where, ()n k  is the added noise. 

2.2  Signal pre-processing 

Our scheme adopts the pre-processing method of 

wavelet noise reduction for the received in-phase and 

quadrature data, and saves the multi-channel data and 

SNR labels of each modulation type. The processed 

data are directly fed into the deep learning network 

recognition model. 

Wavelet threshold noise cancellation is a clas-

sical method in signal noise reduction (Donoho, 

1995). The wavelet transform originated from the 

Fourier transform, which converted time-domain 

functions to frequency-domain functions by trans-

forming them into trigonometric functions or their 

linear superposition (Harris, 1978). The Fourier 

transform uses the entire signal in the time domain to 

extract spectral information, and obtains a single 

determined spectral value that does not reflect local 

characteristics. Compared with the Fourier transform, 

the wavelet transform chooses a finite-length family 

of wavelet functions (Chang et al., 2000). The family 

is obtained by translating and telescoping the wavelet 

basis, which decays rapidly to zero and integrates to 

zero in [ ],-¤ +¤, i.e., the amplitude oscillates be-

tween positive and negative. The essence of the 

wavelet transform is the inner product of the signal 

and the family of wavelet functions, i.e., the projec-

tion of the signal onto the family of wavelet functions 

(Sendur and Selesnick, 2002). The classical wavelet 

transform equation is as follows: 

 ( ) ()
1

, d ,
t b

WT a b f t t
aa

+¤

-¤

-å õ
= Yæ ö

ç ÷
ñ  (5) 

where, ()f t  is the input signal, ()tY  is the wavelet 

basis function, a  is the scale parameter that performs 

function scaling, and b  is the translation parameter 

that changes the function action position. The result 

of the transformation reflects not only the frequency 

components contained in the signal but also the cor-

responding time domain location. Most practical 

applications use discrete wavelet function families: 

 () /2 0 0
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where 0

ma a= , 0 0

mb nb a= , ,m nÍ , 0 1a > . The 

wavelet transform relies on different m , n , for dif-

ferent resolutions, as well as different translations, to 

decompose the signal to different scales. Therefore, 

the wavelet transform can analyze the localization of 

non-stationary signals in the time-frequency domain. 

We chose Daubechiesô wavelet basis function for 
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the discrete wavelet transform. Daubechiesô wavelet 

belongs to compactly supported orthogonal wavelets. 

As a common function for signal decomposition and 

reconstruction, it has good regularity (Li and Chen, 

2014). The Mallat algorithm carries out the decom-

position, and the wavelet coefficients of low and high 

frequencies are: 
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where []jc k  is low-frequency wavelet coefficient, 

and []jd k  is high-frequency wavelet coefficient. The 

selected wavelet basis function determines the scale 

and wavelet coefficients. The number of layers of 

decomposition is j , and N  is the signal length. Most 

of the noise in the data is distributed in the 

high-frequency details, which needs to be eliminated. 

A fixed threshold is used to remove noise (Jia et al., 

2013). The formula for threshold selection is as fol-

lows: 

 
( )median

2ln ,
0.6745

w
Nl=  (8) 

where l is the selected threshold, w  is the original 

wavelet coefficient, and N  is the signal length. For 

the threshold function, the soft threshold selected for 

denoising is 
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where wl is the wavelet coefficient after noise re-

duction. When the absolute value of the wavelet co-

efficients is greater than the given threshold, the 

wavelet coefficients subtract the threshold; when the 

absolute value is less than the given threshold, they 

are discarded. The wavelet inverse transform is per-

formed on the filtered signal, that is, the wavelet re-

construction. The equation is as follows: 
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The low-frequency coefficients and the noise 

cancellation high-frequency coefficients are recon-

structed, which can realize the pre-processing of 

wavelet noise reduction and obtain the estimated 

value of the recovered original signal. 

 

 

3  Automatic modulation recognition system 

model 

 

In this section, we first describe the overall 

framework of the signal recognition system and in-

troduce the recognition network in the framework, i.e., 

the deep adaptive threshold feature fusion network. 

We then provide detailed descriptions of two critical 

sub-networks of the recognition network: the deep 

adaptive threshold denoising network and the deep 

multi-scale feature fusion network. 

3.1  The overall framework of the signal recogni-

tion system 

The overall framework of the signal recognition 

system is shown in Fig. 2. The signal transceiver 

system collects the modulation signal to obtain 

in-phase and quadrature components. We use wavelet 

noise reduction on the components and combine them 

into multi-channel data. At this point, the data pro-

cessing is completed. The pre-processed data are read 

into the deep adaptive threshold feature fusion net-

work designed in this study to obtain a prediction. The 

symmetric cross-entropy loss function between the 

predicted category and the actual category is calcu-

lated to obtain the loss value. The parameters are 

optimized iteratively according to the loss values to 

obtain the final recognition model. 

In the first step of the deep adaptive threshold 

feature fusion network, the input data are updated 

with dimensionality by the convolutional layer and 

passed through the batch normalization layer (BN) 

and LeakyRelu function. In the next step, the data are 

passed through the critical components of the recog-

nition network. The data are first extracted by the 

deep adaptive threshold denoising network of non-

linear encoding for feature extraction, and then di-

mensionally restored by the deep multi-scale feature 

fusion network of nonlinear decoding. We used the 

idea of an autoencoder to construct the above two 

sub-networks for modulated signal identification. We 

set four blocks with different dimensions in the non-

linear encoder structure DATDN for feature  
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Fig. 2  Signal recognition system framework. DATDN = Deep Adaptive Threshold Denoising Network. DMFFN = Deep 

Multi -scale Feature Fusion Network. Psdc = parallel structure of dilated convolution. Up = up sampling. 

 

extraction of different dimensions. Noise elimination 

means are introduced into each block. A threshold 

learning network with a designed threshold function 

removes redundant information from the set of 

learned features. This enables the network to auto-

matically identify the noise to be removed and over-

come the difficulty of determining the optimal value 

for setting the threshold manually. In the nonlinear 

decoding DMFFN, we set up decoding blocks cor-

responding to the dimension of the encoding block. In 

each decoding block, we convolve the input features 

using a parallel structure of dilated convolution for 

multi-scale feature extraction and superposition to 

form fused features and then up sample the fused 

features. The coding and decoding information is 

fused using skip connection so that the network learns 

both global and local information. Each decoding 

block is serially connected and gradually recovered to 

the initial data dimension. The output features go 

through a global average pooling layer, a dropout 

layer, and a fully connected layer to obtain the prob-

ability of each signal recognition. 

3.2  Deep adaptive threshold denoising network 

We propose a deep adaptive threshold denoising 

network based on the residual network. While en-

suring the effectiveness of the network, this adap-

tively learns the threshold value and eliminates ir-

relevant data features to play the role of signal de-

noising. The deep adaptive threshold denoising net-

work consists of four blocks of different dimensions, 

and each block contains a corresponding number of 

deep adaptive threshold denoising modules. The 

structure of each module is shown in Fig. 3. The deep 

adaptive threshold denoising module contains an 

additional sub-module for setting the threshold of 

residual paths compared to the deep residual module. 

The sub-module consists of a threshold training 

module and a threshold function. The threshold 

training module sets the corresponding threshold 

value for each channel feature. The threshold function 

can adaptively eliminate noise by judging the rela-

tionship between the data and the threshold of each 

channel. 

The core of the deep adaptive threshold de-

noising module lies in the design of threshold noise 

elimination for the residual path (Fig. 3). Initial fea-

ture extraction is performed using the convolutional  
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Fig. 3  Deep adaptive threshold denoising module 

 

layer, the BN, and the LeakyRelu function. Global 

average pooling then transforms features C W H³ ³  

into output features 1 1C³ ³ with global receptive 

fields, preventing overfitting and simplifying the 

computation when designing the subsequent noise 

elimination model thresholds. After aggregating 

C W H³ ³  into the output features of 1 1C³ ³, the 

model is divided into two parallel structures: one 

considers the relationship between different channels 

based on the original features, and the other is de-

signed as the threshold training network. 

The first path flattens the globally average 

pooled features x  into a one-dimensional vector, 

with each data value representing a feature within the 

current channel. Then the weights corresponding to 

each channel data value in the whole feature set are 

calculated by iterative optimization of the BN layer, 

Sigmoid function, and neural network propagation 

process. Each weight is multiplied by the feature 

value in the corresponding channel to obtain the fea-

ture containing the respective importance level. 

Compared with the direct output of features with the 

same weight, this method can better fit the depend-

ency relationship between each channel and provide 

more critical information for subsequent network 

processing. 

The other path is to obtain adaptive thresholds 

and use the threshold function to eliminate noise. 

Here, x  is flattened in one dimension and multiplied 

with the features flattened by the adaptive local 

channel convolution. The resulting features are de-

compressed. Since the channel dimension is usually 

an integer multiple of 2, and considering the limita-

tions of the linear mapping relationship for feature 

selection (Wang et al., 2020), an exponential function 

with a base of 2 is chosen to reflect the relationship 

between the convolution kernel and the number of 

channels. The adaptive local channel convolution is: 

 
2

odd

.
log C b

K
g g

= +  (11) 

In Eq. (11), K  is the convolution kernel size, indi-

cating how many close neighbors participate in the 

calculation of the specified channel. The sizes of 

2g= , 1b= , and convolution kernels are related to 

the number of channels in the current feature. Con-

sider K  convolution kernels to capture local 

cross-channel interaction information, which can set 

thresholds for different channels by adaptive local 

cross-channel convolution. Input each channel data 

value and threshold value into the designed threshold 

function for adaptive noise elimination. The conven-

tional thresholding functions are hard thresholding 

and soft thresholding. The hard thresholding is: 

 
, ,

0, ,
h

x x
x

x

h

h

ë ²î
=ì

<îí

 (12) 

where h is the set threshold value, x  denotes the 

input data, and hx  denotes the threshold noise elimi-

nation result. The hard threshold function is not con-

tinuous near the threshold value, causing the pseu-

do-Gibbs effect. Although the continuity of soft 

thresholding is improved, the sign function is prone to 

oscillate at the intermittent point, which affects the 

denoising effect. In our scheme, we use the tanh 

function instead of the sign function. The formula of 

the tanh function is: 

 ()
() ( )

() ( )

exp exp
tanh .

exp exp

x x
x

x x

- -
=

+ -
 (13) 

Fig. 4 shows the difference between the tanh 

function and the sign function. 
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Fig. 4  Function image 

 

Compared with the sign function, the tanh func-

tion is smoother at the intermittent point, eliminating 

the effect of the optimization difficulty caused by the 

intermittent point of the sign function on the de-

noising process. In addition, the data whose absolute 

values are greater than the threshold when using soft 

thresholding have a constant deviation between the 

denoised value and the actual value, which affects the 

approximation of the denoised output and the actual 

data. Therefore, our designed threshold function is as 

follows: 

 ()
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1 2
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where 1z and 2z  are the threshold results trained by 

adaptive noise elimination, x  denotes the input data, 

and xz denotes the output of the deep neural network 

based on threshold function noise elimination. The 

network is flexible to self-learn the threshold value 

corresponding to the current feature so that essential 

features and redundant features learn different 

thresholds. Different noise elimination results are 

obtained by the threshold function. The features of the 

relationship between the adaptive noise elimination 

results and the retained channels are summed as the 

output of the residual path. This model ensures over-

all efficiency. 

3.3  Deep multi-scale feature fusion network 

Our design uses a deep multi-scale feature fusion 

network as a decoder. The network consists of deep 

multi-scale feature fusion decoding blocks of differ-

ent dimensions. Each decoding block corresponds to 

the dimension of the deep adaptive threshold de-

noising coding block. First, the decoding block syn-

thesizes more discriminative features using continu-

ous incremental multi-scale dilated convolutions for 

the input features. Dilated convolution is a method 

that increases the receptive field without adding ad-

ditional computational effort (Wei et al., 2018). The 

receptive field is the size of the region where the 

extracted features are mapped to the input space 

(Rawat and Wang, 2017). An increase in the receptive 

field indicates a larger spatial reach to the original 

data. Dilated convolution contains a hyperparameter 

dilated rate compared to standard convolution. Let the 

dilated rate be d , then 1d-  zeros are inserted be-

tween two adjacent elements of the convolution ker-

nel, which constitutes a sparse filter: 

 ( )( )1 1 ,n k k d= + - ³ - (15) 

 
( )( )2 1 1

1,
i p k k d

o
s

è ø+ - - - ³ -
= +é ù
é ùê ú

 (16) 

where, n  is the size of the equivalent convolutional 

kernel after expansion, and k  is the input convolu-

tional kernel size. The output data size is o , i  is the 

input data size, p  is the padding size, and s is the 

step size. Compared with standard convolution, di-

lated convolution can obtain a denser feature response 

while learning fewer feature parameters. Fig. 5 shows 

the dilated convolution parallel structure designed in 

this study. 

The parallel structure contains four-way dilated 

convolution with progressively increasing dilated 

rates. The light blue rectangular boxes in Fig. 5 show 

the specific role of the dilated convolution layer for 

each way. In Eq. (15), assuming the size of k  is 3, we 

set the dilated rates in four ways to be 1, 2, 3, and 5. 

The change of each red box area represents the 

change in the size of the individual convolution kernel, 

so we can obtain the equivalent convolution kernel 

sizes to be 3, 5, 7, and 11, respectively. This expands 

the original action range of the convolution kernel and 

increases the receptive field. Meanwhile, the parallel 

incremental dilated convolutions design can map the 

features of different sizes in the input features to the 

corresponding positions of the output features. After 

the BN and the LeakyRelu function, the results are 

prepared for the next step of multi-scale fusion. To  
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Fig. 5  Parallel structure of dilated convolution 

 

prevent the convolution kernel from degenerating into 

a filter of 1 1³  and ignoring the overall features when 

the dilated rate increases, the module also parallels 

one-way global average pooling to restore global 

features. This way then goes through convolution to 

recover the channel dimension and up sampling to 

recover the size of the features. The designed 

five-way multi-scale parallel features are fused, and 

the features are subjected to 1 1³  convolution, BN, 

the LeakyRelu function, and dropout layer to obtain 

multi-scale fusion decoding features. 

After the dilated convolution parallel structure, 

we use the bilinear interpolation method for up sam-

pling calculation. Up sampling is a means of recov-

ering data information. The four existing pixel values 

around the target point of the original image are used 

jointly to determine the target point's pixel value. The 

core idea is to perform a linear interpolation in each of 

the two directions, which is computationally small 

and easy to implement. 

Furthermore, the coding noise reduction feature 

and the decoding recovery feature of multi-scale 

analysis of the corresponding channel are 

skip-connected to obtain new features and then input 

to the next layer for continuous decoding. This pro-

cess fuses high-level features with low-level features 

to obtain global and local information and mine the 

available information fully.  

 

 

4  Experimental results and discussion 

 

We verified the effectiveness of our network 

experimentally using the acquired data. 

4.1  Dataset preparation 

The baseband signal generated by the source is 

limited by the antenna size and the channel bandwidth. 

The signal has a low frequency, which causes signif-

icant attenuation and distortion when transmitted 

directly. Therefore, various modulation methods are 

needed to change the baseband signal into a form 

suitable for transmission on the corresponding carrier 

frequency. The dataset was the modulated signal ob-

tained by using a software radio platform built by 

USRP to transmit and receive in a natural environ-

ment. It serves to support the next step to prove the 

practicality of the deep adaptive threshold feature 

fusion network. The 11 modulation types in this study 

were DSB, SSB, FM, 8PSK, BPSK, CPFSK, GFSK, 

PAM4, 16QAM, 64QAM, and QPSK. Since the fea-

ture extraction recognition ability differs at different 

SNRs, noise was added to the modulated signal. The 

SNR ranged from ī10 to 10 dB, increasing every 2 dB, 

producing signals at 11 SNRs. There were 1000 

samples for each type of signal at each SNR, so the 

dataset contained 121,000 samples. The in-phase and 

quadrature matrixes were transformed into a mul-

ti-dimensional matrix using wavelet decomposition, 

fixed threshold denoising, and wavelet reconstruction. 

The training and testing set data were divided ac-

cording to an 8: 2 ratio. 

4.2  Experimental environment and experimental 

parameter settings 

The experimental platform consisted of a Win-
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dows version operating system, E5-2680 v4 CPU 

processor, and an A4000 graphics card with 30.1 GB 

of RAM and 16.9 GB of video memory. Our proposed 

model was built and trained in the PyTorch frame-

work, which is one of the powerful deep learning 

frameworks for Python. The cross-entropy function 

can indicate the degree of difference between the two 

types of variables (Kline and Berardi, 2005). The 

smaller the cross-entropy function value, the closer 

the distribution of the two categories of variables, and 

the larger the cross-entropy function value, the more 

significant the difference between the two categories. 

When the cross-entropy function is used, the simple 

category classification is over-fitted, but the complex 

category classification with the noise is still un-

der-fitted. Therefore, it is necessary to choose a loss 

function suitable for handling complex category la-

bels. We chose the symmetric cross-entropy function 

(Wang et al., 2019). We first calculate: 

 ( ) ( )ce

1

| log | ,
K

k

l p k x q k x
=

=-ä  (17) 

 ( ) ( )rce

1

| log | ,
K

k

l q k x p k x
=

=-ä  (18) 

where Eq. (17) is the formula for cross-entropy func-

tion, and Eq. (18) is the formula for reverse 

cross-entropy function, ()p x  is the true distribution, 

and ()q x  is the predicted distribution. The combi-

nation of cross-entropy and reverse cross-entropy 

constitutes the symmetric cross-entropy function sll : 

 sl ce rce,l l la b= +  (19) 

where ceal  solves the problem of overfitting the 

cross-entropy loss function and rcelb  improves the 

robustness of noisy data and enhances the overall 

system performance. Further, the symmetric 

cross-entropy loss function is handled using label 

smoothing (Szegedy et al., 2016) to reduce the unde-

sirable effects of forcibly learning the wrong category 

when the labels themselves have problems. Error 

tolerance was set for each type of modulation label, as 

shown in Eq. (20): 

 
( )

1 , if

/ 1 , otherwise
i

i y
q

k

e

e

- =ëî
=ì

-îí
 (20) 

where e is a smaller constant. Label smoothing 

makes the probabilistic optimization objective of the 

loss function no longer 1 and 0: 1 becomes 1 e- , and 

0 becomes ( )/ 1ke - , reducing the effect of overfit-

ting and mislabeling on classification. To minimize 

the value of symmetric cross-entropy loss, the net-

work needs to choose a suitable optimization strategy. 

Three gradient descent algorithms, SGDM, Adam, 

and RMSProp, were selected. The experimental re-

sults were recorded for every 4 dB increase from ī10 

dB to choose the most suitable strategy for this 

scheme. The results are shown in Table 1. 

 
Table 1  Identification results of different optimization methods 

Optimizer 
Accuracy (%) 

-10 dB -6 dB -2 dB 2 dB 6 dB 10 dB 

SGDM 59.50 72.73 94.14 99.68 99.95 100 

Adam 57.64 68.91 91.82 99.27 99.95 99.95 

RMSProp 57.23 67.55 91.77 99.14 99.91 99.95 

 

A better optimization strategy can be obtained by 

using the SGDM method. SGDM is based on the 

SGD optimization algorithm but incorporates a 

first-order momentum update term. SGDM simulates 

the object's inertia. The descent speed is accelerated 

for the position where the current gradient is con-

sistent with the last gradient. In other cases, the de-

scent speed is slowed to avoid oscillation near the 

local optimum. This network uses SGDM for efficient 

learning of the network structure. At each SNR, we 

used the ratio of correctly classified signals to the 

total number of samples as the recognition accuracy 

for evaluating network performance. The confusion 

matrix of the modulated signals identified by the 

network was also plotted to evaluate the classification 

performance. For each class of modulated signals, 

TP  means that the model correctly predicted signals, 

and FN  means that the model incorrectly predicted 

signals as other classes. Thus, the prediction accuracy 

under each signal class is defined as: 

 .
TP

Acc
TP FN
=

+
 (21) 
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4.3  Network recognition results and analysis 

Samples in the set were divided into 50 epochs. 

The batch size was set to 16. 

4.3.1  Effect of network depth on experimental results 

Under the network structure designed in this 

study, the number of deep adaptive threshold de-

noising modules in each coding block was changed to 

alter the number of overall network layers, to explore 

the influence of network depth on the experimental 

results. The number of deep adaptive threshold de-

noising modules was increased one by one until the 

optimal network architecture performance was ob-

tained. The experimental networks included network 

A with 4 deep adaptive threshold denoising modules 

such that the numbers of modules from coding block1 

to coding block4 were distributed as [1, 1, 1, 1]; 

network B with 5 modules such that the numbers were 

distributed as [1, 1, 1, 2]; network C with 6 modules 

such that the numbers were distributed as [1, 2, 1, 2]; 

network D with 7 modules such that the numbers 

were distributed as [1, 2, 2, 2]; network E with 8 

modules such that the numbers were distributed as [2, 

2, 2, 2]; and network F with 9 modules such that the 

numbers were distributed as [2, 2, 2, 3]. Fig. 6 shows 

the experimental results of the 6 constructed depth 

networks at low SNRs of [ ]10, 2- - dB. 

 

 
Fig. 6  Experimental results of different network depths 

 

From the experimental results, when the number 

of deep adaptive threshold denoising modules was 

between 4 and 8, the recognition accuracy of the 

network under each SNR increased with the number 

of modules. This proves that as the depth of the net-

work increases, the network learns richer feature 

information, expresses the features more strongly, and 

improves recognition results. When the number of 

modules increased from 8 to 9, the recognition accu-

racy of the network decreased under partial SNRs. 

The recognition accuracy was 59.50%, 72.73%, and 

94.14% at ī10 dB, ī6 dB, and ī2 dB with eight 

modules, respectively, and decreased to 58.32%, 

71.18%, and 93.41%, respectively, when the number 

of modules increased to nine. The reasons were as 

follows. First, the network dataset in this study was 

signal data, which do not need large-scale complex 

image feature recognition. Therefore, the recognition 

accuracy can easily reach saturation when the number 

of network layers rises. Second, the module parallel-

izes part of the hidden layer structure when the re-

sidual path is designed, accelerating the increase of 

network layers. When the depth reaches the boundary 

value, increasing the depth again will gradually lose 

some shallow effective information and cause a de-

crease in accuracy. Additionally, the number of pa-

rameters of the network with eight modules was 

18750859, while the number of parameters of the 

network with nine modules was 23472532. The in-

crease in the number of parameters increases the 

training time. In this study, we combined the results of 

the classification accuracy and model complexity. We 

selected network E containing 8 deep adaptive 

threshold modules such that the distribution of the 

numbers of modules from coding block1 to coding 

block4 were [2, 2, 2, 2] for experiments. 

4.3.2  Recognition results of feature fusion networks 

with different dilated rates 

We tried to set different combinations of dilated 

rates for the parallel structure of dilated convolution 

in the decoding block. In the four-way parallel dilated 

convolution, we set the dilated rate to increase one by 

one. We chose the structures with four-way dilated 

rates of 1, 2, 3, 5; 2, 4, 6, 8; 1, 7, 9, 13 for the com-

parison experiment to select the most suitable dilated 

rates combination under low SNRs. The results are 

shown in Fig. 7. 

The results show that using a structure with the 

dilated rates combination of 1, 2, 3, 5 was better than 

the other two structures because the size of the dilated 

rate directly determined the size of the receptive field. 

A combination with proportionally increasing dilated 

rates like 2, 4, 6, 8 will lose the continuity of image 

information and form a gridding effect. When using a  
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Fig. 7  Identification results of different dilated rates 

 

convolutional combination with dilated rates like 1, 7, 

9, 13 to process high-level information, a large con-

volution makes the input sampling sparse, resulting in 

a local information loss. Therefore, the four-way 

structure with dilated rates of 1, 2, 3, 5 was chosen for 

the network to conduct experiments. 

4.3.3  Identification results of deep adaptive threshold 

denoising network based on multi-scale analysis 

In this study, we set up a network with 8 deep 

residual modules such that the numbers of modules 

from coding block1 to coding block4 were distributed 

as [2, 2, 2, 2] as the underlying framework network. 

For experimentation, we chose the underlying frame 

network, the deep adaptive threshold denoising net-

work, the network using the underlying frame com-

bined with multi-scale analysis decoding, and the 

deep adaptive threshold feature fusion network. The 

results shown in Fig. 8 were used to verify whether 

the network designed in this paper improves recogni-

tion. 

 

 
Fig. 8  Results of the role of each net 

 

The recognition accuracy of the designed deep 

self-learning threshold module was higher than that of 

the underlying residual framework. In particular, the 

feasibility of the threshold learning structure for re-

dundant feature processing was well illustrated in the 

low SNR stage from ī10 to ī2 dB. The recognition 

effect of the deep feature fusion net with the addition 

of multi-scale analysis decoding was also better than 

that of the underlying residual framework. This in-

dicates that the multi-scale incremental dilated con-

volutions based on our design achieve integration and 

interaction between the extracted features. The 

recognition results of the combined codec network 

outperformed the results of the above three networks, 

indicating that the network with skip connection co-

dec structure fully combines contextual data infor-

mation. 

4.3.4  Different network recognition accuracy 

The signal data were fed into the different net-

works under the same data pre-processing conditions 

for comparison with our network (Fig. 9). 

 

 
Fig. 9  Different network modulation identification results. 

DATFFNet stands for Deep Adaptive Threshold Feature 

Fusion Net, FCSTNet for a soft threshold function noise 

elimination network with the fully connected layer, and 

WTNet for the underlying architecture network with 

wavelet thresholding. 

 

As the SNR increased, the recognition accuracy 

of the five kinds of networks also increased. When the 

SNR was lower than 0 dB, recognition rates changed 

significantly with the increase of the SNR. When the 

SNR was higher than 0 dB, the recognition rates in-

creased only slowly with the increase of the SNR, and 

the final recognition rates tended to be stable. Under 

the overall SNR, the recognition accuracy of the 

DATFFNet was higher than the accuracy of the other 
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modulated classification networks. The recognition 

rate of the DATFFNet reached 94.14% at ī2 dB, 

which clearly demonstrates its superiority. We com-

pared WTNet, FCSTNet, and DATFFNet. The 

recognition results using the depth-based adaptive 

thresholding noise elimination method outperformed 

the traditional signal noise elimination method. In the 

low SNR stage, DATFFNet showed an accuracy im-

provement of from 3.27 to 7.45% compared with the 

traditional threshold noise elimination method, which 

shows the superiority of deep self-learning. Mean-

while, the noise cancellation effect of our threshold-

ing module was better than that of using the fully 

connected layer combined with soft thresholding 

learning. In the low SNR stage, our network had an 

accuracy improvement of from 1.05 to 4%. The de-

noising method, which adaptively selects K  channels, 

can effectively filter the irrelevant information while 

considering the direct correspondence between the 

channel and the weight to capture the most significant 

features of the signal. The overall recognition accu-

racy was higher, and the effect was better. We com-

pared GoogLeNet (Szegedy et al., 2015), DenseNet 

(Huang et al., 2017), and DATFFNet. The recognition 

results of our method were better than those of 

GoogLeNet for multi-scale aggregation in the low 

SNR stage, with an accuracy improvement of from 

7.27 to 11.82%. This indicates the advantage of the 

multi-scale information fusion and superposition in 

our design. In addition, the recognition results of our 

network were better than those of DenseNet for 

cross-layer connectivity. In the low SNR stage, the 

recognition accuracy of the DATFFNet was signifi-

cantly improved, which indicates the feasibility of the 

cross-layer connection. 

Visual analysis of the confusion matrix was car-

ried out. Figs. 10ï12 show the classification results of 

the confusion matrix of the deep adaptive threshold 

denoising network based on multi-scale analysis 

when the SNRs were ī10 dB, 0 dB, and 10 dB, re-

spectively. 

The horizontal axis coordinate is the category 

predicted by the network, and the vertical axis coor-

dinate is the actual category. The numbers in the table 

represent the probability that for the actual type cor-

responding to the vertical coordinate, the network 

predicts this type of signal as the corresponding type 

signal on the horizontal coordinate. At ī10 dB, the  

 
Fig. 10  ī10 dB confusion matrix 

 
Fig. 11  0 dB confusion matrix 

 
Fig. 12  10 dB confusion matrix 
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recognition rates of most types of signals were above 

60%, and the network model could roughly distin-

guish various types of signals. The recognition rates 

of 8PSK, 16QAM, and 64QAM modulations were 

low, at 51.10%, 41.88%, and 44.50%, respectively. At 

the lower SNR, the characteristics of these three types 

of signals and other types of modulation were not 

obvious, the similarity between the signals was large, 

and the probability of extracting ideal features was 

low, so the recognition rate was low. At 0 dB, the 

types of signals, except 8PSK and 64QAM, were only 

slightly confused, and recognition rates reached more 

than 95%, which proves the network can distinguish 

these types well. 8PSK had a 17.03% probability of 

being misjudged as 64QAM, and 64QAM had a 

10.05% probability of being misjudged as 8PSK. In 

the results shown in Figs. 10 and 11, a misjudgment 

always occurred between 8PSK and 64QAM. The 

reasons are as follows. First, in the process of network 

learning features, the features are selective, and the 

network easily loses part of the information, resulting 

in misjudgment between signals. Observing the 

recognition results of ī10 dB and 0 dB, the recogni-

tion rates of 8PSK and 64QAM were lower than those 

of most other types, which explains that the features 

learned by this network caused 8PSK and 64QAM to 

be easily misjudged as other types of signals. Second, 

when collecting data, the environmental noise seri-

ously pollutes the 8PSK and 64QAM signals, and the 

parameters, such as the phase and frequency of the 

signals, are damaged, making it difficult to distin-

guish these two types. Hence, 8PSK and 64QAM are 

always confused. At 10 dB SNR, a clear diagonal in 

the confusion matrix was achieved with a 100% 

modulation recognition rate for all modulation classes. 

From three confusion matrix figures, the values on the 

main diagonal of the same type of modulation in-

creased as the SNR increased. This shows that 

recognition rates of all kinds of signals increase with 

the increase of the SNR, and the network recognition 

effect is gradually enhanced. 

To further evaluate the performance of the algo-

rithm, the RadioML2018.01A dataset (O'Shea et al., 

2018) generated by the GNU radio was selected to 

test the algorithm. This dataset considers the effects of 

carrier frequency offset, symbol rate offset, delay 

time, and additive thermal noise on the signal in 

compromised environments. We selected 11 types of 

modulation signals, including 4ASK, AM-DSB-SC, 

AM-SSB-SC, BPSK, FM, GMSK, OOK, OQPSK, 

8PSK, 16QAM, and QPSK. Different algorithms 

were input to the [ ]10, 2- - dB segment for experi-

ments, and the results are shown in Fig. 13. 

 

 
Fig. 13  Recognition results of RadioML2018.01A 

 

In impaired environments, the recognition of 

DATFFNet could reach 78.45% at ī2 dB. Results of 

the algorithm used in our network were still better 

than those of the other four networks under the low 

SNR, with an improvement of from 0.32 to 11.59%. 

This further proves that the designed network is 

suitable for noise threshold self-learning and mul-

ti-scale fusion analysis. 

4.3.5  Model complexity of deep adaptive threshold 

denoising networks based on multi-scale analysis 

Model complexity is related to the computa-

tional resources used by the network. We use 1 1³  

convolution and adaptive grouping convolution to 

reduce the amount of parameters. Further, we ana-

lyzed the experimental results from using different 

convolutional architectures in the encoding and de-

coding stages. Table 2 compares parameters and 

recognition accuracy of the network using the un-

derlying convolutional architecture of 1 1n n³ + ³ in 

the encoding stage, the network using the output 

equivalent features of n n³  without expansion coef-

ficients in the decoding stage, and our convolutional 

combination network, at the low SNR. 

Although the underlying architecture design of 

1 1n n³ + ³ reduced the number of parameters of the 

network, the recognition accuracy of the network was 

lower than that of our network. In the multi-scale 

analysis, the training cost of using the convolutional  
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Table 2  Numbers of parameters and recognition results of different convolutional architectures 

Network Parameters 
Accuracy (%) 

ī10 dB ī8 dB ī6 dB ī4 dB ī2 dB 

1 1n n³ + ³ encoding net 16909963 58.32 60.68 72.18 84.27 93.91 

n n³  decoding net 47652195 58.95 61.50 71.45 84.73 93.68 

Convolutional combination net 18750859 59.50 61.55 72.73 85.68 94.14 

network of n n³  with no expansion rate was too large, 

and the recognition accuracy was not significantly 

improved. Therefore, comparing the number of pa-

rameters and accuracy of the model, the convolutional 

architecture of our proposed network not only had 

better recognition results, but also had fewer param-

eters and higher model efficiency. 

 

 

5  Conclusions 

 

In this paper, we propose a deep adaptive 

threshold noise elimination network based on mul-

ti-scale analysis called the DATFF network. Firstly, 

unlike software simulation signals, our network uses 

USRP to build a software radio platform for actual 

signal transceiving and producing signal datasets. 

Secondly, we designed a coding network for deep 

adaptive threshold noise elimination to solve the 

problem of selecting the optimal threshold value in 

the denoising pre-processing stage. Meanwhile, we 

designed a deep multi-scale feature fusion decoding 

network and connected the coded and decoded fea-

tures in the skip connection. We conducted many 

comparative experiments on the collected datasets to 

demonstrate that our algorithm is effective in com-

bining multi-scale information while eliminating 

noise from redundant features of signals, and has high 

recognition accuracy. In future work, we will focus on 

optimizing our network to achieve real-time classifi-

cation using lightweight techniques while guaran-

teeing accuracy. We will also consider designing 

multi-path deep neural networks to implement joint 

multi-task processing containing the automatic mod-

ulation recognition task. 
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