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Abstract: To improve the accuracy of modulated signal recognition in variable environments and reduce the impact of factors
such as lack of priori knowledge on recognition resuéisearchers have graduadigopteddeep learning techniques to replace
traditional modulated signal processing techniqliesaddresshe problem of low recognition accuracy of the modulated signal at

low signatto-noise ratig, we havedesigreda novel network based on muditale analysis of @pthreshold noise elimination to
recognize the actual collected modulated signals under the acti@yiwimetric crosgntropy function of label smoothinghe

network consists of a denoising encodethvdeep adaptive threshold learning and a decoder with-sualé feature fusion. The

two modules are skiponnected to work together to improve the robustness of the overall neExpekimental results show that

this method has better recogniti@t low signatto-noise ratiosthan previous method3he network demonstratesflexible
selflearning capability for noise thresholds and the effectiveness of the designed feature fusion module-$oalmdéature
acquisitionfor variousmodulatedypes.

Key words: Signal noise eliminatignDeep adaptive thresholdlearning network Multi-scale feature fusignModulation

recognition
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1 Introduction methods are megled to distinguish between multiple

modulation techniques for data transmission to
Signal modulation identification is widely usedachieve efficient transmission and thus ensure stable
in intelligent communication systems, electronicand reliable communication systemis. electronic
warfare spectrum resourcenonitoring, and other warfare modulation identification can help the re-
fields (Liu et al., 2020. In the field of intelligent ceiver identify tke signal type accurately. Modulation
communication systems, with teabstantial increase identification helps estimate the carrier frequency and
in the number of endsers, effective identification bandwidth of the signal to carry out subsequent work
such as demodulation and decoding effectivédy.
spectrum resource monitoring, the radio resource
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The current automatic modulation classificatioriant representation. It carbtainthe implicit mapping
techniques fall intahree main categories: decision relationship between input and output, eliminating the
theorybased, featurbased, and deep learnithgsed complicated step of manual feature selection
approachegHan et al., 2021 (Schmidhuber, 2025 A neural network can ap-

The decision theorpased modulation identifi- proximately fit any functionAn endto-end convolu-
cation method aims to construct likelihood probabiltional automatic modulation recognition neural net-
ity models for multiple hypothesis testing of categowork has beerpropsed (Meng et al., 2018that
ries based on the calculated probabilities of differeroutperfoms featurebased methodsThe method
modulation types Therefore, tis method is also proposed byhanget al.fuses the handcrafted fea-
known as the likelihood ratio judgmebésed algo- tures of different images and signals and uses a con-
rithm. Although modulation identification methods volutional neural network to design a multimodal
based on decision thedmave matureqHuang et al., feature fusion model for automatic modulation
2017 Phukan and Bora, 201&alam et al.,, 2009 recognition(Zhang et al., 200)9Xu et al. designed a
they still havesome shortcomingd=irstly, thelike-  model withmultichannel input using 1D convolution,
lihood function model to be selected is becomin@D convolution, and longhorttime memory layers
more and more complex, requirimguchmoreprior  for extracting features from multiple channels for
knowledge. Secondly, the model is often only for alassification(Xu et al., 202 Zhu et al. proposed a
specific single scene, the generalization ability is poanulti-label complex signal modulation identification
and the universality is low. framework for identifying different types of complex

The featurebased recognition method performssignals (Zhu et al., 20200 A capsule networkwas
feature extraction from individual signals, and itsdesignedy Li et al. to perform automatic modulation
overall process is divided into signal ggcessing, recognition with fewer training samplgdi et al.,
feature extraction, and classification of modulatior2021). A low-latency automatic modulation identifi-
categories based on feature parameteégature ex- cation method applyinga temporal convolutional
tradion techniqueshave beerbased on signal high- network has beenproposed to meet the re#he
erorder moments, singular value decompositionrequirements of communication servidg& et al.,
cyclostationarity, etTayakout et al., 201 &ltaieb et 2022. Li et al. proposed a deeparning hopping
al., 2020 Serbes et al., 2020n addition to extracting capture model, which uses a bidirectional long
different signal featureslassifier desigrcan also be shortterm memory model to identify hopping fea-
studied.Classifier designs have been based on decitures, and performs wireless communication signal
sion trees(Dahap and Liao, 20)}5support vector classification under short dafhi et al., 2022. The
machinegWei et al., 2019 and random forestéi et methodof An et al. identifies the modulation type of
al., 2020. Existing feature modulation recognition ismultiple input multiple outpubrthogonal frequency
usually based on specific signal samples and thus hdisision multiplexing (MIMO-OFDM) subcarriers
limited recognition performance in noisy environ-using a seriesonstellation multmodal feature net-
ments.The overly complex extraction mettls in-  work to achieve modulation identification in realistic
troducemany parameters anihcrease th&omputa- non-cooperative cognitive communication scenarios
tional costof the modulation recognition system, and(An et al., 2022 Doan et al. used a deep learning
the methodfor processingartificially selected fea- network for automatic modulation identificationch
tures lacks universality. direction of arrival (DOA) estimation, enabling joint

In response tahe above problemsnethods multi-task learning of the same netwdfoan et al.,
based omeep learningre graduallypeingapplied in  2022. The deep learninfased method learnseth
signal modulation recognitiorDeep learning is a differences between different modulation signals
method that uses multilayer neural networks foautonomously through repeated training of radio data,
massive data processing. It easily analyzes the feiltereby increasingnoduktion recognition accuracy
tures of different data dimensions with the powerfuand making up for the shortcamgis of likelihood
feature extraction capdities of neural networks such ratio judgmentased and featugased modulation
as local connectivity, parameter sharing, and isovarecognition methodsAlthough deep learning tech-



Li et al. / Front Inform Technol Electron Eng in press 3

nigues have been investigated in modulation recog- The modulation signal dataset is produced
nition, most algorithms have low recognition rates athrough two stagessignal acquisition and signal
low signatto-noise ratioSNRs) andhavecomplex pre-processing.

data preprocessing. . .

To address these issues, we first use softwarzél Signalacquisition
radio equipment to acquire thepase and quadra- Most modulation identification research is still
ture components of multiple modulated signals in Aased on simulation datasets generated by mathe-
natural environment and pprocess them by wavelet matical softwareThis approacHacks consideration
transform. We use adeep adaptive threshold de-of the influence of the signal in thensceiver envi-
noising network asht encoder, ana threshold ronment.n the actual sending and receiving process,
selfselection module is designed to denoise the sidhe signal may experience attenuation and distortion
nal and extract the input data features simultaneoushaused by space propagation l@g]interferenceby
We usea module withup samplingas a decoder to atmospheric noise such as thunderstoamd light-
restore datalayer by lar, for classification.The ning, and may also appeaas intermittent signa
proposed modulation recognition schenmsunot caused by unstable sending and receiving equipment
only the idea of encoding and decodibgt also of In our study, we builta signal transceiver system
deep multiscale feature fusion. It uses skip conneceomprising aUniversal Software Radio Peripheral
tion to connect denoised encoded features with d@JSRP) antenna, and software radio platform in a
coded features output fromulti-scale analysis and natural environment. USRP N2#asselected as the
upsampling to learn the differences between differertiardware device for signal transmission and reception
kinds of signals. The software radio platform is used to generate, store,

and analyze the actual modulated signals. Fif
shows the architecture of the signal transceiver sys-
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Flow graphswere constructedsing GNU radio quadraturelatg and saves the multhannel data and
companiorand dfile source modulevas usedo read SNR labels of each modulation type. The processed
the set signal data flow from the PC. The data in th@ataare directly fed into the deep learning network
file sourcewere pre-designed data of multiple mod- recognition model.
ulation types. The modulan categories selectddr Wavelet threshold noise cancellatiama clas-
this study were based otthose previously used for sical method in signal noise reductigbonoho,
radio datasstin modulation identificationfO 6 Sah €1995. The wavelet transform originated from the
and West, 2016 Modulation types are divided into Fourier transform, whit convered time-domain
analog modlation and digital modulation. Analog functions to frequenegomain functions by trans-
modulationincludesDouble Side Band Modulation forming them into trigonometric functions or their
(DSB), Simple Side Band Modulation (SSB), Fredinear superposition(Harris, 1978. The Fourier
quency Modulation (FM). Digital modulatiom- transform uses the entire signal in the time domain to
cludes8 Phas Shift Keying (8PSK), Binary Phase extract spectral informatignand obtains a single
Shift Keying (BPSK), Continuous Phase Frequencdetermined spectral valubat does not reflect local
Shift Keying (CPFSK), Gauss Frequency Shift Key-characteristicscCompared with the Fouridéransform
ing (GFSK), Pulse Amplitude Modulation 4 (PAM4), the wavelet transform chooses a fidigagth family
16 Quadrature Amplitude Modulation (16QAM), 64 of wavelet functiongChang et al., 20Q0The family
Quadrature Amplitude Modulath (64QAM), and is obtained by translating and telescoping the wavelet
Quadrature Phase Shift Keying (QPSK). After sambasis, which decays rapidly s@roand integrates to
pling the modulated signal, it can be expressed as: zerg in [ g +], i.e., the amplitude oscillates be-

3

x(k)= A( k)COS( 2 (K kg( '9) (1)  tween positive and negative. The essence of the
where, A(k) is the instantaneous amplitude of thevavelet tran;form is the inner .produ.ct of the signal
and the family of wavelet functions, i.e., the projec-
tion of the signal onto the family of waeé functions
g(k) is the instantaneous nonlinear phase. Using t{&endur and Selesnick, 2Q0Zhe classical wavelet
transform equation is as follows

signal, f (k) is the instantaneous frequenand

trigonometric formula, webtain
x(K) = 1(K)co( 2 f(K)K) " WT(a @:%ﬁ*: (9 b &
Q(K)sin(2 (K) ¥, 2 ¢a -

where, f (t) is the input signalY (t) is the wavelet

and
basis function a is the scale parametratperforms
£1 (k) =A(k) cos(q(k)) , 3 function scalingandb is the translation parameter
1 . 3 that changes the function action positidrhe result
1Q(K)= -A(Ksin(q(K),

of the transformation reflects not only the frequency
where, | (k) is the inphase component, ar@(k) ~ components contained in the signal but also the cor-

is the quadraturecomponent of the complex signal. "€sPonding time domain locatiorMost pradical
Noisewas added at different intensities for different®PPlicationsusediscrete wavelet function families
kinds of modulated design signals. TI#NR was w2 3X- nhd ¢
. : . Y ol X) = e &
increasedrom1 10 to 10dB in 2dB increments. The m’“( ) % c ay ( ©)

noised signal is as follows: where a=a" , b=nhd , mni 0 ,a>1. The

x(K)=x(K + R, (4)  wavelet transform relies on different, n, for dif-
where, n(k) is the added noise. ferent resolutionsas well as different translations
decompose the signal to differestales Therefore,

2.2 Signal pre-processing the wavelet transform can analyze the localization of

nonstationary signals in the tirfeequency domain.

Our schemeadopts the rocessing method of
v @dop pre g We chose Daubechiéaavelet basis function for

wavelet noise reduction for the receiveebhaseand
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the discrete wavelet transforaubechie8wavelet structed, which can realize the gocessing of
belongs to compactly supported orthogonal waveletsiavelet noise reduction andbtain the estimated
As a common function for signal decomposition andialue of the recovered original signal.
reconstruction, it has good regular{tyi and Chen,

2014. The Mallat algorithm carries out the decom-

position, and the wavelet coefficients of low and higl8 Automatic modulation recognition system

frequencies are model
é e
}Cj [K] —215[” 2K ¢, M In this section, wefirst describe the overall
1 N-1 (") framework of the signal recognition system and in-
%dj [K] = al wn 24 ¢,[ 1, troduce the recognition network in the framework, i.e.,

the deep adaptive threshold feature fusion network.
where ¢;[K] is low-frequency wavelet coefficient We then provide detailed descriptoof two critical
subnetworks of the recognition networkhe deep
adaptive threshold denoising network and the deep
selected wavelet basis function determitresscale  yyiti-scale feature fusion network.
and wavelet coefficients. The number of layers of . _
decompositions j , andN is the signal lengtiMost 3.1 The overall framework of the signal recogni-
ion system

and d; [K] is high-frequency wavelet coefficierThe

of the noise in the data is distributed in thet
high-frequency details, which negtb be eliminatd. The overall framework of the signal recognition
A fixed threshold is used to remove no{d&a et al., system is shown in Fig. ZThe d$gnal transceiver
2013. The formula for threshold selection is as fol- system collects the modulation signao obtain

lows: in-phase and quadrature componewts.use wavelet
media |W| noise reductiomn the componenendcombine them
/ =Tr£5)\/2|nN, (8  into multichannel dataAt this point, the dataro-

cessing is completed. The greocessed data are read
into the deep adaptive threshold feature fusion net-
work designed in thistudyto obtainaprediction.The
symmetric crosentropy loss functiorbetweenthe

where / is the selected threshold is the original
wavelet coefficient, andl is the signal length. For
the threshold functiorthe soft threshold selected for

denoisings predicted category and tleetual categoryis calcu-
jésign(w)(M- /) w2/, lated to obtain the loss valueThe parametersire
W =10 |vv| </ ©) optimizediteratively according to the loss values to
e ’ obtainthe final recognition model.
where w, is the wavelet coefficient after noise re- In the first step of the deep adaptive threshold

duction. When the absolute value of the wavelet cdeature fusion network, the input dadae updated
efficients is greater than the given threshold, thwith dimensionality by the convolutional layer and
wavelet coefficients subtract the threshold; when theassedhrough the batch normalization layer (BN)
absolute value is less than the given threshold, thénd LeakyRelu function. In the next step, the da¢a
are discardedThe wavelet inverse transform is per-passed through the critical components of the recog-
formed on the filtered signal, that the wavelet re- nition network. The datare first extracted by the

construction The equation issfollows: deep adaptive threshold denoising network of non-
N-1 linear encding for feature extractigrand then di-
c..[k=a g[ngk-21 mensionally restored by the deep msltale feature
" (10) fusion network of nonlinear decoding. We dsbe
ad[nwk 21. idea of an autoencoder to construct the abowe
n=1

N ~ subnetworks for modulated signal identificatiofe
The .Iowfr.equency coefﬁCIe.nt's and the noisesetfour blocks with different dimensions in the non-
cancellation higirequency coefficientsare recon- |inear encoder structure DATDN for feature
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Flg 2 Signal recognition systenframework. DATDN = Deep Adaptive Threshold Denoising Netork. DMFFN = Deep
Multi -scale Feature Fusion Network. Psdeg parallel structure of dilated convolution. Up = up sampling.

extraction of different dimensions. Noise elimination

means are introduced into each blogkthreshold

We propose a deep adaptive threshold denoising
network based on the residual network. While en-

learning nework with a designed threshold functionsuring the effectiveness of the netwotkis adap-
removes redundant information from the set ofively learns the threshold value and eliminates ir-

learned featuresThis enables the network to auto-
matically identify the noise to be removed anabr-

relevant data featurds play the role of signal de-
noising. The dep adaptive thresholdenoisingnet-

come thedifficulty of determiring the optimal value work consists ofour blocks of different dimensions,

for setting the threshold manually the nonlinear

andeach block contains a corresponding number of

decoding DMFFN, we set up decoding blocks cordeep adaptive thresholddenoising modules The
responding to the dimension of the encoding block. Istructure of each moduls shown in Fig3. The deep
each decoding block, we convolve the input featuresdaptive thresholddenoising module contains an

using a parallel structure of dilated convolutidor

additional submodule for setting the threshold of

multi-scale feature extraction and superposition teesidual paths compared to the deep resichaglule

form fused features and therp samplethe fused

The submodule consists of a threshold training

features.The coding and decoding information ismodule and a threshold functiofhe threshold
fused using skip connection so that the network leartisaining module sets the corresponding threshold

both global and local informatiorEach decoding

valuefor each channel featur€he threshold function

block is serially connected and gradually recovered tcan adaptively eliminate noise by judging the rela-

the initial data dimensionThe output features go
through a global average pooling layerd@pout
layer, and a fully connected layerdbtainthe prob-
ability of each signal recognition.

3.2 Deepadaptive threshold denoising network

tionship between thdataand the thresholdf each
channel.

The core of the deep adaptive threshold de-
noising module lies in the design of threshold noise
elimination for the residual paiffrig. 3. Initial fea-
ture extraction is performed using the convolutional
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(\”\”/ more critical information for subsequent network
processing.
—————  ComBN, LeakyRelu The otherpathis to obtain adaptive thresholds
CxWxH and use the threshold function to eliminate noise.

Here, X isflattered in one dimension and multiplied

l Conv, BN, LeakyRelu ) )
with the featuresflattered by the adaptive local

g
§ Sl channel convolutionThe resulting features are de-
g l Global average pooling compressed. Since the channel dimension is usually
3 e an integer multiple of 2and considering the limita-

x tions of the linear mapping relationship for feature

Flatten

selection(Wang et al., @20), an exponential function
with a base of 2 is chosen to reflect the relationship

Adaptive conv

Cxone-dimension —|| Flatten Flatten )
BN, | g between the convolution kernel and the number of
Sigmoid I fl channels. The adaptive local channel convolution is
J( one-dimension I
Ti _log,C b
Unsqueeze  |Unsqueeze Cxone-dimension K B g - ) (11)
dd

Cxone-dimension

C1x1 Cxlx] In Eg (11), K is the convolution kernel size, indi-

3 émm.m. A function cating how many close neighbors participate in the
] calculation of thespecified channel. e sizes of
(_\“.,,/ g=2, b=1, and convolution kernels are related to
the number of channels in the current feat@en-

Fig. 3 Deep adaptive threshold denoising module sider K convolution kernels to camte local

crosschannel interaction information, which caat

. threshold for different channels by adaptive local
gverage pooling then transfor_ms featEswW SH crosschannel convolutioninput each channel data
into output featuresC?1 21 with global receptive 51 eand threshold value into the designed threshold
fields, preventing overfitig and simplifying the fnction for adaptive noiselimination The conven-
computation when designing the subsequent noisgna| thresholding functions areard thresholding
elimination model thresholds. After aggregating;nq soft thresholding. THeardthresholihg is:
C3W 3H into the output features @31 31, the féX|><12 h

model is divided into two parallel structuresne =1 '
considers the relationship between different channels T01|X| <h,
based on the original features, and the other is d@here /7 is the set threshold values denotesthe
signed as the threshold training network. input data, and, denoteghe threshold noise elimi-

The first path flattens the globally average i tThe hard threshold function | )
pooled featuresx into a onedimensioml vector, nation result.1he hard threshold Tunction 1s not con-

with each dat@aluerepresenting a feature within thetinuous neathe threshold value, causing the pseu-
P g do-Gibbs effect. Although the continuity of soft

current channel. Then the weights correspondin L . o7
. 9 P g tt%resholdlngs improved, the sign function jgone to
each channel dataluein the whole feature set are = . ) . .
oscillae at theintermittentpoint, which affects the

calculated by iterative optimization of tiBN layer, .
y P Y denoising effectin our scheme, waise the tanh

i id functi | neork i - . .
Sigmoid function, gnd neural neor propagation functioninstead of the sign functioithe formulaof
process. Each weight is multiplied by the featur? o

he tanh functioris:

value in the corresponding channel to obtain the fea-

layer, the BN, and the LeakyRelu functigalobal

(12)

ture containing the respective importance level. tanh(x) = exp(x) - exg ) . 13
Compared with the direct output of features with the exp(x) + exi( -X)
same weight, this method can beffiethe depend- Fig. 4 showsthe difference between the tanh

ency relationship between each channel and providgnction and the sign function.
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ent dimensionsEach decoding block corresponds to
i the dimension of the @@ adaptive thresholdie-
noising coding block. First, the decoding block syn-
thesizes more discriminative features usbogtinu-
ous incrementainulti-scale dilated corolutions for
the input featuresDilated convolution is a method
sl ‘ ‘ | that increases theeceptive fieldwithout adding ad-

s ditional computational efforfWei et al., 2018 The
, receptivefield is the sizeof the regionwhere the

T R extracted features are mapped to the input space
(Rawat and Wang, 20LAn increase in theeceptive

field indicates a larger spatial reach to the original

Compared with the sign function, the tanh func—dfata'D”atecj convolution comtins a hyperpgrameter
_ . . . ... dilatedrate compared to standard convolution. Let the
tion is smoother at the intermittent point, eI|m|nat|ngd,I ted rate bed . thend - 1 i ted b
the effectof the optimization difficulty caused by the O '€ raed.e ' eln i ze:coi are msTrg ke-
intermittent point of the sign function on the de-WWeeNtwo adjacent elements of the convolution ker-

noising process. In addition, the data whose absolurf'gl’ which constitutes a sparsiéer:

Fig. 4 Function image

values aregreater than the threshold when using soft n=k "(k }) (él 1) ; (15

thresholding hee a constant deviation between the &i+2p & (-k 1)_ (d3 ]) g

denoised value and the actual value, which affects the 0=¢ S o, (16)
e g

approximation of the denoised output and the actual
data.Therefore, our designed threshold function is aghere, n is the size of the equivalent convolutional
follows: kernel after expansion, arld is theinput convolu-
éx, X2 z, tional kernel sizeTheoutput data size i©, i is the
1 input data sizep is the padding sizeand s is the
X ={tanh( X)M Z, <1:>4 <. (14) step size Comparedwith standardconvolution, di-
7 1”4 latedconvolution can obtaia denser feature response
% 0, x| ¢ z,, while learning fewer feature parametédfs). 5 shows
) the dilated convolution parallel structure designed in
wherez, and z, are the threshold resultsined by s study
adaptive noise eliminationx denoteshe input data, The parallel structure contains feway dilated

and x, denoteghe output of the deep neural networkconvolution with progressively increasing dilated
based on threshold function noise eliminatishe 'ates. The light blue rectangular boxes in Fig. 5 show
network is flexible to selfearn the threshold value the specific role of the dilated convolution layer for
corresponding to the current feature so that essentAch way. In Eq. @), assuming the size & is 3, we
features and redundant features learn differerfiet the dilated rates fiour ways to be 1, 2, 3, and 5.
thresholds. Different noise elimination results are The change of each red box area represents the
obtained by the threshold functidfhe features of the change in the size of the individual convolution kernel,
relationship between the adaptive noise eliminatiof® Wecan obtainthe equivalent convolution kernel
results and the retained channels are summedeas &es to b&,5, 7, and 11, respectiveljhis expand

output of the residual path. This mo@eisurever- the originalaction range of the convolution ketrand
all efficiency. increass the receptive field. Meanwhile, the parallel

incremental dilated convolutions design can map the
features of different sizes in the input features to the

Ourdesignuses a deep mukscale feature fusion corresponding positions of the output features. After
network as a decodeFhe network consists of deep the BN and the LeakyRelu funefi, the results are
multi-scale feature fusion decoditdpcks of differ- Prepared for the next step of medtiale fusion. To

3.3 Deep multi-scale feature fusion network
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Fig. 5 Parallel structure of dilated convolution

prevent the convolution kernel from degenerating intexperimentallyusingthe acquireddata.
a filter of 13 1 and ignoring the overall features when
the dilated rate increases, the module glallels
oneway global average pooling to restore global  The baseband signal generated by the source is
featuresThis waythengoes through convolution to limited by the antenna size and the channel bandwidth.
recover the channel dimension and sgmpling to The signal has a low frequency, which causes signif-
recover the size of the featureShe designed icant attenuation and distortion when transmitted
five-way multiscale parallel features are fused, andlirectly. Therefore, various modulation methods are
the features are subjected 1®1 convolution, BN, needed to change the baseband signal into a form
the LeakyRelufunction anddropout layer to obtain suitable for transmission on the corresponding carrier
multi-scalefusion decoding features. frequency. The datasefas the modulated signal ob-
After the dilated convolution parallel structure,tained by using a software radio platform built by
we usethe bilinear interpolation method for up sam-USRP to transmit and receive in a natural environ-
pling calculation. Up sampling is a means of recovment. It serves tasupportthe next step to prove the
ering data information. The foexisting pixel values practicality of the deep adaptive threshold feature
around the target poinff the original imageare used fusion network. Th11 modulation typem this study
jointly to determine the target point's pixel value. ThavereDSB, SSB, FM, 8PSK, BPSK, CPFSK, GFSK,
core idea is to perform a linear interpolation in each d?AM4, 16QAM, 64QAM, and QPSK. Since the fea-
the two directions, which is computationally small ture extration recognition ability diffes at different
and easy to implement. SNRs, noisewasadded tohie modulated signal. The
Furthemore the coding noise reduch feature SNRrangel fromT1 10 to 10dB, increasing every @B,
and the decoding recovery feature of msttale producing signals at 1BNRs. There were 1000
analysis of the corresponding channel aresamples for each type of signal at e&MR so the
skip-connected to obtain new features and then inpdiatasetontaired 121,000 samples. The-phase and
to the next layer for continuous decodifidnis pro- quadrature matrixesvere transformed inta mul-
cess fuses higlevel featureswith low-level features ti-dimensional matrix using wavelet decomposition,
to obtain global and local informaticand mine the fixed threshold denoising, and wavelet reconstruction.
available informatioriully. The training and testing set datsere divided ac-
cording toan8: 2ratio.

4.1 Dataset preparation

4.2 Experimental environment and experimental

4 Experimental results and discussion :
parameter settings

We verified the effectiveness of ounetwork The experimental platformonsisted of aVin-
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dows version operating system, -2680 v4 CPU constitutes the symmetric cresstropy functionl,:
processorand anA4000 graphics card with 30GB L =al  +b (19)
of RAM and 16.9GB of video memoryOur proposed o o ree o
modelwas built and trained in the PyTorch frame-Where al,. solves the problem of overfitting the
work, which is one of the powerful deep learningcrossentropy loss function andl . improves the
frameworks forPython. The crossentropy function 4 stness of noisy data and emtes the overall
can indicate the degree of difference between the MQstem performance. Further, the symmetric
types of variablegKline and Berardi, 2005 The  ¢ygssentropy loss function is handled using label
smaller the crosentropy functionvalue the closer smoothing(Szegedy et al., 201 reduce the unde-

the distribution of the two categqries of variables, angd; aple effects of forcibly learning the wrong category
the larger the crossntropy functiorvalug the more  \yhen the label themselves have problems. Error

significant the difference between the two categorie y|erancanasset for each type shodulationiabel, as
When the crosentropy function is used, the simple ghqwn in Eq(20);

category classificatiors overfitted, but the complex &l e, ifi =y
category classification with the noise is still un- g =i )
dekfitted. Therefore, it is necessary to choose a loss fel(k- 1), otherwis
function suitable for handling compleategory la- where @ is a smaller constantLabel smoothing
bels We chosahe symmetric crosgntropyfunction makes the probabilistic optimization objective of the

(20

(Wang et al., 2019 Wefirst calculate loss function no longer 1 and Dbecomesl- e, and
K . .

A /(k-1 -

.= & p(k|)logq(kl ), (17) O becomese (k- 1), reducing the ééct of overfit

k=1 ting and mislabeling on classificatiomo minimize

X the value of symmetric crosmtropy loss, the net-
lee = 'EB_.lQ(kl X)log p(k| ¥ , (18)  \work needs to choose a suitable optimization strategy.
Three gradient descent algorithms, SGDM, Adam,
and RMSPropwere selected. The expenental re-

. ) - sultswererecordedor every 4dB increase fronn 10
crossentropy functlon,p(x) is the true distribution, 45 t5 choose the most suitable strategy for this

and q(x) is the predicted distribution. The combi-scheme. The results are shown in Table 1.

nation of crosentropy and reverse cresstropy

whereEq. (17) is the formula for crosentropy func-
tion, and Eg.(18) is the formula for reverse

Table 1 Identification results of different optimization methods

Optimizer Accuracy(%)
-10dB -6 dB -2dB 2dB 6dB 10dB
SGDM 59.50 72.73 94.14 99.68 99.95 100
Adam 57.64 68.91 91.82 99.27 99.95 99.95
RMSProp 57.23 67.55 91.77 99.14 99.91 99.95

A better optimization strategy can tdetained by total number of samples as the recognition accuracy
using the SGDM method. SGDM is based on thér evaluathg network performance. The confusion
SGD optimization algorithm Wi incorporatesa matrix of the modulated signals identified by the
first-order momentum update term. SGDM simulatesetworkwas also plotted to evaluate the classification
the object's inertia. The descent speed is acceleratgerformance. For each class of dntated signals,
for the position where the current gradient is conTP means that the model correctly predatsignals,
sistent with the last gradient. In other cases, the dand FN means that the model incorrectly preditt
scent speed is slowed to avoid oscillation near thsignals as other classes. Thus, the prediction accuracy
local optimumThis network uses SGDM for efficient under each signalassis defined as:
learning of the network structur&t eachSNR, we TP

usal the ratio of correctly classifiedignals to the Accz—TP TEN (21)
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4.3 Network recognition results and analysis improves recognition results. When the number of
modules increaskfrom 8 to 9, the recognition accu-
racy of the network decreadeunder partialSNRs.
The recognition accuraayas59.50%, 72.73%, and
4.3.1 Effect of network depth on experimental result®94.14% ati 10 dB, 16 dB, andi 2 dB with eight
modules, respectively, and decrehde 58.32%,

Under the network structure designed in thi 0 0 .
study the number of deep adaptive threshold dzl'lS %, and 93.41%kespectivelywhen the number

L . : of modules increaskto nine The reasonsvere as
noising modules in each coding blogks changed to . . .
follows. First, the network dataset in thagidywas
alter the number of overall network laygis explore ianal data. whichdo not needlargescale complex
the influence of network depth on the experimenta?g ’ 9 P

results. The number of deep adaptive threshold d'enjage feature recognitiorThereforethe recognition

. . . accuracy can easily reach saturation when the number
noising modulesvas increased one by one until the .

. . of network layers risessecond, the module parallel-
optimal network architecture performaneas ob-

tained. The experimental netwaoskncluded network 'Szigial?ar;tﬁf i;h?je';lid(:]zr;iglziile;rzg:crgeinvg?ee;s;hsf e
A with 4 deep adaptive threshold denoising modules P g g

suchthatthe numbes of modules from coding block1 \r/]zItL\JNe Or:(nﬁizrssi\;\/hfﬁetzid;tre;ﬁhﬁﬁlth?azziﬂd?ge
to coding blockdwere distributed as [1, 1, 1, 1]; ' 9 ph ag 9 y

. some shallow effective information and cause a de-
network B with5 modulessuchthatthe numbersvere crease in accuracydditionally, the number of pa-
distributed as [1, 1, 1, 2]; network C wishmodules Y. P

suchthatthe numbesweredistributed as [1, 2, 1, 2]; rlaggtoeggg()fwmlee ?ﬁ;wr?atnt\:\g ihoflghte?;?gu;ﬁe
network D with 7 modulessuch that the numbes ’ foan

were distributed as [1, 2, 2, 2]: network E wigh network with nine modulesvas 23472532 The in-

modulessuchthatthe numbesweredistributed as [2, fr;eiiisne ::1q<tah|?1 tﬂf:;ﬁj Zr ?/T/eggrrm?t;ri]r?;jetrﬁe Tecsrjl?sszi the
2, 2, 2];andnetwork F with9 modulessuchthatthe 9 : Y.

numbes weredistributed as [2, 2, 2, 3]. Fig. 6 ShOWSthe classification accuracy and model compleXitg

. seleced network E containing8 deep adaptive
the experimental results of ticonstructed depth threshold modulesuchthat the distribution of the
networks at lowSNRs of [- 10, -2 dB.

numbes of modules from coding blockl to coding
block4were[2, 2, 2, 2] for experiments.

Samples in the seteredivided into 50 epochs.
The katch sizevas set to 16.

95

4.3.2 Recognition results of feature fusion networks
with differentdilatedrates

e
b=}

@
I

We tiied to set different combinations of dilated
rates for the parallel structure of dilated convolution
in the decoding block. In tHeur-way parallel dilated

-1 o
by <

Accuracy (%)

a3
<

o | ) Nl convolution, we set the dilated rate to increase one by
w0 _ﬁ_xj--_-"" N ol one. We chose the structareith four-way dilated
sl e N9 moderor 22231 rates of 12, 3,5; 2,4,6, 8; 1,7, 9, 13 for the com-
0 r 7 ” 3 parison experiment to select the most suitable dilated
SNR (d8) rates combination undetow SNRs. The results are

Fig. 6 Experimental results of different network depths shown in Fig. 7.

From the experimental results, when the numbeJ”atThe results show that using a structure with the

of deep adaptive threshold denoising modwes ed rates combination of 1, 2, 3was better than

between 4 and 8, the recognition accuracy of thtge other twestructuresecause the size of the dilated
network under eac;BNR increasd with the number rate directlydeterminé the size of the receptive field.

of modules This proves that as the depth of the net-A compination with prpportionally 'n:regsipg d”‘?ted
work increases, the network learns richer featurg €S like 2, 4, 6, 8 will lose the continuity of image

information, expresses the features more strongly, alj]rgormatlon and form griddingeffect. When using a
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seltlearning threshold moduigas higher than that of
the underlying residual framework. In particular, the
feasibility of the threshold learning structure fer
dundanteature procssingwas well illustrated in the
low SNR stage froni 10 toT 2 dB. The recognition
effect of the deep feature fusioet with the addition
of multi-scale analysidecodingwas alsdbetter than
that of the underlying residuflamework. This in-
dicates thathe multiscaleincrementaldilated con-
volutions based oaur designachieve integration and
interaction between the extracted features. The
recognition results of the combined codec network

convolutional combination with dilated rates like 1, 7f)utperfornedthe results of the above three networks,

9, 13 to process higlevel information, a largeon- indicatingthat the network with skip connection co-

. ; . . dec structure fully combines contextual data infor-
volution makes the input sampling sparse, resulting in

a local information loss. Therefore, the feauvay mation.
structure with dilated rates of 1, 2, 3yv&s chosen for 4.3.4 Different network recognition accuracy
the network to conduct experiments.

Accuracy (%)

—&— Dilated rates of 1,2,3,5
Dilated rates of 2,4,6.8
*— Dilated rates of 1,7,9,13]

SNR (dB)
Fig. 7 Identification results of different dilated rates

The signal datavere fed intothe different net-
4.3.3 Identification results of deep adaptive thresholdvorks under the same data {m®cessing conditions
denoising network based on medtiale analysis for comparison wittour network(Fig. 9).

In this study, weset up anetwork with8 deep
residual modulesuchthat the numbes of modules 100
from coding block1 to coding blockderedistributed wl
as [2, 2, 2, 2] as the underlying framework network. s
For experimentation, & chose the underlying frame
network the dep adaptive threshold denoisinggt-
work, the network using the underlyinframe com-
bined with multiscale analysis decoding, arlde

Accuracy (%)
a
2

DenseNet
—&— DATFFNet |

deep adaptive threshold feature fusion netwdHe
results shown in Fig. &ere usedo verify whether

—m— FCSTNet
GooglLeNet

WTNet

the network designed in this paper improves recogni-

tion.

Accuracy (%)

90

-z 0
SNRI(dB)

Underlying Residual Framework Net

—&— Deep Feature Fusion Net

1 1 1 L 1 1 1 1 L

,,,,,,,,,, e = e = — e — = — = —]

7|—#®— Deep Adaptive Threshold Denoising Net -

—4— Deep Adaptive Threshold Feature Fusion Net| |

-10 -IS -6 -4 -2 0 2 4 6 8 10
SNR (dB)
Fig. 8 Resultsof the role of eachnet

SNR (dB)

Fig. 9 Different network modulation identification results.

DATFFNet stands for Deep Adaptive Threshold Feature
Fusion Net FCSTNet for a soft threshold function noise
elimination network with the fully connected layer and
WTNet for the underlying architecture network with

wavelet thresholding

As the SNR increaske the recognition amiracy
of the fivekinds of networks also increak&Vhen the
SNRwas lower than @B, recognition rateshangel
significantly with the increase of the SNR. When the
SNRwas higher than @B, the recognition ratas-
creased onlglowly with the increase of the SNR, and
the final recognition rates teadto be stable. Under
the overall SNR, the recognition accuracy of the

The recognition accuracy of the designed deePATFFNetwas higher than the accuracytbe other
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modulated classification networks. The recognition
rate of the DATFFNet reacHe94.14% at1 2 dB,
which cleaty demonstratedts superiaity. We com-
parel WTNet, FCSTNet, and DATFFNet. The
recognition results using the degihsed adaptive
thresholding noise elimination methodtperforned
the traditional signal noise elimination method. In the
low SNR stage, DATFFNethowedan accuracy im-
provement of fronB.27 to 7.45% compared with the
traditional threshold noise eliminatiamethod, which
shows the superiority of deep skfrning. Mean-
while, the noise cancellation effect @iur threshold-
ing modulewas better than that of using the fully
connected layer combined with soft thresholding
learning. In the low SNR stage,our networkhadan
accuracy improvement dfom 1.05 to 4%. The de-
noising methogwhich adaptively selects channes,
can effedively filter the irrelevant information while
considering the direct correspondence between the
channel and the weighd captue the most significant
features of the signal. The overall recognition accu-
racywas higher, and the effegtas betterWe com-
pared GoogLeNet(Szegedy et al., 20)1.5DenseNet
(Huang et al., 20)7and DATFFNetThe recognition
results of our method werebetter than those of
GoogLeNet for multiscale aggregfion in the low
SNR stage with an accuracy improvement &bm
7.27 to 11.82%This indicates the advantage of the
multi-scale information fusion and superposition
our designIn addition, the recognition results aiir
network werebetter than thoseof DenseNet for
crosslayer connectivity. In the lovBNR stage, the
recognition accuracy of thBATFFNetwas signifi-
cantly improved, which indicates the feasibility of the
crosslayer connection.

Visual analysis of the confusion matvires car-
ried out.Figs. 10i 12 show the classification results of
the confusion matrix of the deep adaptttieeshold
denoising network based on migdtiale analysis
when theSNRs were 1 10 dB, 0 dB, and 10dB, re-
spectively.

The horizontal axis coordinate is tleategory
predictedby the network, and the vertical axdsor-
dinate is the actual category. The numbers in the table
represent the probability that for the actual tgpe-
responding to the vertical coordinate, the network
predicts this type of signal as the corsging type
signal on the horizontal coordinate. A10 dB, the

True Label

True Label

True Label

ConfusionMatrix -10dB

8PSK . 1154 220 055 165 165 220 275 1648 330 6359
BPSK .50 . 1.50 350 200 100 250 450 350 350 250
CPFSK  5.00 6.00 . 400 700 050 150 200 200 950 200
DSB 299 1144 149 . 199 050 149 348 1.00 746 149
FM 323 369 2176 415 . 323 092 1382 138 553 046
GFSK 806 484 215 108 269 . 161 269 323 484 538
PAM4 426 426 213 319 213 638 . 266 266 691 319

16QAM 524 471 262 314 3037 000 105 SE8E 157 733 209

640AM 2249 526 191 144 287 335 144 £61 SOl 383 431
QPSK  3.14 260 224 448 583 045 224 493 \Tl).234

=

SSB 354 246 148 443 394 443 296 345 246 591 .

4PSK
BPSK
CPFSK
DSB
GFSK
QPSK
SSB

Predicted Label
Fig. 10 110dB confusion matrix
ConfusionMatrix 0dB

V[’SK.UUU 000 000 000 000 000 000 1703 000 0.00

BPSK  0.00 . 000 000 000 000 000 000 000 000 0.00
CPFSK  0.00 0.00 . 000 200 000 050 000 000 000 000
DSB 000 000 0.00 . 000 000 000 000 0.00 000 000
FM 000 000 092 000 . 000 000 000 000 000 0.00
GFSK 000 000 000 000 0.00 . 000 000 000 000 000
PAM4 000 000 053 000 000 0353 . 000 055 000 0.00
16QAM 000 000 000 000 000 000 052 . 052 000 052
640AM 1005 048 144 000 000 048 144 048 . 000 0.00
QPSK 000 000 000 000 000 000 045 045 0.00 . 0.00

SSB 000 000 000 O

2
2

000 000 049 000 000 0.0

5
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Fig. 11 0dB confusion matrix
ConfusionMatrix 10dB

BPSK . 000 000 000 000 000 000 000 000 000 000
BPSK  0.00 . 000 000 000 000 000 000 000 000 0.00
CPFSK 000 0.00 . 000 000 000 000 000 000 000 000
DS 0.00 000 0.00 . 000 000 000 000 000 000 000
FM  0.00 000 000 000 . 000 000 0.00 000 000 000
GFSK 000 000 000 000 000 . 000 000 000 000 000
PAMA 000 000 000 000 000 000 . 000 000 000 000
16QAM 000 000 000 000 000 000 0.00 . 0.00  0.00 000

640AM  0.00 000 000 000 000 000 000 UUD.UM 0.00

QPSK 000 000 000 000 000 000 000 0.00 n,nn.um
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Fig. 12 10dB confusion matrix
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recognition rates of most types of signalse above modulation signals, including 4ASK, ABSB-SC,
60%, and the network modebuwld roughly distin- AM-SSBSC, BPSK, FM, GMSK, OOK, OQPSK,
guishvarious types of signals. The recognition rateS8PSK, 16QAM, and QPSK. Different algorithms
of 8PSK, 16QAM, and 64QAM modulationsere  were inputto the|[- 10, -2 dB segment foexperi-
low, at51.10%, 41.88%, and 44.50%, respectively. AFnents and the results are shown in Fig. 13
the lowerSNR, the characteristics of thegeeetypes ’ T
of signals and other types of modulatiavere not
obvious, the similarity between the signafss large, , ]
and the probability of extracting ideal featusgas L S e 1
low, so the recognition rateas low. At 0dB, the wl!
types of signals, except 8PSK and 64QAre only
slightly confused, and recognition rates reshinore
than 95%which proves the network can distinguish
these types well. 8PSK tia 17.03% probability of Wl L pemenet
being misjudged as 64QAM, and 64QAMdha B T Goostenel ]
10.05% probability of being misjudged as 8PSK. N . . —— 1
the resultsshown inFigs 10 and 11, a misjudgment . ) SN;MHJ ) ?
always occued between 8PSK and 64QAM. The Fig. 13 Recognition results of RadioML2018.01A
reasons aras follows. First, in the process of network
learning features, the features are selective, and the In impaired environments, the recognition of
network easily loses part of the informatiogsulting DATFFNet ould reach 78.45% dt2 dB. Results of
in misjudgment between signals. Observing thehe algorithmusedin our network werestill better
recognition results of 10 dB and 0dB, the recogni- than tloseof the otherfour networks under the low
tion rates of 8PSK artMQAM were lower tharthose  SNR, with an improvement dfom 0.32 to 11.59%
of most othe types, which explainthatthe features This further proves that the designed network is
learned by this networkausedBPSK and 64QAMo  suitable for noise threshold sédfarning and mul-
be easily misjudgeds other types of signals. Secondti-scale fusion analysis.
when collecting data, the environmental noise seri- . .
ously pollutes the 8PSK and 64QAM signals, and th4'3'5_ Model complexity of deep gdaptlve threshold
parameters, such as the phase and frequency of ghoisng networks based on muicale analysis
signals, are damaged, makingdifficult to distin- Model complexity is related to the computa-
guish theséwo types. Hence, 8PSK and 64QAM aretional resources used by the netwovke use1s 1
always confused. At 1B SNR, a clear diagonal in convolution and adaptive grouping convolution to
the confusion matrixwas achieved with a 100% reduce theamount of parametersurther,we ana-
modulation recognition rate for all modulation classeszed the experimental resultsom using different
Fromthreeconfusion matrixXigures, the values on the convolutional architectures in the encoding and de-
main diagonal of the same type of modulation ineoding stagesTable 2 compares parameters and
creasd as the SNR increasd. This shows that recognition accuracyf the network using the un-
recognition rateof all kinds of signals increase with derlying convolutional architecturef 13 n +n B in
the increasef the SNR and the network recognition the encoding stagethe network using the output
effect is gradually enhanced. equivalent features afi® n without expansion coef-
To further evaluate the performance of the algoficients in the decoding stage, aodr convolutional
rithm, the RadioML2018.01A datasé@'Shea et al., combination networkat the low SNR

2018 generated by the GNU radivas selected to Although the underlyingrchitecture design of
test the algorithm. This dataset considers the effects @f , 2 reducel the number of parameters thie
carrier frequency offset, symbol rate offset, delaY\etwork, the recognition accuracy of the netwoes

time, and additive thermal noise on the signal ifower than that of our networkin the multiscale
compromised environments. We settl ypes of  analysis, the training cost of using the convolutional

Accuracy (%)
w g &
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Table2 Numbers of parameters and recognition results of different convolutional architectures

Accuracy(%)
Network Parameters 5308 78dB _16dB 14dB 12dB
13 n 4 ZEencodingnet 16909963 58.32 60.68 72.18 84.27 93.91
N3 N decodingnet 47652195 58.95 6150 7145 84.73 93.68
Convolutional combinatiomet 18750859 59.50 61.55 72.73 85.68 94.14

network of N® n with no expansion rat@as too large, Compliance with ethics guidelines

and the recognition accurasyas not significantly Xiang LI, Yibing LI, Chunrui TANG, and Yingsong LI

improved. Therefore, comparing the number of pac_ieclare that they have no conflict of interest.

rameters and accuracy of the model, the convolutionﬁl
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