
1316 Xia et al. / Front Inform Technol Electron Eng 2023 24(9):1316-1331

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Adistributed EEMDN-SABiGRUmodel on Spark for
passenger hotspot prediction∗∗#

Dawen XIA†‡1, Jian GENG1, Ruixi HUANG1, Bingqi SHEN1, Yang HU2, Yantao LI3, Huaqing LI†‡4

1College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
2Department of Automotive Engineering, Guizhou Traffic Technician and Transportation College, Guiyang 550008, China

3College of Computer Science, Chongqing University, Chongqing 400044, China
4College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China

†E-mail: dwxia@gzmu.edu.cn; huaqingli@swu.edu.cn

Received Dec. 5, 2022; Revision accepted Apr. 11, 2023; Crosschecked Aug. 3, 2023

Abstract: To address the imbalance problem between supply and demand for taxis and passengers, this paper
proposes a distributed ensemble empirical mode decomposition with normalization of spatial attention mechanism
based bi-directional gated recurrent unit (EEMDN-SABiGRU) model on Spark for accurate passenger hotspot
prediction. It focuses on reducing blind cruising costs, improving carrying efficiency, and maximizing incomes.
Specifically, the EEMDN method is put forward to process the passenger hotspot data in the grid to solve the problems
of non-smooth sequences and the degradation of prediction accuracy caused by excessive numerical differences, while
dealing with the eigenmodal EMD. Next, a spatial attention mechanism is constructed to capture the characteristics
of passenger hotspots in each grid, taking passenger boarding and alighting hotspots as weights and emphasizing the
spatial regularity of passengers in the grid. Furthermore, the bi-directional GRU algorithm is merged to deal with
the problem that GRU can obtain only the forward information but ignores the backward information, to improve
the accuracy of feature extraction. Finally, the accurate prediction of passenger hotspots is achieved based on the
EEMDN-SABiGRU model using real-world taxi GPS trajectory data in the Spark parallel computing framework.
The experimental results demonstrate that based on the four datasets in the 00-grid, compared with LSTM, EMD-
LSTM, EEMD-LSTM, GRU, EMD-GRU, EEMD-GRU, EMDN-GRU, CNN, and BP, the mean absolute percentage
error, mean absolute error, root mean square error, and maximum error values of EEMDN-SABiGRU decrease by
at least 43.18%, 44.91%, 55.04%, and 39.33%, respectively.
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1 Introduction

With the rapid development of data technol-
ogy, mobile trajectory big data analytics has become
a research hotspot in urban computing and smart
cities (Batty et al., 2012; Zheng Y et al., 2014; Zheng
Y, 2017). In urban transportation networks, Global
Positioning System (GPS) equipped taxis play an

supplementary materials, which are available to authorized users
ORCID: Dawen XIA, https://orcid.org/0000-0002-0151-9643;

Huaqing LI, https://orcid.org/0000-0001-6310-8965
c© Zhejiang University Press 2023

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com


Xia et al. / Front Inform Technol Electron Eng 2023 24(9):1316-1331 1317

essential role in our daily life, and the data extracted
from the massive taxi GPS trajectories can effec-
tively reflect valuable information, such as passen-
ger hotspot distribution (Bi et al., 2021), passenger
travel pattern (Gong et al., 2016), taxi cruising pat-
tern (Xu et al., 2017; Xia et al., 2021a; Zhang WY
et al., 2022), and traffic flow distribution (Ali et al.,
2021; Seng et al., 2021; Xia et al., 2021b). The prac-
tical information mined from taxi mobile trajectory
data can provide valuable decisions for passengers,
taxi drivers, and traffic managers. Simultaneously,
in terms of taxis carrying passengers, some passen-
gers have difficulty in finding taxis in certain places,
and some taxi drivers have difficulty in searching
for passengers. Moreover, this imbalance between
supply and demand may cause severe traffic con-
gestion, wasted resources, decreased profits, and re-
duced passenger satisfaction (Zheng LJ et al., 2018).
Therefore, data interpretation, data manipulation,
and data value extraction with big data techniques
have become critical issues for intelligent transport
systems (ITSs) (Engelbrecht et al., 2015; Zhu et al.,
2018). Given this, it is necessary to predict potential
passenger hotspots to reduce fuel consumption and
cruising time (Dong et al., 2017).

Passenger hotspot prediction has been a hot re-
search direction in smart cities, and researchers have
conducted many studies in recent years, which can be
divided into two types. Traditional time-series meth-
ods are used to predict passenger hotspots (Li XL
et al., 2012; Jamil and Akbar, 2017; Qu et al., 2019),
but they fail to consider non-stationary series and
the problem of reduced prediction accuracy caused
by excessive differences in values, as taxi GPS tra-
jectory data are non-stationary spatiotemporal data
with variability between values. Therefore, it is vi-
tal to consider non-stationary data, and their vari-
ability is essential. With the rapid development of
neural networks, many researchers have used neural
networks such as long short-term memory (LSTM)
and gated recurrent unit (GRU) to predict passenger
hotspots. However, these models are not applied in
passenger hotspot prediction (Kim et al., 2020; Li XF
et al., 2020; Luo et al., 2021; Yang et al., 2021), and
do not consider the backward and forward contextual
information either. Furthermore, researchers have
used attention mechanisms in neural network mod-
els to enhance prediction accuracy. For example, the
self-attention mechanism and soft attention mecha-

nism focus only on the correlation of the data with-
out considering the spatial correlation between the
map road network and passenger hotspots. In addi-
tion, several researchers have employed ensemble em-
pirical mode decomposition (EEMD) combined with
traditional models for short-term metro passenger
flow and ship movement prediction (Nie et al., 2020;
Liu XP et al., 2022), as well as combining neural net-
works for traffic flow (Gao et al., 2020), metro pas-
senger flow (Cao et al., 2022), and waiting time (Xia
et al., 2022a) prediction. However, they combined
two methods but did not implement these methods
in the Spark distributed framework.

To address the above problems, we propose a
distributed ensemble empirical mode decomposition
with normalization of spatial attention mechanism
based bi-directional gated recurrent unit (EEMDN-
SABiGRU) model on Spark for passenger hotspot
prediction. Specifically, the non-smooth data are
smoothed using the EEMDN method. Then, the spa-
tial attention mechanism is used to capture the cor-
relation of passenger hotspots between grids. There-
fore, the BiGRU algorithm is fused to predict passen-
ger hotspots, and the prediction results are inversely
normalized and superimposed. Finally, we evaluate
EEMDN-SABiGRU based on GPS trajectory data
of taxis in Beijing, China. The results indicate that
the prediction accuracy of EEMDN-SABiGRU is su-
perior to those of the comparable models.

The main contributions of this work are sum-
marized as follows:

1. An EEMDN method is proposed to reduce
the influence of non-stationary time series on the
prediction performance and to solve the intrinsic
mode function (IMF) confusion problem of the EMD
algorithm.

2. A spatial attention mechanism is constructed
to capture spatial correlation, extract the number of
passengers getting on and off in the grid, form the
grid’s spatial weights, and improve the performance
of passenger hotspot prediction.

3. A BiGRU model is incorporated to deal with
the problem that GRU can obtain only forward con-
textual information but ignores backward contextual
information, which improves the accuracy of feature
extraction.

4. With the proposed EEMDN-SABiGRU
model and the big taxi GPS trajectory data in
Beijing, China, passenger hotspots are successfully



1318 Xia et al. / Front Inform Technol Electron Eng 2023 24(9):1316-1331

predicted in the Spark framework. The experimen-
tal results demonstrate that the prediction accu-
racy of EEMDN-SABiGRU is significantly higher
than those of LSTM, EMD-LSTM, EEMD-LSTM,
GRU, EMD-GRU, EEMD-GRU, EMDN-GRU, con-
volutional neural network (CNN), and backpropaga-
tion (BP).

2 Related works

In this section, we briefly introduce the works
related to passenger hotspots and then analyze the
problems. Existing works consist mainly of the
traditional time-series methods and neural network
methods.

2.1 Time-series methods

The time-series analysis method is widely ap-
plied to passenger hotspot prediction. Jamil and
Akbar (2017) conducted time-series analysis using
an automated ARIMA model to forecast hotspot ar-
eas for passengers based on historical spatiotemporal
data provided by taxi companies. Li XL et al. (2012)
proposed a model to delineate urban hotspots and
a method based on an improved ARIMA model to
predict the number of passengers in urban hotspots
in time and space. Qu et al. (2019) investigated
a profitable and graphical taxi route recommenda-
tion method called adaptive shortest expected cruis-
ing route (ASECR), which uses Kalman filter pre-
diction to obtain probability and capacity locality.
Xia et al. (2022b) developed a parallel GS-SVM al-
gorithm based on the Spark framework to predict
taxi passenger hotspots. The EMD method has also
been widely used because of its significant advan-
tage in processing non-stationary data (Huang et al.,
2019). Yao et al. (2016) employed the EMD-PSO-
SVM algorithm to predict safety conditions. Nie
et al. (2020) improved the EMD and SVR algo-
rithms for short-term ship motion prediction. In
addition, the EEMD method responds to the EMD
method’s modal confounding problem. Liu XP et al.
(2022) put forward three hybrid forecasting models,
EEMD-ARIMA, EEMD-BP, and EEMD-SVM, for
predicting short-term urban metro demand changes.
Wang et al. (2022) employed an improved EEMD
method for active power filter (APF) detection. Qin
et al. (2020) proposed an EEMD-LPP model for
carbon price prediction. Cheng et al. (2021) pre-

sented an EEMD-SVD-LWT denoising algorithm for
atmospheric LiDAR. Jiang et al. (2014) used an
EEMD-GSVM model for short-term prediction to
address the high-speed rail passenger flow prediction
problem.

2.2 Neural network methods

In recent years, neural network methods have
attracted significant attention in passenger hotspot
prediction. Yang et al. (2021) proposed a new wave-
LSTM model based on LSTM and wavelets to pre-
dict passenger flow. Li XF et al. (2020) investi-
gated a fast correlation filter and an LSTM based
on wavelet transform to predict passenger demand
in different regions at different time intervals. Kim
et al. (2020) designed an interpretable deep learn-
ing model to evaluate a quota system that balanced
two demanded modes. A two-stage interpretable
machine learning modeling framework LSTM was
developed through a linear regression (LR) model
combined with a long short-term hierarchical neural
network. Luo et al. (2021) proposed a multi-task
deep learning (MTDL) model to predict short-term
taxi demand at multiple regional levels to reduce hy-
brid bus emission (HBE) while improving efficiency.
Li ML et al. (2021) designed a new predictive energy
management strategy based on passenger forecast-
ing and exhaust emission optimization. Ou et al.
(2020) presented a new deep learning framework,
STP-TrellisNets, which augments the emerging tem-
poral convolution framework (TrellisNet) to predict
subway station passenger flows accurately by spa-
tiotemporal forecasting. Saadallah et al. (2020) pro-
posed BRIGHT for forecasting demand using a su-
pervised learning framework for perceivable demand.
BRIGHT aims to provide accurate forecasts for de-
mand in short term through an innovative time-
series analysis method to deal with different types
of conceptual drift. Zhou et al. (2020) put forward
the ST-attention model, which uses a multi-output
strategy, but does not employ recurrent neural net-
work (RNN) units of learning, to determine rider-
ship demand and periods in key projected city areas
during special periods using a spatiotemporal atten-
tion mechanism. In addition, the EEMD method
was often combined with neural network methods
such as the EEMD-LSTM algorithm, which was pro-
posed to predict surface temperature (Zhang XK
et al., 2018). Rezaei et al. (2021) constructed the
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CEEMD-CNN-LSTM and EMD-CNN-LSTM mod-
els to predict financial time series. Yu et al. (2021)
constructed an EEMD-Conv3d method for soil tem-
perature prediction. Niu et al. (2021) used an
EEMD combined with RNN for landslide predic-
tion problems. Liu J et al. (2020) developed an
EEMD-DBN model for urban short-term traffic flow
prediction.

In the above studies, researchers used time-
series methods to predict passenger hotspots. How-
ever, traditional time-series methods do not con-
sider the impact of non-stationary series on pre-
diction accuracy. Furthermore, although the EMD
method can reduce the non-stationarity of time se-
ries, it still has the problems of end effects and modal
confounding. When using neural networks for pas-
senger hotspot prediction, researchers employed the
self-attention mechanism to focus on the correlation
of the data without considering the spatial correla-
tion between the map road network and passenger
hotspots. Although GRU can solve the problems
of gradient disappearance and gradient explosion in
RNN, the information-dependent GRU method ig-
nores the information context in the road network,
with high complexity and a long prediction time. In
addition, few researchers used the EEMD method
combined with neural network models for passenger
hotspot prediction. To this end, in this paper we
present a distributed EEMDN-SABiGRU model on
Spark to accurately predict passenger hotspots.

3 EEMDN-SABiGRU model

In this section, we describe the EEMDN-
SABiGRU model in detail.

3.1 Model overview

The prediction framework based on a dis-
tributed EEMDN-SABiGRU model includes data
preprocessing, model construction, and model im-
plementation as shown in Fig. 1. In data prepro-
cessing, the taxi GPS trajectory data are processed
by data extracting, data sorting, grid mapping, and
data counting. Then, in model construction, the
EEMD algorithm with the normalization method is
employed to obtain a finite number of IMFs and
a residual (Res) sequence, and the BiGRU algo-
rithm with a spatial attention mechanism is used
to construct the EEMDN-SABiGRU model. The
prediction results are superimposed by inverse nor-
malization. Finally, in model implementation, the
EEMDN-SABiGRU model is implemented on the
Spark parallel computing framework.

3.2 Data preprocessing

When collecting taxi GPS data, there are prob-
lems such as equipment failure and signal delay,
which can cause the collected data to be wrong or
missing. For example, some taxi drivers do not up-
date the passenger status in time after picking up
a passenger. The data are not collected when the
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Fig. 1 A distributed EEMDN-SABiGRU model on Spark
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signal is mid-range, and the vehicle passes through
a long tunnel. Therefore, it is necessary to remove
errors and fill in missing data when processing data
to improve the accuracy and reliability of prediction.
The process of data preprocessing is illustrated in
Fig. 2.

Step 1: data extracting. We first store the data
in the Hadoop distributed file system (HDFS) and
convert the data into a resilient distributed dataset
(RDD) on Spark. We then split the RDD, eliminate
the blank and wrong data, and finally extract the re-
quired data (taxi identity document (ID), operation
status, time, longitude, and latitude). Details are
specified in Algorithm 1.

Step 2: data sorting. From the data obtained
at step 1, the duplicate IDs are filtered, and the
complete 011 passenger-carrying events in the oper-
ation status (0 means empty and 1 means passenger-
carrying) are extracted and sorted in chronological
order. Details are illustrated in Algorithm 2.

20121101004025.txt
…

20121130235931.txt

(00, 2012-11-05 00:00, 20)      
(00, 2012-11-05 00:15, 11)
(00, 2012-11-05 00:30, 2)
(00, 2012-11-05 01:15, 3)

...

194884, 4, 0, 20121101041514, 
115.9692841, 39.7132454, 0, 44, 1

…
127441, 4, 0, 20121201001636, 

116.3397827, 39.7409401, 0, 102, 1

194884, 0, 20121101041514, 
115.9692841, 39.7132454

…
127441, 0, 20121201001636, 

116.3397827, 39.7409401

(56, 2012-11-05 22:15, 1)  
 (79, 2012-11-05 22:15, 1)
(25, 2012-11-05 22:15, 1)

  (99, 2012-11-05 22:15, 1)
...

201211052316, 164374, 1, 116.4181442, 39.9395752
201211052316, 164375, 1, 116.3464050, 39.9391327
201211052316, 164379, 1, 116.4104691, 39.9078598

...

  201211052359, 490903, 1,    
116.4189529, 39.9489365

  201211052359, 490953, 1, 
116.3770828, 39.8556480

 ...

(false, 201211051338, 581048, 0, 
116.2681503, 39.8839836)

(false, 201211051339, 581048, 1, 
116.2692184, 39.8807716)

(true, 201211051339, 581048, 1, 
116.2695313, 39.8798599)

...

ptss.add(new Point2D.Double
(39.9894389600, 116.2611551300))

ptss.add(new Point2D.Double
(39.9909153300, 116.4905990800))

ptss.add(new Point2D.Double
(39.8301827000, 116.4954361600))

ptss.add(new Point2D.Double
(39.8283918700, 116.2617631400))

 filesRDD=jsc.wholeTextFiles(...)
linesRDD=filesRDD.flatMap(...)

LineRdd=linesRDD.mapToPair (...)
sort_idRDD=LineRdd.sortByKey (...)

filterpickupRDD=pickupRDD.filter (...)

pairRDD=filterpickupRDD.mapToPair (...)
sort_TimeRDD=pairRDD.sortByKey (...)

GridRDD=sort_TimeRDD.mapToPair (...)
chesstTimeRDD=GridRDD.mapToPair (...)

totalPairRDD= 
chesstTimeRDD.reduceByKey (...)

sortTotalRDD= 
totalPairRDD.sortByKey (...)

(b)

Resilient 
distributed 

dataset

Extraction field 
and road network 
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Statistics of 
hot spots and 

ranking

Input 
(HDFS)

Output 
(HDFS)

(a)

Fig. 2 Process of data preprocessing: (a) data pre-
processing; (b) data flow

Step 3: grid mapping. In this work, the latitude
and longitude ranges of 39.828 391 87–39.99091533
and 116.261 155 13–116.49543616 are selected, re-
spectively. The sorted data are mapped or matched
into these latitude and longitude ranges using the
sorted data, and the latitude and longitude of the
sorted data gridded as 10×10 are illustrated in
Fig. 3. Details are described in Algorithm 3.

Step 4: data counting. We use the data af-
ter mapping the grids, divide them into intervals of
15 min, and count the taxi boarding hotspot data
within the same grid at 15-min intervals. Details are
given in Algorithm 4.

3.3 Model construction

The process of the EEMDN-SABiGRU model
includes three steps: design of the EEMDN

Algorithm 1 Data extracting
Input: GPS trajectory data of taxis
1: if GPS status=1 and direction<250 and speed<250

then
2: if operation status=0 || 1 then
3: Put in linesRDD
4: end if
5: end if
6: for each linesRDD do
7: Extract key: taxi ID, time, value, required field
8: Sort by ascending taxi ID
9: end for

Output: sort_idRDD

Algorithm 2 Data sorting
Input: sort_idRDD
1: if the ID is fixed then
2: Find a sequence with operating condition 011
3: if three conditions = 011 then
4: 011 is considered a pick-up point
5: end if
6: end if
7: Put in pick-up RDD
8: Data with operating condition 1
9: Sort the data in ascending order

Output: sort_TimeRDD

Algorithm 3 Grid matching
Input: sort_TimeRDD
1: Determine the latitude and longitude intervals
2: Determine the rectangular box by latitude and latitude

intervals
3: Divide the rectangular frame into 10×10 grids
4: for each sort_TimeRDD do
5: Determine which grid the latitude and longitude are

in and mark it (GridRDD)
6: end for

Output: GridRDD
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Fig. 3 Road network grid: (a) 10×10 grid; (b) road network with 10×10 grid

Algorithm 4 Data counting
Input: Grid RDD
1: Divide the time into intervals of 15 min
2: Mark the number of hotspots in each grid
3: Put in chesstTimeRDD
4: for each chesstTimeRDD do
5: Count the number of hotspots with 15-min intervals

on the same grid
6: Sort the same grid in chronological order
7: end for

Output: pick-up hotspotsRDD

algorithm, integration of the BiGRU model, and con-
struction of the spatial attention mechanism.

Step 1: design of the EEMDN algorithm.
EEMD, an upgraded algorithm of EMD, smooths
the abrupt changes on the time scale by adding white
noise to the original signal sequence and adaptively
maps the signals at different scales to a suitable ref-
erence scale using the uniform distribution of the
white noise spectrum. Then, the white noise signal
is inputted into EMD for multiple decompositions to
obtain the average result, eliminating the noise ef-
fect. Finally, the IMF and Res sequences containing
a single time scale are obtained, and the IMF and
Res are mapped in [0, 1] and inputted to the BiGRU
model for prediction. The decomposition process is
composed of four sub-steps:

(1) Set the total average number of times as M ,
and add the white noise amplitude signal ni(t) with
a standard normal distribution to the original signal

x(t) to obtain an additional noise signal, which is
defined as

xi(t) = x(t) + ni(t), i = 1, 2, · · · ,M, (1)

where x(t) is the original signal, ni(t) is the ith white
noise sequence, and xi(t) is the ith additional noise
signal.

(2) The noisy signal xi(t) is decomposed by
EMD, and the sum of IMFs is obtained, defined as

xi(t) =

J∑

j=1

ci,j(t) + ri,j(t), (2)

where ci,j(t) is the jth IMF decomposed after the ith

white noise, ri,j(t) is the residual function, and J is
the number of IMF sequences.

(3) Sub-steps 1 and 2 are repeated M times,
and white noise signals with different amplitudes are
added for each decomposition to obtain the IMF set,
which is defined as

c1,j(t), c2,j(t), · · · , cM,j(t). (3)

(4) The above IMFs are averaged to obtain the
final IMF result after EEMD, as shown in Eq. (4),
and the IMF and Res obtained by EEMD decompo-
sition are mapped in [0, 1].

cj(t) =
1

M

M∑

i=1

ci,j(t), (4)
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where cj(t) is the jth decomposed IMF.
Step 2: integration of the BiGRU model. The

BiGRU model is an improvement of the GRU model,
consisting of two unidirectional and opposite GRUs,
and the GRU model is defined in Eqs. (5)–(8):

zt = σ(Wz [ht−1,xt]), (5)

rt = σ(Wr [ht−1,xt]), (6)

h̃t = tanh (W [rtht−1,xt]) , (7)

ht = 1− ztht−1 + zth̃t, (8)

where zt is the updated gate, rt represents the reset
gate, ht−1 denotes the output value at time t− 1, xt

is the input value at time t, σ and tanh represent the
activation functions, Wz is the updated gate weight,
Wr denotes the reset gate weight, h̃t represents the
output value of tanh, and ht is the output of the
results.

The structure of the BiGRU model (Fig. 4) is
composed of two GRUs facing in opposite direc-
tions. The hidden layer state of BiGRU at time t

is the weighted sum of
−→
h t−1 and

←−
h t−1, defined in

Eqs. (9)–(11):
−→
h t = GRU(xt,

−→
h t−1), (9)

 

 

tanh

GRU cell

BiGRU

Forward

Backward

Hidden

xt−1 xt xt+1

ht−1

yt−1
yt

ht+1
ht

yt+1

+

×1−zt

ztrt

×

×

σ σ

�
t

Fig. 4 Structure of the BiGRU model

←−
h t = GRU(xt,

←−
h t−1), (10)

ht = wt
−→
h t + vt

←−
h t + bt, (11)

where GRU(·) represents the nonlinear transforma-
tion of the input word embeddings,

−→
h t is the forward

output result,
←−
h t is the reverse output result,

−→
h t−1

and
←−
h t−1 are the positive and negative output values

at time t− 1, respectively, and the word embedding
is encoded in the corresponding GRU hidden layer
states. bt represents the deviation corresponding to
the hidden layer state at time t, and wt and vt are
the weights of the forward hidden layer state

−→
h t and

the reverse hidden layer state
←−
h t corresponding to

BiGRU at time t, respectively.
Step 3: construction of the spatial attention

mechanism. The spatial attention mechanism is an
adaptive spatial region selection mechanism, through
which the BiGRU network is guided to pay more at-
tention to the significant spatial regions on the grid
graph. We take the number of passengers getting on
and off the grid as the weight. The input features
are processed by MaxPool and AvgPool, then convo-
luted, and finally inputted to the Sigmoid function
for activation, as defined in Eqs. (12) and (13). The
process of building the spatial mechanism module is
plotted in Fig. 5.

M(F ) = [AvgPool(F ),MaxPool(F )], (12)

MsF = σ(f(M(F ))), (13)

where F is a characteristic graph, AvgPool repre-
sents average pooling, MaxPool denotes maximum
pooling, f is the convolution operation, σ represents
the Sigmoid activation function, and MsF denotes
the spatial attention parameter matrix.

Spatial attention

Sigmoid

Conv
MaxPool, AvgPoolFeature graph

Fig. 5 Spatial attention mechanism
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3.4 Model implementation

In this work, the batch-size and epoch in the Bi-
GRU structure are set as 4 and 180 respectively, and
the numbers of neural network layers and neurons
are 2 and 16 respectively. The process of EEMDN-
SABiGRU with Spark implementation is shown in
Fig. 6.

Passenger hotspot 
data

EEMD 

...

Data normalization

BiGRU BiGRU BiGRU BiGRU BiGRU

Transform forecasting results with denormalization and 
merge them

Spatial 
attention

Spatial 
attention

Spatial 
attention

Spatial 
attention

Spatial 
attention

Fig. 6 Implementation process of the EEMDN-
SABiGRU model

Step 1: data decomposition. The EEMD al-
gorithm decomposes the 15-min interval passenger
hotspot data in the grid to obtain a finite number of
IMFs and a Res sequence.

Step 2: data normalization. Normalize the IMF
and Res, and map them to a range of [0, 1].

Step 3: model prediction. The normalized IMF
and Res are inputted into the BiGRU model with
spatial attention for prediction.

Step 4: result superposition. The prediction
values are denormalized, and the values are summed
to obtain the final prediction results.

4 Experiments

In this section, we validate the performance of
the proposed EEMDN-SABiGRU model for passen-
ger hotspot prediction with real-world taxi trajec-
tory data from a case study. Specifically, the fit test

is performed after EEMD and the original sequence.
Then, the normalization test is executed on the se-
quence prediction results obtained from EEMD, and
the effects before and after normalization are ana-
lyzed. Next, the prediction performances of 1-, 10-,
20-, and 30-day datasets in the 00-grid are com-
pared using different models, and the results are
analyzed in detail. Finally, the robustness of the
EEMDN-SABiGRU model is evaluated with the 30-
day dataset under different grids.

4.1 Experimental setup

The extensive experiments are performed on a
Hadoop distributed platform with a Spark parallel
computing framework. The experimental platform
is configured with Hadoop 3.1.1 + Spark 2.4.3 +
Java + DL4J on Ubuntu 18.04 OS, AMD Ryzen7
4800H, and 8 GB ECC DDR3.

Moreover, the EEMDN-SABiGRU model is
compared with LSTM, EMD-LSTM, EEMD-LSTM,
GRU, EMD-GRU, EEMD-GRU, EMDN-GRU,
CNN, and BP.

4.2 Experimental data

The experimental data come from the GPS tra-
jectory data of 12 000 taxis in Beijing, China, in
2012, which have more than 9.0×108 GPS trajectory
records (about 50 GB). An example of the dataset is
plotted in Fig. 7.

Furthermore, to compare the effectiveness of the
EEMDN-SABiGRU model, we divide the dataset
into four groups (1-day: November 1; 10-day:
November 1–November 10; 20-day: November 1–
November 20; 30-day: November 1–November 30),
and the time interval of each group is 15 min. In ad-
dition, 70% of the data are chosen as the training set,
and 30% are used as the test set in all experiments.

4.3 Evaluation metrics

To validate the measures of effectiveness
(MOEs) of the EEMDN-SABiGRU model, four met-
rics, mean absolute percentage error (MAPE), root
mean square error (RMSE), mean absolute error
(MAE), and maximum error (ME), are employed for
evaluation:

MAPE =
1

n

n∑

t=1

∣∣∣Xt − X̂t

∣∣∣
Xt

× 100%, (14)
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Fig. 7 Taxi GPS trajectory data

RMSE =

√√√√ 1

n

n∑

t=1

(Xt − X̂t)
2
, (15)

MAE =
1

n

n∑

t=1

∣∣∣Xt − X̂t

∣∣∣, (16)

ME = max
t=1,2,...,n

∣∣∣Xt − X̂t

∣∣∣ , (17)

where Xt is the real value of passenger hotspots, X̂t

is the prediction value of passenger hotspots, and n

is the total number of samples in the provided time.
The MAPE value is used to compare the accuracy of
each model. The lower the MAPE value, the higher
the prediction accuracy.

4.4 Result analysis

4.4.1 Sequence prediction

EEMD is carried out with the 1- and 10-day
datasets, and the decomposed series are tested for
goodness-of-fit. The overall trend of the IMF1 se-
ries is steeper, because the original series are non-
stationary series with significant differences. Next,
the EEMD algorithm is repeated by subtracting the
IMF1 series from the original series until no IMF se-
ries are generated. The 1-day dataset is shown in

Fig. 8a, and the results can be fitted perfectly with
the original data. To further verify how well the
sequences obtained by the EEMD algorithm fit the
initial data, the amount of data is increased to 10-
day and then the sequences are fitted to the original
sequences, as plotted in Fig. 8b. Obviously, the sum
of the sequences fits the original dataset well, indi-
cating that the EEMD algorithm does not produce
missing data cases with the increased dataset.

4.4.2 Normalization test

Although the EEMD algorithm is suitable for
dealing with non-smooth sequences and also solves
the modal mixing problem of the EMD algorithm,
there will be too many differences in values between
IMF sequences during the decomposition process,
which will cause BiGRU to fluctuate in prediction
and lead to unsatisfactory overall prediction. We
employ the normalization method to limit the pre-
processed data to a specific range (e.g., [0, 1] or [−1,
1]) and eliminate the adverse effects caused by singu-
lar sample data. Therefore, it is an excellent choice
to normalize the EEMD sequences. The prediction
results of the sequences before and after normaliza-
tion are illustrated in Tables 1 and 2, respectively.
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Fig. 8 Data fit test of EEMD: (a) data test on the 1-day dataset; (b) data test on the 10-day dataset

Table 1 Measures of effectiveness values of forecasting
results before normalization

IMF MAPE (%) MAE RMSE ME

IMF1 7.300 1.618 3.102 9.534

IMF2 8.200 0.491 0.701 2.410

IMF3 31.300 0.927 0.946 1.213

IMF4 90.300 6.087 8.479 14.675

IMF5 12.500 8.297 8.351 9.609

IMF6 2.800 1.674 1.808 2.702

IMF7 32.600 12.425 13.760 22.124

Table 2 Measures of effectiveness values of forecasting
results after normalization

IMF MAPE (%) MAE RMSE ME

IMF1 3.600 0.861 1.102 2.177

IMF2 1.300 0.333 0.369 0.657

IMF3 4.000 0.237 0.265 0.412

IMF4 3.900 1.036 1.314 2.696

IMF5 0.025 0.030 0.032 0.047

IMF6 0.020 0.007 0.009 0.027

IMF7 3.400 1.269 1.507 2.889

Tables 1 and 2 show that the normalized se-
quence prediction results are significantly superior
to the pre-normalized sequence prediction results.
Moreover, the prediction results before normaliza-
tion compared with the sequence prediction results
after normalization show a minimum reduction of
50.68% and a maximum reduction of 99.80% in
MAPE, a minimum reduction of 32.18% and a
maximum reduction of 99.64% in MAE, a mini-
mum reduction of 47.36% and a maximum reduc-
tion of 99.62% in RMSE, and a minimum reduction
of 66.03% and a maximum reduction of 99.51% in
ME. Finally, combined with the above analysis, it
is concluded that the results of sequence prediction
are greatly improved after using the normalization

method, so the EEMD algorithm is chosen to de-
compose and normalize the sequence for prediction.

4.4.3 Prediction results of different days in the 00-
grid

We use a 00-grid with 1-, 5-, 10-, 15-, 20-, 25-,
and 30-day datasets from the road network for model
validation, and compare EEMDN-SABiGRU with
LSTM, EMD-LSTM, EEMD-LSTM, GRU, EMD-
GRU, EEMD-GRU, EMDN-GRU, CNN, and BP.

The MOE values of different models with seven
datasets are shown in Table 3. We conduct fine-
grained analysis on four datasets: 1-, 10-, 20-, and
30-day. On the 1-day dataset, it is evident that the
fit of the data with large fluctuations is greatly im-
proved after using the EMD algorithm for data de-
composition compared to the LSTM model, and the
MOE values are greatly reduced. After using the
EEMD algorithm, the MAE, RMSE, and ME values
are increased, except for the reduced MAPE values,
and all of them are lower than those of the LSTM
model. Compared with the GRU model, the MOE
values decrease significantly after using the EMD
algorithm with the EEMD algorithm. Moreover,
the prediction accuracy of the EEMD-GRU model
is better than that of the EMD-GRU model. It can
be concluded that the GRU model combined with
the EEMD algorithm is significantly superior to the
LSTM algorithm. Therefore, this work employs the
GRU model combined with the EEMD algorithm
for passenger hotspot prediction. As illustrated in
Fig. S1j in the supplementary materials, the predic-
tion values fit the real values well, and the evalua-
tion metrics of EEMDN-SABiGRU are significantly
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Table 3 Comparisons of models in different datasets using the 00-grid

Dataset MOE LSTM
EMD- EEMD-

GRU
EMD- EEMD- EMDN-

CNN BP
EEMDN-

LSTM LSTM GRU GRU GRU SABiGRU

1-day MAPE (%) 28.900 12.000 5.700 25.400 10.900 8.100 3.600 31.300 9.500 1.500
MAE 18.099 2.197 2.453 15.607 3.970 2.657 1.336 14.972 4.571 0.736
RMSE 23.397 2.508 4.017 20.512 4.756 3.257 1.637 16.028 4.901 0.736
ME 48.642 6.477 7.943 44.560 9.842 6.029 3.488 25.524 7.834 2.116

5-day MAPE (%) 12.300 11.500 12.000 10.800 29.300 26.900 6.800 20.800 9.500 3.100
MAE 3.529 2.197 0.966 3.489 3.626 3.599 1.808 8.843 3.584 0.449
RMSE 6.503 2.508 1.291 7.002 4.057 3.976 2.518 10.598 4.420 0.563
ME 38.176 6.477 6.020 42.404 10.926 22.635 9.080 26.963 11.868 1.983

10-day MAPE (%) 5.000 18.500 8.100 9.500 22.800 21.900 4.400 21.400 10.700 2.500
MAE 2.378 2.695 1.395 4.395 3.957 2.973 1.990 10.154 3.495 0.705
RMSE 5.397 4.398 2.477 7.340 6.211 4.213 2.984 12.440 4.437 0.978
ME 50.297 28.234 18.028 61.684 37.755 21.053 14.305 38.353 15.135 3.392

15-day MAPE (%) 6.300 18.800 17.500 25.600 31.500 22.300 20.000 16.600 15.700 2.800
MAE 2.407 2.199 2.009 3.256 2.972 2.156 2.015 8.735 3.652 0.265
RMSE 4.777 3.756 3.100 6.996 5.109 3.776 3.614 10.633 4.595 0.361
ME 79.900 19.632 27.407 94.321 31.845 30.907 12.538 39.290 19.754 2.193

20-day MAPE (%) 5.800 18.300 8.800 16.600 42.500 11.700 16.300 16.100 16.700 1.500
MAE 1.275 2.729 0.986 3.421 4.528 1.419 1.828 7.950 3.025 0.208
RMSE 2.137 3.821 1.440 4.891 5.840 2.115 2.559 9.821 3.864 0.294
ME 21.752 19.704 15.155 33.022 26.693 18.093 12.392 28.836 13.480 1.779

25-day MAPE (%) 16.100 16.000 12.100 17.100 29.000 56.700 40.800 15.500 17.300 2.000
MAE 2.166 2.307 1.735 3.560 5.115 4.482 3.520 8.223 3.119 0.362
RMSE 4.893 4.987 3.698 7.443 6.942 6.636 5.009 10.278 4.080 0.673
ME 112.576 77.116 63.480 129.499 96.555 84.950 56.937 45.614 23.005 9.526

30-day MAPE (%) 7.600 24.700 40.400 17.300 68.200 36.000 8.400 16.500 20.600 2.800
MAE 2.693 4.071 3.850 2.552 9.013 4.464 2.006 9.385 3.290 0.396
RMSE 8.194 6.094 6.002 10.144 9.989 8.294 4.209 12.105 4.407 0.670
ME 118.708 64.821 62.146 133.717 82.860 80.284 29.887 51.783 23.545 9.091

lower than those of the comparable models. Among
them, based on the 1-day dataset, compared with
LSTM, EMD-LSTM, EEMD-LSTM, GRU, EMD-
GRU, EEMD-GRU, EMDN-GRU, CNN, and BP,
the MAPE value of the EEMDN-SABiGRU model
is reduced by 94.81%, 87.50%, 73.68%, 94.09%,
86.24%, 81.48%, 58.33%, 95.21%, and 84.21%, re-
spectively; MAE is reduced by 95.93%, 66.50%,
70.00%, 95.28%, 81.46%, 72.30%, 44.91%, 95.08%,
and 83.90%, respectively; RMSE is decreased by
96.85%, 70.65%, 81.68%, 96.41%, 84.52%, 77.40%,
55.04%, 95.41%, and 84.98%, respectively; ME is de-
creased by 95.65%, 67.33%, 73.36%, 95.25%, 78.50%,
64.90%, 39.33%, 91.71%, and 72.99%, respectively.
Therefore, it can be concluded that the EEMDN-
SABiGRU model has better prediction performance
on the 1-day dataset.

On the 10-day dataset, from Fig. S2 in the sup-
plementary materials, the LSTM, GRU, CNN, and
BP models, although more effective in predicting
data with relatively minor fluctuations, tend to de-
crease in accuracy once the fluctuations are large.

With the addition of the EMD and EEMD algo-
rithms, the MAPE values of the LSTM and GRU
models increase, while the values of MAE, RMSE,
and ME decrease. Although the predictions in high
and low peaks tend to follow roughly the same trend
as the test set, there are some numerical differ-
ences between the prediction values and the test set
with the EMD-LSTM, EEMD-LSTM, EMD-GRU,
and EEMD-GRU models. Moreover, the EMDN-
GRU and EEMDN-SABiGRU models fit the test
set well after normalization. Therefore, in Table 3,
the MOE values of EMDN-GRU and EEMD-GRU
are lower than those of the other models. Finally,
from Fig. S2j in the supplementary materials, it can
be concluded that the EEMDN-SABiGRU model
generates accurate predictions for both higher and
lower volatility data compared to the LSTM, EMD-
LSTM, EEMD-LSTM, GRU, EMD-GRU, EEMD-
GRU, EMDN-GRU, CNN, and BP models. From
Table 3, based on the 10-day dataset, compared with
LSTM, EMD-LSTM, EEMD-LSTM, GRU, EMD-
GRU, EEMD-GRU, EMDN-GRU, CNN, and BP,
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MAPE is reduced by 50.00%, 86.49%, 69.14%,
73.68%, 89.04%, 88.58%, 43.18%, 88.32%, and
76.64%, respectively; MAE is reduced by 70.35%,
73.84%, 49.46%, 83.96%, 82.18%, 76.29%, 64.57%,
93.06%, and 79.83%, respectively; RMSE is de-
creased by 81.88%, 77.76%, 60.52%, 86.68%, 84.25%,
76.79%, 67.22%, 92.14%, and 77.96%, respectively;
ME is decreased by 93.26%, 87.99%, 81.18%, 94.50%,
91.02%, 83.89%, 76.29%, 91.16%, and 77.59%, re-
spectively. For passenger hotspot prediction on the
10-day dataset, the EEMDN-SABiGRU model can
still obtain accurate prediction results.

As observed from Table 3, with the addition
of the EMD and EEMD algorithms on the 20-
day dataset, the MAPE, MAE, and RMSE val-
ues of the LSTM and GRU models increase, while
the ME values decrease. When the EMD algo-
rithm is replaced by the EEMD algorithm, all
the MOE values are reduced, proving that the
EEMD algorithm can compensate for the EMD al-
gorithm’s modal mixing problem. Meanwhile, the
MAPE values of the EEMD-LSTM and EEMD-
GRU algorithms are lower than those of the tra-
ditional LSTM and GRU, so we use the normal-
ized EMDN-GRU algorithm to solve this problem.
Finally, as shown in Table 3 and Fig. S3j in the
supplementary materials, the EEMDN-SABiGRU
model outperforms LSTM, EMD-LSTM, EEMD-
LSTM, GRU, EMD-GRU, EEMD-GRU, EMDN-
GRU, CNN, and BP. From Table 3, based on
the 20-day dataset, compared with LSTM, EMD-
LSTM, EEMD-LSTM, GRU, EMD-GRU, EEMD-
GRU, EMDN-GRU, CNN, and BP, MAPE is re-
duced by 74.14%, 91.80%, 82.95%, 90.96%, 96.47%,
87.18%, 90.80%, 90.68%, and 91.02%, respectively;
MAE is reduced by 83.69%, 92.38%, 78.90%, 93.92%,
95.41%, 85.34%, 88.62%, 97.38%, and 93.12%, re-
spectively; RMSE is decreased by 86.24%, 92.30%,
79.58%, 93.99%, 94.96%, 86.10%, 88.51%, 97.00%,
and 92.39%, respectively; ME is decreased by
91.82%, 90.97%, 88.26%, 94.61%, 93.34%, 90.17%,
85.64%, 93.83%, and 86.80%, respectively. The
EEMDN-SABiGRU model is nevertheless able to ob-
tain accurate passenger hotspot prediction results
with the 20-day dataset.

With the 30-day dataset, it can be seen from
Fig. S4 in the supplementary materials that the
greater the fluctuation of the data, the worse the fit
of the model, particularly the worst at the summit.

The CNN, BP, LSTM, and GRU models have a worse
fitting effect with real values when the data fluctu-
ate significantly. The EMDN-GRU and EEMDN-
SABiGRU models also have excellent fitting results
when the data fluctuate dramatically. Meanwhile,
from Table 3, it is concluded that after the EMD
and EEMD algorithms are used for LSTM and GRU,
the RMSE and ME values gradually decrease. How-
ever, MAPE and MAE appear to increase because
the increase in data leads to the difference between
the values, resulting in unsatisfactory prediction re-
sults. In addition, the MAE, RMSE, and ME val-
ues of the normalized EMDN-GRU model decrease
significantly, but the MAPE values are higher than
those of the LSTM model due to the model’s lower
ability to capture distinct features during training
and prediction. However, the bi-directional gating
mechanism of EEMDN-SABiGRU with the addition
of spatial attention can solve these problems. Fi-
nally, from Fig. S4j in the supplementary materials,
it can be concluded that the EEMDN-SABiGRU
model outperforms LSTM, EMD-LSTM, EEMD-
LSTM, GRU, EMD-GRU, EEMD-GRU, EMDN-
GRU, CNN, and BP. From Table 3, based on the
the 30-day dataset, compared with LSTM, EMD-
LSTM, EEMD-LSTM, GRU, EMD-GRU, EEMD-
GRU, EMDN-GRU, CNN, and BP, MAPE is re-
duced by 63.16%, 88.66%, 93.07%, 83.82%, 95.89%,
92.22%, 66.67%, 83.03%, and 86.41%, respectively;
MAE is decreased by 85.30%, 90.27%, 89.71%,
84.48%, 95.61%, 91.13%, 80.26%, 95.78%, and
87.96%, respectively; RMSE is decreased by 91.82%,
89.00%, 88.84%, 93.40%, 93.29%, 91.92%, 84.08%,
94.46%, and 84.80%, respectively; ME is de-
creased by 92.34%, 85.98%, 85.37%, 93.20%, 89.03%,
88.68%, 69.58%, 82.44%, and 61.39%, respectively.
The EEMDN-SABiGRU model obtains accurate
prediction results for passenger hotspots on the 30-
day dataset.

4.4.4 Prediction results of different grids

To further evaluate the scalability of the
EEMDN-SABiGRU model, the surrounding grids,
such as the 00-, 55-, and 99-grid, are selected for pre-
diction with the 30-day dataset, and the results are
shown in Tables 4–6.

Table 4 shows the MOE values of the 00-, 01-,
10-, and 11-grid with the 30-day dataset. Table 5
illustrates the MOE values of the 55-grid peripheral
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grids 44, 45, 54, and 55 with the 30-day dataset.
Table 6 shows the MOE values of the 99-grid periph-
eral grids 88, 89, 98, and 99 with the 30-day dataset.
According to Tables 4–6, the average MAPE values
of the EEMDN-SABiGRU model in the Spark frame-
work are 3.150%, 2.175%, and 2.275%, respectively,
which indicates that the EEMDN-SABiGRU model
is strongly reliable and scalable in predicting pas-
senger hotspots between different grids in different
areas, as illustrated in Fig. 9.

4.4.5 Time complexity analysis

In this work, we compare the execution time of
each model with 1- and 10-day datasets, as described

Table 4 Measures of effectiveness for 00-grid with the
same dataset

Dataset MAPE (%) MAE RMSE ME

00-30-day 2.800 0.396 0.670 9.091

01-30-day 2.200 0.191 0.274 2.113

10-30-day 5.000 0.447 0.571 3.077

11-30-day 2.600 0.288 0.319 0.915

Table 5 Measures of effectiveness for 55-grid with the
same dataset

Dataset MAPE (%) MAE RMSE ME

44-30-day 1.500 0.981 1.325 8.490

45-30-day 3.700 0.746 0.929 4.167

54-30-day 2.500 1.010 1.211 6.014

55-30-day 1.000 0.160 0.210 1.048

Table 6 Measures of effectiveness for 99-grid with the
same dataset

Dataset MAPE (%) MAE RMSE ME

88-30-day 2.200 0.881 1.055 6.988

89-30-day 2.000 0.461 0.616 3.265

98-30-day 2.800 0.572 0.698 2.873

99-30-day 2.100 0.947 1.651 6.453

in Table 7.
From Table 7, the time complexity of the pro-

posed EEMDN-SABiGRU model is in the same level
as those of the other comparable models. Although
our EEMDN-SABiGRU model does not improve the
time complexity of passenger hotspot prediction, it
has the same level of execution efficiency as other
models.

In summary, the aforementioned prediction
results demonstrate that the EEMDN-SABiGRU
model shows excellent prediction performance. How-
ever, with the increased dataset, the value of ME in-
creases, which shows that the prediction error of the
model also increases. As shown in Fig. 10, the pre-
diction performances of the LSTM and GRU models
after using EMD, EEMD, and EMDN are signifi-
cantly improved with the 1-day dataset. With the
10-, 20-, and 30-day datasets, after adding EMD and
EEMD to the LSTM and GRU models, the RMSE
and ME values decrease and the MAPE and MSE
values increase, indicating that the neural network
model incorporating the EMD and EEMD meth-
ods produces a decreasing trend of prediction per-
formance when the dataset increases. The MOE
values of the EEMDN-SABiGRU model fluctuate
slightly with the 30-day dataset, which proves that
the EEMDN-SABiGRU model generates excellent
prediction stability when the prediction performance
is satisfactory. In particular, the time complexity of
the EEMDN-SABiGRU model is in the same level as
those of the comparable models.

5 Conclusions

This paper proposed a distributed EEMDN-
SABiGRU model on Spark to predict passenger
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Fig. 9 Comparisons of MOE values for EEMDN-SABiGRU under different grids with the 30-day dataset: (a)
00-grid; (b) 55-grid; (c) 99-grid
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Table 7 Execution time of different models

Dataset
Execution time (s)

LSTM
EMD- EEMD-

GRU
EMD- EEMD- EMDN-

CNN BP
EEMDN-

LSTM LSTM GRU GRU GRU SABiGRU

1-day 7.18 46.49 43.04 7.97 34.11 48.97 27.83 15.45 13.58 68.97

10-day 147.57 403.29 546.62 66.79 408.25 462.67 411.75 276.53 164.32 748.58
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Fig. 10 Comparisons of MOE values for different models with different datasets in the 00-grid: (a) 1-day; (b)
10-day; (c) 20-day; (d) 30-day

hotspots. Specifically, the urban road network was
rasterized under the Spark framework. Then, to im-
prove the prediction accuracy of the model and to
solve the non-smooth sequences and numerical dif-
ferences, the EEMD algorithm and normalization
method were introduced to process the rasterized
road network data. Next, the fusion BiGRU model
dealt with the deficiency that the GRU model can-
not extract contextual information, and the spatial
attention module was constructed to focus on the
travel hotspot areas on the map and obtain the pre-

diction results. Finally, the prediction results were
merged by inverse normalization to obtain the fi-
nal prediction results. In particular, the prediction
results of the EEMDN-SABiGRU model were com-
pared with those of the LSTM, GRU, EMD-LSTM,
EMD-GRU, EEMD-LSTM, EEMD-GRU, EMDN-
GRU, CNN, and BP models. The experimental re-
sults demonstrated that EEMDN-SABiGRU is sig-
nificantly superior to LSTM, GRU, EMD-LSTM,
EMD-GRU, EEMD-LSTM, EEMD-GRU, EMDN-
GRU, CNN, and BP. From the experiment results, it
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can be concluded that the EEMDN-SABiGRU model
can predict the passenger hotspots more accurately,
and the prediction performance was still satisfactory
with the increased dataset.

In future work, we will consider the effects of
weather, traffic conditions, and passenger mobility
on passenger hotspots, and validate the EEMDN-
SABiGRU model using GPS data from taxis in dif-
ferent cities.
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